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Abstract— Self-sensing techniques is defined as the
use of an actuator as a sensor at the same time. The
main advantage of such techniques is the embeddabil-
ity and the packageability of the systems. This paper
deals with the development of a self-sensing technique
able to estimate the displacement, the force and the
state in piezoelectric cantilevered actuators. The main
novelties relative to previous works are: 1) three
signals (displacement, force and states) are provided
at the same time instead of only two (displacement
and force), 2) and these three signals are provided in a
complete way, i.e. low and high frequency information
can be provided (instead of exclusively low or high
frequency). It is therefore possible to further use the
measurement for a displacement control or for a force
control by using the output feedback methods or by
using modern control methods (state-feedback). In
order to allow such measurement possibilities, the
proposed approach consists in combining an unknown-
input-observer (UIO) with the classical electrical cir-
cuit of a self-sensing. The experimental results confirm
the effectiveness of the proposed approach.

I. Introduction

SElf-sensing consists in using an actuator as a sensor
at the same time. This is possible for reversible

systems such as piezoelectric materials and magnetic
systems. In piezoelectric materials, this reversibility of
physical principle is given by the direct (1) and the
converse (2) effects: (1) mechanical stress provokes the
apparition of electrical charges on the material’s surface,
(2) and an electrical field provokes the deformation of
the material. Consequently, the electrodes used to supply
the piezoelectric actuators can also be used to recuperate
the appearing charges. The principle of a self-sensing
consists in using an electrical circuit that amplifies these
charges and transforms them into an exploitable voltage,
and then using a convenient observer that traces back
and estimates the deformation (displacement) or the
stress (force). This observer is based on the model of
the piezoelectric actuator and on the model of the elec-
trical circuit. Both the electrical circuit and the observer
compose the self-sensing measurement technique.
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The main advantage of self-sensing is that no external
sensor is used to measure the signals. This advantage
is very promising in systems where the available space
is limited and where the embeddability of the mea-
surement systems is essential. These systems include:
MEMS, MOEMS, microsystems, microrobotics, systems
for precise manipulation and precise positioning, etc.

So far, self-sensing was used to exclusively estimate the
displacement or the force in vibrational functioning and
then to damp the vibration in systems ([1][2][3][4] and
references herein). Although these existing approaches
were efficient to measure high frequency signals and
related control applications, they could not provide long-
term measurement (more than some seconds) of constant
or low-frequency signals. In fact, due to the internal leak-
age of the piezoelectric materials, the appearing charges
cannot be maintained to be constant for more than
some seconds and then the accuracy of the estimation
is quickly lost if the signal is not varying. This fact,
additionaly to the fact that exclusively the displace-
ment or the force is available, is not congruent with
the requirements in some applications such as precise
positioning and precise manipulation. Indeed, during the
positioning that may last several minutes, it is important
that the actuators maintain the objects to be positioned
with a constant force. To satisfy these requirements, a
scheme of self-sensing able to measure the displacement
and the force at the same time for more than 600s has
been proposed in our previous work [5]. The technique
could measure the displacement both in low and high
frequency, but the measurement of the force was limited
to low frequency or constant value. Consequently, the
self-sensing can be used in a displacement feedback con-
trol with a display of the steady-state value of the force.
However, force feedback control, which is also essential
in micromanipulation applications, was not possible. In
fact, force control involves several interests in these
applications: avoiding the desctruction of manipulated
objects, mechanical characterization of biological small
objects ... This paper proposes therefore a self-sensing
technique that can provide a full measurement (low and
high frequency) of both the displacement and of the force.
The main advantages relative to the above existing works
are:

• the proposed approach furnishes both the dynamics



and the steady-state (low and high frequency) not
only for the displacement, but also for the force. This
is necessary for force feedback control,

• additionally to the displacement and the force sig-
nals, the approach also provides an estimate of the
whole state information of the piezoelectric actu-
ators. Therefore, the proposed measurement tech-
nique can also be used in state feedback control of
the piezoelectric actuators.

To reach these performances, the approach proposed in
this paper consists in using an unkown-input-observer
(UIO) technique as the observer of the self-sensing. An
unkown-input-observer consists in considering a pertur-
bation that acts to a system as an unknown input. Then
a full model is used to construct the observer that will
estimate not only the state of the system but also this
unkown input. In the case of a piezoelectric actuator,
we consider the force as the unkown input. There are
several techniques of UIO according if the system’s model
is linear [6][7], with uncertainties [8], SISO (single-input-
single-ouput) [9][10], MIMO (multi-input-multi-output)
systems [11][12], with noises [13], or nonlinear [14], etc.
A main interest of an UIO is that no additional sensor is
required to provide the measurement of a perturbation
or of the unknown input, assuming that a convenient
model is available. The introduction of an UIO in a self-
sensing technique consequently increases the possibility
of the latter: increase of the number of estimated signals,
amelioration of the quality of the information (static and
dynamics, or low and high frequency).

The paper is organized as follows. First, we remind
in section-II the previous work on self-sensing which can
provide the displacement in high and low frequency and
the force in low frequency. Section-III is devoted to the
new self-sensing scheme which is based on an unkown-
input-observer and which can provide full information
(low and high frequency) on displacement, force and
state. Finally, we present the experimental results in
section-IV.

II. Remind of the self-sensing technique for
the displacement (low and high frequency)

and force (low frequency)

This section reminds the self-sensing technique de-
veloped in our previous work [5] and that can provide
a measurement of the displacement in high and low
frequency and a measurement of the force only in low
frequency. An UIO will be introduced to this technique
afterwards (in the next section) in order to estimate the
displacement, the force and the state, all in a full way
(i.e. low and high frequency).

A. The piezoelectric actuator and the different signals

Let Fig. 1 presents a piezoelectric cantilevered actuator
manipulating an object for precise positioning or precise
manipuluation (micromanipulation). In the figure, U is
the input (control) voltage that makes the actuator

bends, y is the deflection (or displacement) and F is
the (manipulation) force applied by the actuator’s tip
to the object. Thanks to a self-sensing technique, it
is possible to estimate the force and the displacement
without sensor.
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Fig. 1. Principle of a piezoeletric actuator manipulating or
positioning an object.

B. Electrical scheme and observer of the self-sensing

When the piezoelectric actuator bends, electrical
charge Q appears on its electrodes. This charge can be
amplified by an electrical circuit and transformed into
an exploitable voltage Uo. From the available signals U
and Uo, an observer provides signals ŷ and F̂s that are
the estimate of the displacement y and the estimate of
the force F respectively. While the estimate ŷ gives a
complete information (static and dynamics) of the dis-
placement, the estimate F̂s only gives static information
(low frequency or steady-state) of the force. The self-
sensing is composed of two parts: 1) the electrical circuit,
2) and an observer. The observer itself is composed
of a static displacement and force observer and of a
dynamic observer. Fig. 2-a presents the principle scheme
of the self-sensing and Fig. 2-b presents the electrical
circuit used. Remind that the electrical circuit is a charge
amplifier or integrator. The static displacement and force
observer provides a ’static’ information (low frequency)
of the two signals while the dynamic observer provides
the complete information (static and dynamics, or low
and high frequency) of the displacement. In the figure,
Cr is a ”reference capacitor”used to ”absorb”a significant
part of charge due to the applied voltage. The value of Cr
is chosen to be close to the equivalent capacitor of the
piezoelectric actuator. In fact, charge due to the input
voltage U also appears on the electrodes additionally to
the charge due to the bending. Consequently, Cr allows
to cancell the charges due to the voltage U in order
to finally have the charge due to the deformation. The
capacitor C is used for the integrator while Rdisc and
relay kdisc allow resetting the output Uo if saturated.



Finally the amp-op is considered to have a very high
input impedance.
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Fig. 2. Complete self-sensing [5]: (a) - principle scheme. (b) -
electrical circuit used.

Based on the modeling of the actuator and of the elec-
trical circuit, the estimate steady-state force F̂s and the
estimate complete information (steady-state and dynam-
ics) of the displacement ŷ are described by the following
observer equations [5]:

F̂s(t) =

1

β

(CrU(t)− CUo(t))− Fcr(t)− Fhys(t)−
1

Rfp

t∫
0

Udt


ŷfrees (t) =

1

α

(CrU(t)− CUo(t))−QDA(t, U)− 1

Rfp

t∫
0

Udt



ŷ(s) =

(
G1(s)

G2(s) +G3(s)

)
ŷfrees (s)− spF̂s(s)

(1)
with

Fcr(s) = Ftfcr(s)U(s)

Fhys(s) =
β

sp
Γ (U, y)

QDA(s) =
kDA

(1 + τDAs)
U(s) = QtfDA(s)U(s)

G1(s) = Γ (U, y)D(s)

G2(s) = − 1
α
Rfp

s
− kDA
α (1 + τDAs)

− 1

α
H(s)

G3(s) =
Cr
α

(2)

where β is the force sensitivity coefficient that relates
the electrical charge on the actuator’s surface with
the applied external force, α is the actuator charge-
displacement coefficient. Coefficient sp is the piezoelec-
tric compliance that relates the displacement with the
applied external force. Signal ŷfrees corresponds to the
estimate steady-state displacement when no external
force is applied (free bending). Resistor Rfp is a leakage
resistor of the piezoelectric actuator and QDA(t, U) is
its dielectric absorption. This dielectric absorption can
be represented by a first order transfer QtfDA(s) with
a static gain kDA and a constant time τDA, s being the
Laplace variable. Transfer function D(s) is the dynamics
of the piezoelectric actuator such as D(s = 0) = 1.
Transfer function H(s) is the transfer that relates the
input U with the exploitable voltage Uo. This is linear
since the relation between U and Q is normally linear.
Signals Ftfcr(t) and Fhyst(t) (or Ftfcr(s) and Fhyst(s) in
the Laplace domain) capture the creep and the hystere-
sis nonlinearity that typify the voltage-to-displacement
behavior of the piezoelectric actuator. They can be ap-
proximated by a linear transfer function Ftfcr(s) and a
nonlinear operator Γ(U, y) respectively. Concerning the
hysteresis, there are several approximation approaches
possible. As the Prandtl-Ishlinskii is very convenient
for a real-time implementation [15][16][17][18][19], it has
been used. In this, the operator Γ(U, y) is described as
the superposition of several elementary hysteresis called
backlash (or play operator) as in (Eq. 3):


Γ(U, y)

=
nh∑
i=1

whi ·max {U(t)− rhi,min {U(t) + rhi, yi(t− T )}}

Γ(U, y)(t = 0) = Γ0

(3)
where nh is the number of backlashes, parameters whi
and rhi are the weighting and the threshold of the ith

backlash, yi is the elementary output (i.e. output of
the ith backlash) and finally Ts represents the sampling
period.

The creep operator Ftfcr(s) is described by a transfer
function:

Ftfcr(s) =

m∑
k=0

bks
k

n∑
l=0

alsl
(4)

where parameters bk and al are coefficients of the
transfer and m and n (m ≤ n) are the degrees of the
polynomials.

G1, G2 and G3 are called gains of the dynamic ob-
server. Fig. 3 pictured the block diagram of the observer
defined by (Eq. 1). The identification and computation
of all the parameters are described in [5].
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Fig. 3. Block diagram of the actual observer.

III. A new self-sensing with full measurement
of the displacement, the force and the states

The self-sensing previously presented provides the fol-
lowing signals: 1) estimate of the displacement with
complete information (static and dynamics, i.e. low and
high frequency), 2) and estimate of the force only at
its static aspect (i.e. low frequency). In this section, we
propose to extend the previous self-sensing scheme in
order to have the following signals:

• 1) estimate of the displacement with complete infor-
mation (static and dynamics),

• 2) estimate of the force with complete information
(static and dynamics),

• 3) and estimate of the whole states with complete
information (static and dynamics).

A. Principle scheme of the extended complete self-sensing

We start by modeling the piezoelectric actuator. The
model that relates the output deflection y(s), the applied
input voltage U(s) and the force F (s) applied by the
piezoelectric actuator at its tip is [22]:

y(s) = (Γ (U, y)− spF (s))D(s) (5)

where sp, D(s) and Γ (U, y) are the parameters and
operator already introduced above.

It is noticed that −F (s) is the force applied by the
environment (e.g. manipulated object) to the actuator.
Analyzing (Eq. 5), we deduce that the actuator is equiv-
alent to a system with two inputs (U and −F ) and one
output (y). The problem comes now to the estimation
of the displacement y and of the unknown input −F (or
F ). Considering that the estimate ŷ of the displacement
is already available thanks to the self-sensing developed
in the previous section and to its observer which are
pictured in Fig. 3, there remain the estimation of the
force in a complete way and the estimation of the states.
However, according to Fig. 3, the displacement estima-
tion requires the availability of the force. We therefore

propose to use the estimate force for that end when this
estimate is available from the new proposed observer.
The observer used for the force is called an unknown
input observer (UIO) since F to be estimated is now
considered as an input of the actuator.

To resume, the available signals are: 1) the input con-
trol U , 2) and the estimate ŷ of the displacement issued
from the previous self-sensing, subjected that there is a
way to know the force.

Let us propose the following extended observer scheme
which is made up of several sub-observers:

• First a classic (sub)observer is constructed. This
classic observer, called state observer, has at its in-
put the available signals U , ŷ (estimate displacement
from the self-sensing) and F̂ (subjected that there
is an estimator for the force). The state observer
gives at its output the estimate state x̂ and another
estimate displacement denoted ˆ̂y.

• Then, the second (sub)observer is a force observer
that has as input the newly available signal x̂, the in-
put control U and the initial estimate displacement
ŷ from the self-sensing.

• Finally, the latter estimate force F̂ is used as one
input of the state observer and of the displacement
observer.

Fig. 4 resumes the systemic and principle scheme of
the actuator with the proposed extended self-sensing. We
can remark from this figure the extension of the initial
observer pictured in Fig. 3.

B. An UIO observer for the force and state estimation

1) Problem statement: In this sub-section, we present
the state and force observers. For that, an unkown input
observer (UIO) is used since one of the objective is to
estimate −F (and thus F ) which is an input. From
(Eq. 5), it is still possible to find a transformation in
order to have a state-space representation defined by:



ẋ = Ax+ Γ (U, y) +BF

y = Cx
(6)

where x ∈ Rn denotes the state vector, A ∈ Rn×n

is the state matrix, C ∈ R1×n is the output matrix (a
vector) and B ∈ Rn is called disturbance input matrix.

The following assumptions are made:

• the matrices A, B and C are known,
• B has a full column rank,
• (A,C) is observable.

The objective is to simultaneously estimate x and F
from the known signals U and ŷ.

2) Equations of the observers: Let the equation of the
state observer be:

˙̂x = Ax̂+ Γ (U, ŷ) +BF̂ +K
(
ŷ − ˆ̂y

)
ˆ̂y = Cx̂

(7)

and let the equation of the force observer be:

F̂ = γ1ŷ + γ2 ˙̂y + λ1x̂+ λ2 ˙̂x+ λ3Γ (U, ŷ) (8)

where

• K is the gain of the state obsever,
• γ1 ∈ R, γ2 ∈ R, λ1 ∈ R1×n, λ2 ∈ R1×n and λ3 ∈ R

are the gains of the force observer.

To seek or compute the gains γi (i ∈ {1, 2}) and
λj (j ∈ {1, 2, 3}), the inverse-dynamics-based technique
proposed in [14] can be used.

3) The inverse-dynamics-based UIO computation:
Depending on whether there exists γ2 or not such as
γ2CB − I = 0, two computation schemes were proposed
in [14].

First computation scheme
There exists γ2 so that γ2CB − I = 0. For SISO

problem, this is satisfied if and only if CB 6= 0. Thus:
(i) γ2 is chosen to satisfy

γ2CB − I = 0 (9)

(ii) γ1 and K are selected such as

A−B (γ1C + γ2CA)−KC (10)

is Hurwitz
(iii) and

λ1 = − (γ1C + γ2CA)
λ2 = 0
λ3 = −γ2C

(11)

Second computation scheme
Many physical systems fail to satisfy the condition

required for the precedent computation scheme. Hence,
if for any γ2 one cannot satisfy γ2CB − I = 0, a second
computation scheme was proposed.

Let B+ be the Penrose-Moore inverse of B. Consider
Me = I+B (γ2C −B+) and Ae = A−B (γ1C +B+A)−
KC.

If Me is nonsingular, the gains γ1, γ2 and K should
be selected such as M−1

e Ae is Hurwitz. However if Me is
singular, the singular value decomposition (SVD) is used.
Let:

Me = UMeΣMeV
t
Me

ΣMe
=

[
σMe 0

0 0

]
(12)

be the SVD of Me, where UMe
∈ Rn×n and VMe

∈
Rn×n are unitary matrices, and σMe

∈ Rnm×nm (nm ≤
n) is a positive-definite diagonal matrix.

Consider the following partition of Ae by using UMe

and VMe
: [

A11 A12

A21 A22

]
≡ UMe

AeVMe
(13)

Thus, K, γ1 and γ2 should be selected such as A22 and
A11 −A12A

−1
22 A21 are Hurwitz.

After computing the gains γi (i ∈ {1, 2}), gains λj
(j ∈ {1, 2, 3}) are chosen as follows:

λ1 = − (γ1C +B+A)
λ2 = − (γ2C −B+)
λ3 = −B+

(14)

IV. Experimental results

The proposed extended complete self-sensing in Fig. 4
has been implemented. The setup is pictured in Fig. 5
and is composed of:

• a piezoelectric actuator with cantilever structure
and with dimensions of 15mm × 2mm × 0.3mm.
Such actuator is essential for the development of
piezoelectric microgrippers dedicated to microma-
nipulation or microassembly applications [20].

• a dSPACE-board and a computer material for the
data acquisition, for the observer implementation
and for the control signal. Matlab-Simulink is
the software used for that. The sampling period is
set equal to Ts = 50µs;

• a displacement optical sensor (from Keyence) to
measure the deflection (displacement) at the tip of
the actuator. It has been tuned to have a resolution
of 10nm, a precision of ±100nm and a bandwidth
of 1kHz.

• a force sensor (from Femtotools) to measure the
force applied by the actuator at its tip. The force
sensor is fixed on a linear and precise positioning
table. This table can be used to move the sensor’s
probe towards the actuator and thus to apply a force
−F to this,

• a home-made electrical circuit based on the scheme
in Fig. 2-b,

• and a high voltage amplifier to amplify the input
voltage U from the dSPACE-computer.
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Fig. 4. Principle scheme of the extended complete self-sensing.

It is noticed that the displacement and the force sensors
are used to capture the real displacement y and the real
force F in order to compare them with the estimate ŷ and
F̂ and thus to validate the proposed approach. During
the experiment, we are not interested by the second
estimate displacement ˆ̂y from the state-observer since the
estimate displacement ŷ from the dynamic observer is
sufficent for any eventual application.

The parameters in (Eq. 1) (Eq. 2)(Eq. 3) are identified
following the procedures in [5]. The electrical compo-
nents are: C = 47nF and Cr = 8.2nF . Finally for
the given actuator, we identified and calculated kDA =
−0.028µm/V , τDA = 60s, α = 273mV/µm, β =
1.03nC/mN and Rfp = 0.435TΩ.

The identification of dp and D(s) is performed by
applying a step voltage input to the actuator without
force at the tip and by capturing the output y thanks to
the optical sensor. After applying an ARMAX method

to the captured data, we obtain:
dp = 0.690µmV
D(s) =
5.752×10−3(s+3×104)(s2−1.9×104s+3×108)

(s+3976)(s+54.37s+1.36×107)

(15)

At the same time, the output Uo was captured allowing
the identification of H(s):

H(s) =
−0.158

(
s+ 5.9× 104

)
(s+ 236) (s+ 13.7)

(s+ 5.5× 104) (s+ 224) (s+ 12.9)
(16)

The elastic coefficient sp is identified by putting a known
mass at the tip of the piezoelectric cantilever and by
measuring the resulting deflection. We obtain: sp =
1.3µm/mN .

The first experiment consists in applying a series of
step input voltage U to the actuator when the latter
is not in contact with any object or with the force-
sensor. The aim is to validate the estimate ŷ and F̂ in
free bending condition. Fig. 6 picture the results where
Fig. 6-a represents the applied voltage. As we can see
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in Fig. 6-b, the estimate displacement ŷ from the self-
sensing well tracks the real displacement y measured
from the optical sensor. We can also see in Fig. 6-c that
the force observer provides an error (F − F̂ = 0mN − F̂ )
bounded by ±0.1mN . This error is negligible since it is
close to the sensor’s accuracy itself and is greatly inferior
to the range of force in the considered applications (up
to ten millinewtons).

The next experiment consists in setting U = 0V . First
we manually adjust the setup such that the actuator’s tip
is in slight contact with the sensor’s probe but with the
force still (nearly) equal to zero. Afterwards, we apply a
step control to the positioning table to which the sensor
is fixed. This generates a quasi step movement of the
table and consequently of the sensor’s probe towards the
actuator. The real displacement y of the actuator due
to that movement (and measured thanks to the optical
sensor) and the estimate displacement ŷ are presented
in Fig. 7-a. In parallel, the real force F (measured by
the force sensor) and the estimate force F̂ are presented
in Fig. 7-b. These figures confirm that the estimates ŷ
and F̂ from the proposed self-sensing well track the real
force and the real displacement respectively in their static
(steady-state) and dynamics (transient part) aspects.

V. Conclusion

This paper presented a self-sensing approach to es-
timate the complete information (static and dynamics
aspect, or low and high frequency) of the displacement, of
the force and of the states in piezoelectric actuators. The
proposed approach is essential for displacement control
and force control of piezoelectric actuators where it is
difficult to use sensors. The applications include precise
positioning, precise manipulation, MEMS, MOEMS, mi-
crosystems and microrobotics. To reach the objectives,
we proposed to introduce an unknown input observer
(UIO) in an existing self-sensing approach. The main
advantages are 1) the possibility of feedback control for
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the displacement and for the force, 2) and the possibility
to use modern control such as state-feedback. Finally the
proposed scheme inherits the general advantage of self-
sensing that is the embeddability of the measurement
technique.
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