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Abstract
Machine health condition (MHC) prediction is useful for preventing unexpected failures and minimizing overall mainte-

nance costs since it provides decision-making information for condition-based maintenance (CBM). This paper presents 

a novel bearing health condition prediction approach based on enhanced online sequential learning fuzzy neural net-

works (EOSL-FNNs). Based on extreme learning machine (ELM) theory, an online sequential learning strategy is devel-

oped to train the FNN. Taking advantage of the proposed learning strategy, a multi-step time-series direct prediction 

scheme is presented to forecast bearing health condition online. The proposed approach not only keeps all salient fea-

tures of the ELM, including extremely fast learning speed, good generalization ability and elimination of tedious parame-

ter design, but also solves the singular and ill-posed problems caused by the situation that the number of training data is 

smaller than the number of hidden nodes. Simulation studies using real-world data from the accelerated bearing life 

have demonstrated the effectiveness and superiority of the proposed approach.
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1 INTRODUCTION 

Machine health condition (MHC) prediction is useful for preventing 

unexpected failures and minimizing overall maintenance costs since 

it provides decision-making information for condition-based mainte-

nance (CBM) [1]. Typically, MHC prediction methods can be divided 

into two categories, namely model-based data-driven methods [2].

Due to the difficulty of deriving an accurate fault propagation model 

[3], [4], researches have focused more on the data-driven method in 

recent years [5]. The neural network (NN)-based approach, which 

falls under the category of the data-driven method, have been 

considered to be very promising for MHC prediction due to the 

adaptability, nonlinearity, and universal function approximation 

capability of NNs [6]. Batch learning and sequential learning are two 

major training schemes of NNs. MHC prediction is essentially an 

online time-series forecasting problem which should perform real-

time prediction while updating the NN. Thus, to save updating time 

and to maintain consistency of the NN, the sequential learning 

should be employed in such a problem. 

The most popular NNs applied to MHC prediction are recurrent NNs 

(RNNs) and fuzzy NNs (FNNs). In [6], an extended RNN which con-

tains both Elman and Jordan context layers was developed for gea-

rbox health condition prediction. In [7], a FNN in [8] was applied to 

predict bearing health condition. In [9], an enhanced FNN was dev-

eloped to forecast MHC. Next, in [10] and [11], a recurrent counter-

part of the approach in [9] and a multi-step counterpart of the ap-

proach in [10] were presented to predict MHC, respectively. An inte-

rval type-2 FNN was also proposed to predict bearing health condi-

tion under noisy uncertainties in [12]. Note that the batch learning 

was employed in [6], [7], [12]. Common conclusions from [6], [7], 

[9]-[12] are that the RNN usually outperforms the feedforward NN, 

and the FNN usually outperforms the feedforward perceptron NN, 

feedforward radial-basis-function (RBF) NN, and RNN. Recently, to 

improve prediction performance under measurement noise, an inte-

grated FNN and Bayesian estimation approach was proposed for 

predicting MHC in [13], where a FNN is employed to model fault 

propagation dynamics offline, and a first-order particle filter is uti-

lized to update the confidence values of the MHC estimations 

online. In [14], a high-order particle filter was applied to the same 

framework of [13]. A question in the approaches of [13], [14] is that 

the FNNs should be trained by the system state data (rather than 

the output data) which are assumed to be immeasurable. 

Extreme learning machine (ELM) is an emergent technique for tra-

ining feedforward NNs with almost any type of nonlinear piecewise 

continuous hidden nodes [15]. The salient features of ELM are as 

follows [15]: i) All hidden node parameters of NNs are randomly 

generated without the knowledge of the training data; ii) it can be 

learned without iterative tuning, which implies that the hidden node 

parameters are fixed after generation and only output weight pa-

rameters need to be turned; iii) both training errors and weight 

parameters need to be minimized so that the generalization ability 

of NNs can be improved; iv) its learning speed is extremely fast for 

all types of learning schemes. ELM demonstrates great potential for 

MHC prediction due to these salient features. Nonetheless, the ori-

ginal ELM proposed in [15] is not appropriate for predicting MHC 

since it belongs to the batch learning scheme. To enhance the 

efficiency of ELM, online sequential ELM (OS-ELM) was developed 

in [16], and was further applied to train the FNN in [17]. Due to its 

extremely high learning speed, the OS-ELM-based FNN in [17] 

seems to be suitable for MHC prediction. Yet, there are two draw-

backs in [17] as follows: i) It is not good to yield generalization 

models since only tracking errors are minimized; ii) it may encoun-



ter singular and ill-posed problems while the number of training data 

is smaller than the number of hidden notes. 

To further improve the efficiency of MHC prediction, a novel FNN 

with an enhanced sequential learning strategy is proposed in this 

paper. The design procedure of the proposed approach is as fol-

lows: First, a ellipsoidal basic functions (EBFs) FNN is proposed; 

secondly, the FNN approximation problem is transformed into the 

bi-objective optimization problem; thirdly, an enhanced online se-

quential learning strategy based on the ELM is developed to train 

the FNN; finally, a multi-step direct prediction scheme based on the 

proposed learning strategy is presented for MHC prediction. The 

developed enhanced online sequential learning FNN (EOSL-FNN) 

is applied to predict bearing health condition by the use of real-

world data from accelerated bearing life. Comparisons with other 

NN-based methods are carried out to show the effectiveness and 

superiority of the proposed approach. 

The structures of the rest paper are as follows. The architecture of 

the FNN is described in Section II. The enhanced online sequential 

learning strategy based on the ELM is developed in Section III. The 

multi-step direct prediction scheme is given in Section IV. Simula-

tion results based on real-world bearing data are provided in Sec-

tion V. Conclusions are given in Section VI. 

2 ARCHITECTURE OF FUZZY NEURAL NETWORK  

For MHC prediction, we consider the n-input single-output system. 

Yet, the following results can be directly extended to the multi-input 

multi-output (MIMO) system. The FNN is built based on an EBF NN. 

It is functionally equivalent to a Takagi-Sugeno-Kang (TSK) fuzzy 

model that is described by the following fuzzy rules [18]: 

1 1
ˆRule : IF and and is THEN isj

j n nj jR x is A x A y wd iand id ij n njj n njand iand iand i              (1) 

where ix Î  and ŷÎ  are the input variable and output variable, 

respectively, Aij is the antecedent (linguistic variable) of the ith input 

variable in the jth fuzzy rule, wj is the consequent (numerical varia-

ble) of the jth fuzzy rule, i = 1, 2, …, n, j = 1, 2, …, L, and  L is the 

number of fuzzy rules.  

As illustrated in Figure 1, there are in total four layers in the FNN. In 

Layer 1, each node is an input variable xi and directly transmits its 

value to the next layer. In Layer 2, each node represents a Gaussi-

an membership function (MF) of the corresponding Aij as follows: 

2 2( | , ) exp ( ) 2
ij i ij ij i iA i j jx c x cé ùm s = - - së û                       (2 ) 

where ijc Î  and ij

+s Î +  are the center and width of the ith MF in 

the jth fuzzy rule, respectively. Note that the MF in (2) is an EBF 

since all its widths ijs  are different [18]. In Layer 3, each node is an 

EBF unit that denotes a possible IF-part of the fuzzy rule. The 
output of the jth node is as follows: 

2 2

1
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x c

=
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1 2[ , , , ] n

j j njs s s Î, , ] n

j j nj, ,, ,s Î, , ], , ], ,, ,, , . In the last layer, the output ŷ  is obtained by 

the weighted summation of jf  as follows: 

ˆˆ ( | , c, σ) ( | c, σ)y f W W= =Fx x                             (4) 

where (1 2 )ˆ( ) : n L nf + +× (1 2 )n L n(1 2 )(1 2 )n L nn L n(1 2 )(1 2 ) , 1 2[ , , , ] L
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For the TSK model, the THEN-part wj is a polynomial of xi which 
can be expressed as follows: 

0 1 1j j j nj nw x x= a +a + +aj j j nj nxj j j nj nj j j nj nj j j nj j j n+ +aj j j nj j j n                                      (5) 

where 0 1, , ,j j nja a a Îj j nj, , , a Îj j njj j nj, , ,  are weights of input variables in the jth 

fuzzy rule. The following lemma shows the universal function appro-
ximation property of the proposed FNN. 
 

Lemma 1 [19]: For any given continuous function ( ) :f x D   

and arbitrary small constant +eÎ + , there exists a FNN in (4) with 

proper parameters W , c  and σ  such that 

ˆsup | ( ) ( | , c, σ) |f f WÎ - < e
x

x xD                                            (6) 

where D
nÌ n  is an approximation region. 

3 ONLINE SEQUENTIAL LEARNING STRATEGY 

For training FNNs, consider a data set with N arbitrary distinct 

training samples:  1{(x , )}NN l l ly ==N , where  1 2[ , , , ]Tl l l lnx x x= Îx ]l l l ln, , ]T, ,= Î], ,, ,, ,  

nn , ly Î , and l is the number of the sampling point. If a FNN 

with L hidden nodes can approximate these N samples with zero 

error, then there exist proper parameters W , c  and σ  such that 

( | c, σ)l lW yF =x                                            (7) 

for all l = 1, 2, …, N. Since jw  in (5) can be rewritten into α
T

j le jw = x  

with 1[1, ]T T n

le l

+= Îx x
1T T n+  and 1
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α ] .] .le L, , αxle Lle L, ,                               (8) 

Substituting (8) into (7) for all l = 1, 2, …, N,  applying the definition 

of F  and making some manipulations, one gets 
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From the above expression, it is easy to show that 
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which can be written into the following compact form: 

 
 

Figure 1:  Architecture of fuzzy neural network. 



( , c, σ)H Q Y=X                                          (9) 

where 
1 2[ , , , ]T N n

N

´= ÎX x x x, , ]T N n

N

T N nT N n= Î]T N nT N n, , , 1
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( 1) 1

1 2[α ,α , ,α ]T T T T n L

L

+ ´Î ( 1) 1, ,α ]T T T T ( 1) 1( 1) 1
α ]L

( 1) 1( 1) 1( 1) 1( 1) 1( 1) 1Î  is the consequent parameter matrix, and 

H Î  ( 1)N n L´ +( 1)N n L( 1)( 1)N n LN n L( 1)( 1)( 1)  is the hidden matrix weighted by the fired strength of 

fuzzy rules given by 
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                 (10) 

From ELM theory, the parameters c  and σ  in (10) can be ran-

domly generated and fixed after generation, i.e. the updating of 

antecedent parameters is not necessary. Usually, the equality in (9) 

cannot be obtained due to the limitation of FNN scale. Consider the 

following minimizing problem: 

( )2 2min || || || ||
Q

HQ Y Q- +l                                      (11) 

where || ||×  denotes the Euclidean norm, and λ is a real positive 

constant. The least-squares solution of Q in (11) is as follows: 

1ˆ ( ) .T TQ H H I H Y-= +l                                             (12) 

Now, give an initial data set: 0

0 1{(x , )}
N

l l ly ==N . From (12), one 

immediately gets 

1

0 0 0 0
ˆ TQ K H Y-=                                                         (13) 

0 0 0

TK H H I= + l                                                          (14) 

where 
00 1 2[ , , , ]TNY y y y=
0
]

0

T

N00
y y, , , 0 0( , c, σ)H H= X  and 0 1 2[ , , ,=X x x , ,  

0
]TNx . Let ˆ ly  be the estimation of ly  with 1, 2,l = . The FNN 

output at the initial phase is as follows: 

0 0 0
ˆŶ H Q=                                                                  (15) 

where 
00 1 2

ˆ ˆ ˆ ˆ[ , , , ]TNY y y y=
0

ˆ ]
0

ˆ
T

N00
y y, , ˆ .  

 

Then, present the (k+1)th chuck of new observations: 1k+ =N  

{( , )}l lyx  with 
1

0 0 0
1, 2, ,

k k k

j j jj j j
l N N N
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1k k k

j j j0 0 00 0 00 0 0
N N

1k k k

j j jj j j

+
N NN N

0 0 00 0 00 0 00 0 0

k k kk k k

j j jj j j0 0 00 0 0
,

0 0 00 0 00 0 00 0 00 0 00 0 0
N NN N,

k k kk k k

j j jj j j,
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, where jN  

denotes the number of observations in the (k+1)th chunk. From 

[16], one obtains the RLS solution for Q in (11) as follows: 

1 1 1

T
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, ,, , . The FNN output at the learning 

phase is as follows: 
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(a) 1 step ahead                                                                                            (b) 2 steps ahead 
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Figure 4: Initial training response of the proposed approach 



To avoid the singular problem for the matrix inversion of 1kK + in (17) 

while 0N L< , one makes 1

0 0P K -=  and applies the Woodbury 

identity to calculate 0P  as follows [20]: 

1

0 0 0 0 0/ ( ) / .T TP I H I H H H-= l - l + l                           (19) 

Similarly, to avoid the ill-posed problem so that the computational 

cost for the matrix inversion of 1kK + in (17) while iN LN L
 
can

 
be

 

reduced, one makes 1

k kP K -=  and 1

1 1k kP K -
+ += , and applies the 

updating law of 1
ˆ
kQ +  as follows: 

1

1 1 1 1 1( ) ,T T

k k k k k k k k kP P PH I H PH H P-
+ + + + += - +                       (20) 

1 1 1 1 1
ˆ ˆ ˆ( ).T

k k k k k k kQ Q P H Y H Q+ + + + += + -                                 (21) 

4 MULTI-STEP PREDICTION SCHEME 

MHC prediction is essentially an online time-series prediction prob-

lem which should carry out updating and prediction concurrently. To 

carry out multi-step direct prediction, consider the nonlinear auto-

regressive with exogenous input (NARX) model as follows: 

( ) ( ( ), ( ), ( 2 ), , ( ),

( ), ( ), ( 2 ), , ( ))

s s s s s

s t s s

y k r f y k y k r y k r y k nr

x k x k r y k r x k nr

+ = - - -

- - -

y k, , ( ), , ( )s s s s ss s s s s, ,, ,, ,, , ( ), , ( )( ), ,, ,

, (, (s t s s, (, (, (, (, (, (, (, (
            (22) 

where xs and ys are the input and target feature variables, respec-

tively, r is the prediction step, n+1 is the maximum lag, i.e., the 

order of the system. Then, give a time-series data set: {( ( ),sx i=T  

1( ))}s iy i ¥
= , its initial set: 0 =T 0

1{( ( ), ( ))}
n

s s ix i y i =  with 0 ( 1)n n r> + , and 

choose the root-mean-square error (RMSE) as the performance 

index. Based on the proposed learning strategy, the multi-step 

direct prediction scheme of time-series is presented as follows. 

Step 1) Offline Initialization: Obtain the initial training data       

set: 0

0 1{(x , )}
N

l l ly ==N , where 0 0 ( 1)N n n r= - + , and 

x [ ( ), ( ), , ( ),

( ), ( ), , ( )] ,
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, (, (s s ss s s, (, (, (, (, (, (, (, (, (
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( (1 ) ).l sy y l n r= + +                                                      (24) 

a) Randomly generate parameters: c  and σ ; 

b) Calculate 0 0( , c, σ)H H= X  by (10), where 0 1[ ,= xX  

02 , , ]TNx x
0

, , ]
0

T

N00
, , ; 

c) Calculate 0Q̂  using (13) with (14) (if 0N L³ ) or with 

(19) (if 0N L< ); 

d) Calculate the initial training performance: RMSE 

train 0 0
ˆ( , )Y Y  with 0 0 0

ˆŶ H Q=  and 0Y =
01 2[ , , , ]TNy y y
0

, , ]
0

T

N00
y, ,, , ; 

e) Predict the next r step’s time-series:  

0 0 0
ˆˆ ( , c, σ)T

N r N ry H Q+ += x ; 

f)  Let 
010 1NY y +=  and 

0 010 1 1 0
ˆˆ ˆ ( , c, σ)T

N NY y H Q+ += = x ; 

g) Set the training step: k = 0. 

Step 2) Online Sequential Prediction: Present the (k+1)th train-

ing data set: 
0 01 1 1(x , )k N k N ky+ + + + +=N , where 

0 1xN k+ +  and 

0 1N ky + +  are given by (23) and (24), respectively. 
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Figure 5: Initial training errors of the proposed approach 
 



a) Calculate 
01 1( , c, σ)T

k N kH H+ + += x  by (10);  

b) Update the prediction performance: Pred ( 1)
ˆRMSE ( ,k kY +  

0( 1) ( 1) 1[ , ]T T

k k k k N kY Y y+ - + += ,
0( 1) ( 1) 1

ˆ ˆ ˆ[ , ]T T

k k k k N kY Y y+ - + +=  and  

0 1 1
ˆˆ

N k k ky H Q+ + += ; 

c) Update 1
ˆ
kQ +  using (17) with (16) (if 1kN L+ ³ ) or by (21) 

with  (20) (if 1kN L+ < ); 

d) Update the training performance: train 1
ˆRMSE ( ,kY +  

1)kY + ,
01 1[ , ]T T

k k N kY Y y+ + += , 1 1 1
ˆˆ ( , c, σ)k k kY H Q+ + += X , and 

1 [ ,Tk k+ =X X  
0 1]TN k+ +x ; 

e) Predict the next r step’s time-series:  

0 0( 1) ( 1) 1
ˆˆ ( , c, σ) ;T

N k r N k r ky H Q+ + + + + + += x  

f) Set the training step: k = k + 1 and go to Step 2. 

5 SIMULATION STUDIES 

The applied MHC monitoring data were collected from 

PRONOSTIA, an experimental platform dedicated to test and vali-

date bearings fault detection, diagnostic and prognostic approaches 

[21]. As shown in Figure 2, the PRONOSTIA is composed of three 

main parts: a rotating part, a degradation generation part and a 

measurement part. The main objective of PRONOSTIA is to provide 

real experimental data that characterize the degradation of ball 

bearings along their whole operational life. This platform allows 

accelerating bearing degradation in only few hours. An example of 

the vibration raw signal gathered during a whole experiment is 

shown in Figure 3. The non-trendable and non-periodical statistical 

properties of this type of signals increase the difficulty of MHC 

prediction [22]. 

 

In this study, we choose two bearing data sets under the operating 

conditions: 1800 rpm speed and 4000 N load to carry out simulation. 

For the NARX model in (22), set n = 1, and r = 1, 2, 5 or 10,  select 

xs as the standard deviation (STD) of each vibration data set which 

consists of 2560 vibration signals, and  ys as the 5% trimmed mean 

of the vibration signal. The prediction procedure is as follows: First, 

the offline initialization is carried out based on one data set to obtain 

an intimal FNN model; second, the online prediction is carried out 

based on another data set to forecast time-series of r steps ahead. 

To demonstrate the superiority of the proposed EOSL-FNN, the 

OS-ELM in [16] and the NARX-NN are selected as the compared 

methods, where 10 notes is applied to the NARX-NN, and 100 

notes with l = 0.001 are applied to the EOSL-FNN and OS-ELM. 

Two performance indexes, namely the RMSE and the mean abso-

lute percentage error (MAPE), are defined as follows: 

2 1/2ˆ ˆRMSE( , ) [ (( ) )] ,Y Y E Y Y= -                           (25 ) 

( )1

1
ˆMAPE | ( ) / | 100%.

n

t t tt
y y y

n =
= - ´å                      (26) 

The Accuracy index is defined as (100% MAPE)- . 

 

The initial training and online prediction performance of the pro-

posed EOSL-FNN are depicted in Figure 4 - 7. One observes that 

high training and predicting accuracy is obtained under small ahead 

step, and satisfied training and predicting accuracy is still obtained 

under large ahead step. The performance comparisons of all pre-

diction methods in term of the time, RMSE, STD and accuracy are 

shown in Table I. Note that the results are obtained from averaging 

10 times’ simulation results. One observes that both the EOSL-FNN 

and the OS-ELM are extremely faster (with small training and pre-

dicting time) and more stable (with small STD) than the NARX-NN, 
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(a) 1 step ahead                                                                                              (b) 2 steps ahead 
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(c) 5 steps ahead                                                                                            (d) 10 steps ahead 

Figure 6: Online prediction response of the proposed approach 
 



the EOSL-FNN performs similar or better (with small RMSE and 

Accuracy) than the NARX-NN and OS-ELM, and the EOSL-FNN 

performs a little slower (with larger training and predicting time) than 

the OS-ELM since it contains more adjusting parameters. 

6 CONCLUSIONS 

 

In this paper, a novel EOSL-FNN has been developed and success-

fully applied to predict MHC. An online sequential learning strategy 

based on the ELM is developed to train the FNN. A multi-step time-

series direct prediction scheme is presented to forecast bearing 

health condition online.  The proposed approach not only keeps all 

salient features of the ELM, including extremely fast learning speed, 

good generalization ability and elimination of tedious parameter 

design, but also solves the singular and ill-posed problems caused 

by the situation that the number of training data is smaller than the 

number of hidden nodes. Simulation studies using real-world data 

from the accelerated bearing life have demonstrated the effective-

ness and superiority of the proposed approach. Further work would 

focus on bearing long-term condition and remaining useful life 

prediction using online dynamic FNNs.  
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Figure 2: Experimental platform PRONOSTIA 
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Figure 7: Online prediction errors of the proposed approach 
 

 

Figure 3: An example of the vibration raw signal 
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Step NN Type 
Training Prediction 

Time (s) RMSE STD Accuracy (%) Time (s) RMSE STD Accuracy (%) 

r = 1 ESL-FNN 0.0352 0.0832 54.010e-4 97.197 2.1145 0.2343 0.0354 98.565 

 OS-ELM 0.0312 0.0865 34.100e-4 95.195 2.0159 0.2641 0.0254 97.548 

 NARX-NN 1.5506 0.1153 25.200e-4 94.631 4.1824 0.3345 0.0191 96.744 

 
     

    

r = 2 ESL-FNN 0.0334 0.0987 5.6765e-4 97.120 2.2387 0.2645 0.0083 98.018 

 OS-ELM 0.0250 0.1056 6.9462e-4 94.585 2.1141 0.2837 0.0232 97.453 

 NARX-NN 1.535 0.1220 197.00e-4 94.363 4.2151 0.4744 0.2707 95.970 

          

r = 5 ESL-FNN 0.0388 0.1054 4.7654e-4 95.078 2.2416 0.3879 0.0141 97.365 

 OS-ELM 0.0324 0.1181 3.7799e-4 94.044 2.1541 0.4562 0.0342 95.343 

 NARX-NN 1.6427 0.1644 1474.0e-4 94.326 4.1434 0.4683 0.1815 95.832 

          

r = 10 ESL-FNN 0.0295 0.1250 9.3490e-4 94.418 2.3015 0.4561 0.0355 95.096 

 OS-ELM 0.0264 0.1441 5.6543e-4 93.317 2.2784 0.5441 0.0341 93.992 

 NARX-NN 1.5085 0.1255 101.00e-4 94.285 4.0014 0.6344 0.1684 94.630 

Table 1: Performance comparisons of all methods 


