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Abstract

In this paper, we aim at maximizing the useful life of a heterogeneous
distributed platform which has to deliver a given production. The ma-
chines perform independent tasks and may be configured with different
profiles (one nominal mode and several degraded ones). Depending on the
profile, a machine reaches a given throughput. At each time the sum of
the machine throughputs that are currently running determines the global
throughput. Moreover, each machine is supposed to be monitored and a
prognostic module gives its remaining useful life depending on both its
past and future usage (profile). The objective is to configure the platform
so as to reach the demand as long as possible.

We propose to discretize the time into periods and to choose a con-
figuration for each period. We propose an Integer Linear Programming
(ILP ) model to find such configurations for a fixed time horizon. Due to
the number of variables and constraints in the ILP , the largest horizon
can be computed for small instances of the problem. For larger ones, we
propose polynomial time heuristics to maximize the useful life. Exhaustive
simulations show that the heuristic solutions are close to the optimal (5%
in average) in the case where the optimal horizon can be computed. For
other platforms with a very large number of machines, simulations assess
the efficiency of our heuristics. The distance to the theoretical maximal
value is about 8% in average.
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1 Introduction

Maintain production equipment in their best operational condition is one major
objective of all manufacturers. Since the last decade maintenance budget has
growing up to ensure the availability of equipment. Nowadays it is not yet con-
sidered as a cost center, but as a profit lever. Maintenance strategies evolve from
corrective maintenance policies where breakdowns were a necessary damage to
condition based maintenance. In the latter case, equipment are monitored and
maintenance action are scheduled to prevent from failures.

Recent development in prognostics and health management allows to imagine
new maintenance strategies that take into account the effective and future state
of the equipment. The results already proposed by researchers [7] show that
it is possible to estimate the Remaining Useful Life (RUL) of a component
or an equipment. This could be possible in the framework depicted by [6].
The architecture described in this paper covers all functions of condition based
maintenance from the data acquisition with sensors to the decision making. Due
to the growing complexity of equipment, it is able to give information, at the
minimum level for a control purpose. Then, it is often possible to collect these
data. They can be exploited to know what is the system health state. Moreover,
with several techniques recently developed one can predict the future state of
the system.

Prognostic system are proposed in the literature. [2] present some methods,
for instance based on fuzzy neural networks to determine the RUL of machine
components. [8] present also for the same goal an approach based on dynamic
bayesian networks. As Byington proposed in [1], prognostic methods can be
categorized in three groups. First, methods that are based on physical model
of the component or the equipment. Then, data-driven methods are based on
the past data. Finally, the third group contents methods that use the expe-
rience feedback. Whatever the approach, they all try to estimate the RUL.
Consequently, this information leads to a decision phase regarding the mainte-
nance policy of the concerned equipment. Decision could have several forms,
preventive intervention, spare part provision, rescheduling of production, etc.

In this paper, we address this kind of decision making issue. Considering
that equipment is monitored, a prognostic system is able to give the RUL of the
equipment. In the context of this paper, we assume that each equipment has a
nominal running mode (the most efficient one) and several degraded modes that
allow equipment to extend its RUL with a lower efficiency. Then one question
is, how can we control the production rate of a set of equipment for a given
global production objective to reach the next preventive maintenance window
or to produce as long as possible? To achieve our objective, at each time, the
decision problem that we are faced to is to find which equipment should be used
and in which mode.

One application of this work could be energy production management of a
wind farm. Wind turbines suffer from degradations (e.g., gearbox, blade struc-
ture) and consequently they have to be periodically maintained. Maintenance
operations require costly equipment (e.g., cranes or special trucks) that has to
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be hired ([5]). Therefore, for cost and availability reasons we have both to group
the maintenance tasks and to postpone them as long as possible while insuring
the required service.

The paper is organized as follows: in Section 2 we give a formal definition
of the problem. In section 3 we describe an Integer Linear Programming (ILP )
formulation that finds a configuration if this one exists for a given horizon. Sub-
optimal approaches are presented in Section 4 and simulation results are shown
in Section 5 to illustrate their behavior depending on experimental conditions.
We conclude the article in section 6.

2 Framework and decision problem

In this section we present the application, resource and degradation models. We
also define the objective function of our optimization problem.

2.1 Application, resource framework and execution model

The application that we address in this paper is a collection of independent and
identical tasks. The input can be considered as infinite, that is countable or not.
The provided result is a given service level that we measure as a throughput,
i.e., number of pieces performed or quantity of matter (q) treated per unit of
time (ut). The application is supposed to maintain a given service such as the
throughput ρ.

The platform M = {Mj s.t. 1 ≤ j ≤ m} consists of m resources (e.g., ma-
chines) that perform the inputs as described by the application. Each machine
Mj has n running profiles (pi,j s.t. 1 ≤ i ≤ n). A machine running with the
profile pi,j = (ρi,j ,RULi,j) is able to produce the throughput ρi,j during at most
RULi,j ut. It is worth noting that RULi,j is time before a failure, thus before
the halt of Mj . The higher is the throughput of the resource, the shorter is its
RUL. So at a given time t, the throughput of the application ρ′ is defined as
the sum of each throughput ρi,j of each machine Mj whose profile is pi,j and
that is running at that time t. We assume that the overproduction ρ′ − ρ is
lost. All of the resources of the platform are not supposed to be in use at any
time because of their RUL or because the target throughput ρ can be achieved
by using only a subset of the available machines within the platform.

2.2 Profile usage model

Let (ρmaxj ,RULminj) = (ρ1,j ,RUL1,j) be the largest available throughput
and its corresponding RUL. RULminj is the smallest useful life for the machine
Mj according to the execution model. Moreover, by construction we have ρi,j×
RULi,j < ρi−1,j × RULi−1,j for each profile 1 ≤ i ≤ n for each machine Mj

because the more the throughput is decreased the less is the efficiency (amount
of work) of Mj . This implies that (ρminj ,RULmaxj) = (ρn,j ,RULn,j).
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2.3 Time discretization

First of all, one way to tackle the problem consists in discretizing the time in
periods. For each period of length ∆T units of time (ut), a given service ρ has
to be satisfied. This approach is not so far from realistic constraint, since one
can imagine that one period could be one day or one week in a real case.

2.4 Objective functions

Our goal is to define the running profile pi,j for each resource Mj and for each
period of time so as to achieve a given global throughput ρ as long as possible.
As ∆T is the smallest considering period of time in which the service has to be
satisfied, let K and T be respectively the largest number of periods in which the
service is satisfied and the corresponding duration. So we have T = K ×∆T ut
as the longest period of time in which the platform is able to guaranty the target
throughput ρ.

2.5 Motivated example

Let us consider a set of four machines (m = 4). The required throughput is
ρ = 450 q.ut−1. At t = 0, M1 can produce ρ1,1 = 450 q.ut−1 with RUL1,1 = 1ut
or ρ2,1 = 100 q.ut−1 with RUL2,1 = 3ut; Mj (j = 2, 3, 4) can produce ρ1,j =
350 q.ut−1 with RUL1,j = 1ut or ρ2,j = 75 q.ut−1 with RUL2,j = 3ut. Note
that these machines respect the profile usage model. ∀t > 0 each profile pi,j
(1 ≤ i ≤ n and 1 ≤ j ≤ m) is given in Table 1 for the 3 scenarios presented
in Figure 1. This example aims at showing that using a machine within its
more efficient profile is not always suitable for improving the useful life of the
platform:

• Scenario 1: each machine runs with its more efficient profile without al-
lowing overproduction. Then the platform runs for four periods of time
but only one period of time allows us to achieve the target throughput
(ρ = 450 q.ut−1). The useful life of the platform is one period (T = ∆T )
for this scenario;

• Scenario 2: each machine is set to its more efficient profile but over-
production is now allowed. The production that exceeds a throughput
ρ = 450 q.ut−1 is lost. Nevertheless in this case the production level
reaches the target throughput for two periods of time (T = 2∆T ).

• Scenario 3: we present an optimal scheduling that allows the platform to
reach the target demand for three periods (T = 3∆T ). Machines are not
always used in their more efficient profile. Indeed by using M1 for three
periods with a throughput of 100 q.ut−1, its production can be joined to
the production of one of the other machines with throughput is 350 q.ut−1.
Because of the small number of alternative scenarios, it is easy to see that
any other schedule can not reach the constraint ρ = 450 q.ut−1 for a larger
number of periods (T ≥ 3∆T ).
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The aim of this example is to show that, when a machine Mj has different
running profiles corresponding to different couples (ρi,j , RULi,j), it is possible
to extend useful life of the platform while respecting a given target throughput.
The key point of this problem is to be able to find the appropriate profile for
each machine at each period of time.
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Figure 1: Motivated example

3 Optimal results

In this section, we propose a first approach of the problem with an exact reso-
lution method, based on an Integer Linear Program (ILP ).

3.1 Decision problem

The decision problem we face can be described as follows: does a schedule
exist that achieve the given service ρ during a given number of time peri-
ods K, considering the current health state of equipment, i.e., the value of
{RULi,j s.t. 1 ≤ i ≤ n and 1 ≤ j ≤ m}? For this first problem, one can propose
an Integer Linear Program (ILP (ρ,M,K)).

3.1.1 Variables

Let ai,j,k s.t. 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k ≤ K be the decision variables
of the problem. ai,j,k is defined as a binary variable. ai,j,k = 1 if equipment
j is used with the profile i during the period k; ai,j,k = 0 otherwise. This set
of variables assumes that the profile of the equipment can change at each time
period.
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Table 1: Profile (ρi, j, RULi,j) for each machine and each scenario given in
Figure 1.

t = 0 t = ∆T t = 2∆T t = 3∆T

sc
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(T
=

∆
T

)

M1
(450,1) (450,0) (450,0) (450,0)
(100,3) (100,0) (100,0) (100,0)

M2
(350,1) (350,1) (350,0) (350,0)
(75,3) (75,3) (75,0) (75,0)

M3
(350,1) (350,1) (350,1) (350,0)
(75,3) (75,3) (75,3) (75,0)

M4
(350,1) (350,1) (350,1) (350,1)
(75,3) (75,3) (75,3) (75,3)

sc
e
n
a
ri

o
2

(T
=

2
∆
T

)

M1
(450,1) (450,0) (450,0) (450,0)
(100,3) (100,0) (100,0) (100,0)

M2
(350,1) (350,1) (350,0) (350,0)
(75,3) (75,3) (75,0) (75,0)

M3
(350,1) (350,1) (350,0) (350,0)
(75,3) (75,3) (75,0) (75,0)

M4
(350,1) (350,1) (350,1) (350,0)
(75,3) (75,3) (75,3) (75,0)

sc
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n
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ri

o
3

(T
=

3
∆
T

)

M1
(450,1) (450,0) (450,0) (450,0)
(100,3) (100,2) (100,1) (100,0)

M2
(350,1) (350,0) (350,0) (350,0)
(75,3) (75,0) (75,0) (75,0)

M3
(350,1) (350,1) (350,0) (350,0)
(75,3) (75,3) (75,0) (75,0)

M4
(350,1) (350,1) (350,1) (350,0)
(75,3) (75,3) (75,3) (75,0)

3.1.2 Constraints

The constraints of this decision problem should express the production through-
put required, the limitation of the useful life and the possible control mode for
equipment.

The first set of constraints concerns the production throughput. At least
the required service ρ should be reached for each time period. This, can be
expressed by the following inequalities:

∀k
m∑
j=1

n∑
i=1

ai,j,k × ρi,j ≥ ρ (1)

The second set of constraints requires that if an equipment Mj is used for a
given period k, then it can be controlled using only one running profile pi,j :

∀k∀j
n∑

i=1

ai,j,k ≤ 1 (2)

Finally, the last set of constraints is due to the remaining useful life for each
equipment. We can consider that during a given period k, if an equipment j
is used with the running profile pi,j then, it cuts the remaining useful by
∆T/RULi,j . Consequently, due to the value of the remaining useful life for
equipment j, the following inequalities expressed that equipment could not be
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used more than its remaining useful life:

∀j
n∑

i=1

∑K
k=1 ai,j,k ×∆T

RULi,j
≤ 1 (3)

3.2 Associated optimization problem

The Integer Linear Program ILP (ρ,M,K) allows without any objective func-
tion to give an answer to the question: does a configuration exist for the plat-
formM such that the required throughput ρ could be reached during at least K
periods.

3.2.1 Minimizing the production loss

Nevertheless, one can use this model to obtain solutions with the objective
to minimize the loss of production. The loss of production is defined as the
difference between the resulting throughput of a given configuration (running
mode of equipment) and the required one (equation 4). Then the production
loss for a given period k is the following:

σk =

m∑
j=1

n∑
i=1

ai,j,k × ρi,j − ρ (4)

Consequently, a first optimization problem that we can address is the minimiza-
tion of the total production loss

∑K
k=1 σk. This almost corresponds to keep the

maximum potential of production for the platform M.

3.2.2 Maximizing the number of periods

As we present in section 2.4, we propose to solve the problem where the plat-
formM is able to produce the required throughput ρ as long as possible. Besides
the previous model can compute a solution to reach the throughput ρ, it is not
sufficient since it is designed for a known number of periods K.

Nevertheless it can be useful to determine the greatest number of periods
during which a given platform M is able to produce the given throughput ρ.
First, one can determine two bounds of this number. The first one is an upper
bound KMAX :

KMAX =

⌊∑m
j=1 max1≤i≤n (ρi,j × RULi,j)

ρ

⌋
(5)

This equation means that if all equipment are used with their better yield (the
running mode that provides the greatest production during the whole remaining
useful life) and the global production of the platform is always ρ, then KMAX
is the longest duration for which the throughput ρ could be reached.
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A lower bound KMIN can also be computed using a heuristic algorithm.
Then, the worst lower bound is 0. If a heuristic algorithm can provide a solution,
the latter could be considered as a lower bound.

Since one can compute these two bounds KMAX and KMIN, finding the
maximum number of periods that can be reached for a given throughput ρ and
a given platform M can be done using a dichotomy search approach. This
approach is detailed in algorithm 1.

ILP (ρ,M,K) is in fact a binary linear program but solving such a binary
linear program is a NP-Complete problem. However, as shown in Section 5,
efficient solvers such as [4] or [3] are able to give solutions for small problem
instances. For more realistic problem size, defining scalable heuristic is manda-
tory. Thanks to the previous ILP , a validation of these heuristics is presented
in the next section.

Algorithm 1: Dichotomy search procedure for finding the maximum num-
ber of periods

Remark: for this algorithm, we call ILP (ρ,M,K) the integer linear program
described in section 3.1 and LP (ρ,M,K) the rational relaxation
of ILP (ρ,M,K)
Kmin ← KMIN
Kmax ← KMAX
while Kmax −Kmin > 0 do

K ← (Kmin +Kmax)/2
if LP (ρ,M,K) has a solution then

if ILP (ρ,M,K) has at least one solution then
Kmin ← K

else
Kmax ← K

else
Kmax ← K

return K

4 Sub–optimal approaches

We are not able to compute the optimal solution using the ILP defined in
the previous section as soon as we consider platforms within a large number
of machines and/or with also a large number of profiles. So we propose four
polynomial time heuristics that allocate for each period of time enough ma-
chines to reach the target throughput as long as possible. When a machine is
chosen, a profile is selected by the heuristic so as to define its contribution to
the production within the current period and to compute its remaining useful
life when the period is finished. Different approaches are proposed in the fol-
lowing. We distinguish two families of heuristics. In the first family (H–RAND,
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H–KS) the schedule is constructed period by period. We update the RUL of
the selected machines for the current period and we iterate on this process until
the set of available machines that are not able to reach ρ. The second family
(H–LRF, H–HTF) consists in finding a selection of machines for several periods
corresponding to the smallest RUL of the selected machines. Then each RUL
of the selected machines is updated as for the first family. We iterate with the
remaining set of available machines.

4.1 H–RAND: Random heuristic

The first heuristic works period by period. H–RAND randomly chooses a ma-
chine and its associated profile available for the next ∆T units of time (ut) and
iterates as long as the throughput within the current period does not reach at
least the demand ρ. The RUL of each machine is updated to take its usage
during the current period into account. Then H–RAND selects another subset
of machines until a new period can be completed. The number of periods K
that are successfully completed represents the useful life of the platform. This
naive heuristic mainly serves as a basis for comparaison and assesses the interest
of defining more complex and smart heuristics to extend the useful life of the
system to a number of periods close to the optimal one.

4.2 H–KS: One period based heuristic

The heuristic H–KS is a more sophisticated heuristic. This heuristic aims at
minimizing the production loss, period by period. If we consider one period, the
problem is to find a subset of couples machine/profile that is able to reach at
least the production demand with the smallest overproduction. We propose to
implement a KnapSack-like algorithm so as to make the choice between all the
available couples within the current period. The difference with the classical
Knapsack problem is first that the sum of the value (ρi,j) of the selected objects
(subset of couples machine/profile) should be greater or equal to the knapsack
weight (ρ). Secondly each object (Mj) has several values (ρi,j , 1 ≤ i ≤ n) and at
most one could be selected. The objective of our KnapSack-like problem is now
to minimize the sum of the machine values in the case where this sum exceeds
the knapsack weight ρ.

The algorithm developed to implement H–KS is a classical dynamic pro-
gramming based approach. We consider successively each available machine.
For each machine Mj we iterate on the throughput ρ′ from 1 to ρ. For each
value of ρ′, we consider each available profile pi,j = (ρi,j ,RULi,j) (1 ≤ i ≤ n) of
Mj to select or not the current machine with its right configuration regarding
our objective. To define the objective value we introduce some notations: let
ovi(ρ

′, j) be the overall throughput obtained by the j first machines using both
the jth machine with its ith profile and the optimal configuration considering
the j−1 first machines obtained for a target throughput of ρ′−ρi,j ; let OVi(ρ, j)
be a valide overall throughput and +∞ otherwise; finally let OV (ρ′, j) be the
optimal (minimal) throughput that exceeds the target demand ρ′ using a subset
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of the j first machines. The expression of the optimal value is the following:

ovi(ρ
′, j) = OV (ρ′ − ρi,j , j − 1) + ρi,j with 1 ≤ i ≤ n

OVi(ρ
′, j) =

{
ovi(ρ

′, j) if ovi(ρ
′, j) ≥ ρ′

+∞ otherwise

OV (ρ′, j) = min
(
OV (ρ′, j − 1), min

1≤i≤n
OVi(ρ

′, j)
)

The minimal throughput for the current period is given at the position OV (ρ,m)
of the 2D matrixOV used by our algorithm. Thanks to the storage of each choice
that is made for every couple (ρ′, j) when the algorithm is running, we are able
to reconstruct the way to obtain the optimal schedule.

4.3 H–LRF: Largest RUL First heuristic

This heuristic aims at considering each machine Mj using its less efficient pro-
file (pn,j = (ρminj ,RULmaxj)). The idea is to sort the machines by their
non-increasing RULmaxj (∀1 ≤ j ≤ m), select iteratively the sorted machines
by their order until the overall throughput exceeds ρ the less as possible. By
construction, the last selected machine (say Ml) has the smallest RUL of the
subset of the selected machines because of the sorting. So, this machine de-

termines the number bRULmaxl

∆T c of periods during which ρ is reached. After
these periods of time each profile is updated to take the usage of each machine
into account. This heuristic loops on this process. As soon as the remaining
available machines are not able to reach ρ, we increase the throughput (ρn,j)
of the machines Mj which has the largest RUL from the machines that are yet
alive. Its contribution in term of throughput becomes ρn,j and its remaining
useful life RULn,j . So, we iterate this increase in the value of the throughput
until the overall throughput reaches ρ. If there are available machines for at
least another period, we update their RUL and we start another increasing step
as long as possible.

4.4 H–HTF: Highest Throughput First heuristic

The heuristic H–HTF is based on the same principle as H–LRF but now each ma-
chine Mj is configured with its more efficient profile p1,j = (ρmaxj ,RULminj).
We sort the machines by an increasing ρ1,j and we select by this order a subset
of the smallest number of machines that reaches ρ. Then, as long as possible,
we iteratively choose the machine whose RUL is the smallest from the selected
machines (say Ml) and decrease its throughput from ρi,l to ρi+1,l only if the
overall throughput remains greater than ρ. As for H–HTF, the number of com-

pleted periods bRULmaxl

∆T c is given by the selected machine Ml which RUL is
the smallest. Then we update the RUL for every machine and we repeat the
process until enough machine are able to reach ρ.
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5 Simulation results

The both proposed approaches previously described (optimal and heuristic ones)
have been validated using random generated benchmarks. First we propose to
describe the generation method. Then, when the problem size allows to perform
an optimal solution a comparison with the heuristic procedures is depicted.
Finally we present results with large size problems.

5.1 Benchmark generation

We consider a set of equipment with the fixed data detailed in table 2. Using this
data, we can build each running profile i in function of the number n of profiles
desired in the application. The construction model uses the notion of work
quantity, which is the product of the remaining useful life by the throughput:
Qi,j = ρi,j ×RULi,j . We define for all equipment j the remaining useful life for
each profile i as follows:

RULi,j =
Q1,j − (i− 1)∆Q

ρi,j
1 ≤ i ≤ n and 1 ≤ j ≤ m

where Q1,j = ρ1,j × RUL1,j > Qn,j = Q1,j − ρ1,j × C

∆Q =
Q1,j −Qn,j

n− 1
=
ρ1,j × C
n− 1

ρi,j = ρ1,j ×
n− i+ 1

n
and 0 < C < RUL1,j

Table 2: Testbed set of equipment
Equipment ρmaxj = ρ1,j RULminj = RUL1,j C

1 300 8 5
2 250 8 5
3 200 10 5
4 175 12 5
5 150 14 5

Then, each problem is generated using the equipment of table 2. One plat-
form is built for a given number of equipment m, a given number of running
profile n and a given production throughput ρ to reach during the maximum
number of periods. The equipment is randomly chosen in the set proposed in
table 2. Consequently, the same equipment could be selected twice or more.

For instance, with m = 4, n = 3 and ρ = 400 the data set of table 3 could be
generated. One can notice that equipment 1 is selected twice and equipment 3
and 4 are not used.
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Table 3: Example of data set with m = 4, n = 3 and ρ = 400
Equipment running profile ρi,j RULi,j

1
0 300 8
1 200 9.5
2 100 14

2
0 250 8
1 166.67 9.5
2 83.33 14

1
0 300 8
1 200 9.5
2 100 14

5
0 150 14
1 100 18.5
2 50 32

5.2 Simulation results

The generation protocol used for all the tests proposed hereafter consists of 20
generated instances of problems with values of n ∈ {2, 3}, m ∈ {2, 3, 4, 5} and
ρ ∈ {400, 410, . . . , 850}. Figure 2 gives the normalization of heuristic solutions
with the optimal one computed by the ILP . In this experiment each point
represents the mean of 20 instances of the problem with n = 2 and m = 5. For
these results some comments can be done:

• First, one can see that random heuristics seems to be not so bad. One
reason is due to the objective function of our problem. All approaches
aim at maximizing the remaining useful life of the global platform. Then,
at the end of the schedule, the remaining useful life of each machine is
almost less than one period.

• H-KS appears to be the best heuristics. Indeed, H-KS, is the only heuris-
tics that computes a local optimal solution for one period. It can be seen
that this optimal choice does not deteriorate the overall solution, due to
the local objective that minimizes the overproduction.

• Finally, the solutions obtained by H-KS are very good, since they are on
average at 5% from the optimal one. And the worst case for this test is
about 12%.

An other simulation is shown in Figure 3. It obeys to the same protocol
but using a large set of 50 machines considering a throughput between 3 000
and 70 000 and 2 running profiles. Since the optimal solution is not computable
using the ILP , this figure represents the normalization with KMAX. We recall
that KMAX is the theoretical upper bound, larger than the optimal number
of periods that is possible to reach in practice. This explains why the results
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Figure 2: Heuristics H–KS (red), H–RAND (green), H–LRF (blue), H–HTF
(purple) (m = 5 machines, n = 2 running profiles)

shown in this figure are less good as before. Nevertheless, despite the difficulty
of the problem, our approach exceeds 80% of KMAX.

6 Conclusion and future work

In this paper we investigate a new approach of scheduling tasks on a distributed
heterogeneous platform under production throughput constraint. The original-
ity of the approach is that we take machine profiles into account so as to extend
the global useful life of the platform. The corollary is that the platform in-
sures the service level during a larger horizon of time. We propose both an
ILP formulation of the problem to reach an optimal solution and sub-optimal
approaches that are able to provide solutions close to the optimal.

As future work, we plan to explore continuous variation of the machine
profile. Moreover, taking maintenance tasks into account within the schedule is
also a very challenging problem to solve.
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[5] A. Kovács, G. Erdös, L. Monostori, and Z.-J. Viharos. Scheduling the Main-
tenance of Wind Farms for Minimizing Production Loss. In 18th IFAC World
Congress, volume 18, pages 14802–14807, Milano, Italy, sep 2011.

[6] M. Lebold and M. Thurston. Open standards for condition-based mainte-
nance and prognostic systems. In 5th Annual Maintenance and Reliability
Conference (MARCON), Gatlinburg, USA, 2001.

[7] J. Lee, J. Ni, D. Djurdjanovic, H. Qiu, and H. Liao. Intelligent prognostics
tools and e-maintenance. Computers in Industry, 57:476–489, 2006.

[8] D.A. Tobon-Mejia, K. Medjaher, and N. Zerhouni. Cnc machine tool’s wear
diagnostic and prognostic by using dynamic bayesian networks. Mechanical
Systems and Signal Processing, 2012.

14


