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Abstract 

The proton exchange membrane fuel cell systems (PEMFC)s are interesting devices for energy 

conversion. Recent researches are aimed at developing new monitoring and diagnosis techniques; a 

good management of these systems would allow optimizing the performance and reducing their 

degradation. The objective of a suitable diagnostic tool is to identify and isolate the different faults 

that may occur in the system being monitored in real time. Therefore, the main features of 

computational methods are accuracy, reliability and high computational speed. In order to perform the 

diagnosis, it is necessary to evaluate different approaches. In this work different model-based 

approaches are investigated as well as their validation and applications. An overview of different 

methodologies available in the literature is proposed, which is oriented to help in developing suitable 

diagnostic tool for PEMFC monitoring and fault detection and isolation (FDI). 

Keywords: PEMFC; fault detection isolation; model-based; on-line diagnosis  

1. Introduction 

In recent years, the energy demand has become one of the most critical issues of the society due to the 

problems related with the greenhouse gas emissions and the depletion of fossil resources. Hydrogen is 

therefore playing a more and more important role in energy conversion, and fuel cells are considered 

as a promising solution. 

The PEMFC operation is based on the electro-catalytic reactions, the hydrogen oxidation at the anode 

and the oxygen reduction at the cathode. Nevertheless these processes are influenced by the system 

operating conditions and depend on several physical phenomena occurring inside the cells. Among 
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others, improper water management [1], catalyst degradation and fuel starvation [2] may introduce a 

voltage drop and even reduce the lifetime of a PEMFC. Different papers analyse the PEMFC 

durability [3,4,5]. In order to detect such degradation phenomena and optimize the system 

performance the monitoring and diagnosis of PEMFC become a central objective.  

This paper proposes an overview of different methodologies for PEMFC’s diagnosis presented in the 

literature. The overall concept of fault diagnosis consists in three essential tasks: fault detection, fault 

isolation and fault analysis [6,7,8]. The task of fault detection is to track down fault occurrence during 

the operating phases. Once a fault is detected, the fault isolation procedure starts. Finally fault analysis 

is performed to determine the type, the magnitude and the causes of the fault (fault isolation). 

Generally, according to whether an analytical model is needed, two basic types of approaches can be 

considered: model-based and non model-based. The former methodology is based on the development 

of a model able to simulate the behaviour of the monitored system. In case of a model-based approach, 

the fault diagnosis is performed mostly via residual evaluation, followed by a residual inference for 

possible fault occurrence detection [9], therefore such method is also known as residual-based 

diagnosis. The non model-based approach allows detecting and identifying the fault through human 

knowledge or qualitative reasoning techniques based on a set of input and output data. 

The paper focuses mainly on investigating various model-based approaches available in literature for 

PEMFC fault detection and isolation (FDI), and is organised as follows. In section 1 the main principle 

and classification of the model-based method are introduced. White-box and grey-box models are 

introduced in section 2. It proposes an overview of different grey-box models aimed to develop an on-

line FDI for PEMFC systems. Models have been organised in parameters identification based, 

observed-based, and parity space methods.  In section 3 black-box models based on artificial 

intelligence methods are investigated. Finally, a conclusion is made to evaluate each of the presented 

methods. 

2. Model-based approach 

In model-based approach a mathematical model can be developed to design or to control or even to 

perform both tasks for the system under study. Particularly, system design entails adopting complex 

physical multidimensional models. On the other hand, synthesis models directly derived from 

experiments can represent a more viable solution for control and real-time applications. Usually the 

physical multidimensional models are also called “white-box”, in which a series of algebraic and/or 

differential equations are present. The solution of these equations allows the characterization of the 

system behaviour, while ensuring a high genericity of the method; however a high computational 

effort could be required. Models directly derived from experiments are also known as “black-box”. 

Despite the low computational efforts required by black-box models make them particularly attractive 

for on-line monitoring, control and diagnosis applications, especially for complex system such as 

PEMFC [10], their strong dependence on available experiments reduce their genericity. Therefore, 

“grey-box” approaches combining the advantages of both physical and empirical models might often 

represent an interesting alternative solution when high genericity is required. In the particular field of 

fuel cells, 0-D or lumped approaches were proven to be highly effective to enhance real-time control 

[11,12] and even to perform both model-based system sizing and control strategies' definition [13]. 

Model-based approach is very common in FDI methodologies due to the availability of enough 

sensors employed for the control are usually enough to perform the diagnosis and no additional 

devices are required for the FDI algorithm implementation [14]. A model is a representation of the 

physical system and for this reason a perfectly accurate model cannot exist. Therefore a check of the 



modelling uncertainty influence on a model-based algorithm is always required to verify its 

robustness. Each model is characterized by different parameters which are often unknown. In order to 

guarantee the model accuracy these parameters must be properly identified. The choice of the 

identification method depends on the process type. Isermann [15,16] proposes several methods for 

linear and non-linear systems, such as least-squared (recursive, non-recursive, squared root filtering, 

etc.), and dedicated approaches. The implementation of the methods and their mathematical aspects 

are evaluated as well. According to Isermann [15,16], when an accurate enough model is 

implemented, the fault detection starts with the generation and the evaluation of the residuals. During 

the process, the model runs in parallel with the physical system. The residuals are then generated in 

real time as the difference between the model and the physical system outputs. Consequently they are 

analysed by the residual treatment  and an inferential process performs the isolation [6]. The model-

based fault diagnosis scheme is depicted in figure 1. Once the residuals are generated, a comparison 

with a set of thresholds is performed. When a residual value is over the threshold, a symptom is 

detected [17]. A specific correlation associates the symptom to the system component, localizing the 

fault. The threshold evaluation is a crucial step for the symptom detection. Indeed models are never 

perfectly accurate and residuals are always affected by uncertainties introduced by measurements and 

calculations. In order to take into account the performance sensitivity of the diagnostic tool with 

respect to disturbances [14], a trade-off between accuracy and robustness is required [17]. For this 

purpose, Escobet [7] introduced an adaptive threshold based method. Indeed they stated that the 

isolation approach based on binary detection causes information loss. In order to improve the fault 

isolation, the residual sensitivity to a fault has to be evaluated. It is verified [7] that the residual 

sensitivity analysis provides both quantitative and qualitative information about the fault influence on 

the residuals and their sense of variation, thus improving the fault detection. Escobet et al. [7] show 

that several faults could present the same binary fault matrix, but characterized by different 

sensitivities. A residual sensitive matrix has been proposed to detect unexpected compressor and 

temperature controller failures, air leak, flooding and water blocking phenomena. The results 

evidenced that all the considered faults are detectable, while the application of a binary signature 

matrix did not guarantee the same results. 

Figure 1 Model-based fault diagnosis scheme [Ding SX (2008)][6]. 

Every model has to be identified and validated before being employed. PEMFCs behaviours are 

usually evaluated directly through the polarization curves. Nevertheless other techniques can be 

applied such as the cyclic voltammetry (CV), the current interrupt (CI) or the electrochemical 

impedance spectroscopy (EIS). The validation procedure is the last step in system modelling and 

involves the comparison between the results of the simulation and the measurements. It is crucial that 

the tests refer to new data, which have never been employed for the model identification. A suitable 

level of confidence has to be set to consider the uncertainty due to measurements and calculations 

errors. Figure 1 also highlights another significant task to be performed when applying model-based 

FDI techniques, namely the residual processing and consequent decision on whether a fault occurred 

in the system or not. Among several methodologies that have been proposed to suitably perform such 

a task, the fault-tree analysis (FTA) [18] emerges as one of the more effective tools to detect faults as a 

function of residual-based generated symptoms. An example of application of FTA approach to fuel 

cells is given in [19], where the complete development of an FDI-oriented FTA for solid oxide fuel 

cell (SOFC) systems is described. An overview of the application of FTA in fuel cell diagnosis is also 

proposed by Yousfi-Steiner et al. [20]. Some examples of FTA relative to the degradation mechanisms 

in PEMFC are also available [1,2].  

3. From white-box to grey-box models 



Analytical models, also called white-box models, exploit in space differential equations to simulate the 

system behaviour. These models are usually very accurate and based on theoretical relationships. In 

PEMFC modelling, Nernst-Planck, Butler-Volmer and Fick’s laws are usually exploited to reproduce 

the charge transports (electrical and ionic) and mass transfers phenomena. Complexity of these models 

depends on their objective. In fact, characterizing the system behaviour requires very detailed models 

with complex equations to solve. Therefore in some cases, these models could appear very difficult to 

implement on-line. White-box models are aimed at system design and FDI algorithms’ design and 

testing. However, simplified models can be considered for control and diagnosis purposes, evaluating 

only the parameter values relative to FDI. The grey-box models are based on physical laws supported 

by a priori knowledge (i.e. data), replacing some complex mathematical equations with empirical 

formula or map tables. Therefore this approach allows solving the computational burden problem of 

white-box models. For this approach it is possible to classify the models available in literature in three 

main categories: (i) parameter identification based; (ii) observed-based; (iii) parity space methods. The 

different approaches are described below. 

3.1. Parameter identification models 

PEMFC monitoring can be performed through the identification of models’ parameters during FC 

system operations. When the parameters are related to the behaviour of either components or physical 

phenomena a correlation with the nominal value (in no faulty conditions) can be analysed.  In this 

approach the faults are modelled as system parameters. When the variation of these parameters 

achieves a certain limit, the correlated fault can be detected and isolated. The parameters are directly 

estimated on-line. A parameter identification scheme is shown in figure 2.  

Figure 2 Parameter identification scheme [Ding SX (2008)][6]. 

A good example of parameter identification method is proposed in Zeller et al. [21]. The authors 

developed a quasi-static circuit-based model for on-board monitoring and control. The theoretical 

voltage is obtained by combining a voltage source (i.e. Nernst potential) and the system losses. 

Activation and diffusion losses are modelled as two different voltage sources opposite to the Nernst 

one; while a resistance characterizes the Ohmic losses. During the tests, the data are acquired by the 

current sweep, and the non-linear least square method is adopted for parameters identification. In order 

to verify the validity of the identified parameters, a statistical approach has also been developed. 

Furthermore the paper focuses on the parameter variation analysis in the case of PEMFC degradation, 

this increase the robustness of the diagnosis tool. 

An original model aimed at reproducing the system behaviour during flooding is proposed by 

Hernandez et al. [22]. The main research objectives are the global modelling and the fault diagnosis. 

The authors developed an electrical equivalent circuit (see fig. 3) for charge, matter and energy 

conservation laws’ simulation. Gas fluid dynamics is taken into account through the analogies between 

the pneumatic elements and the electrical components. The model allows studying the gases’ 

compositions and their partial pressure. Vapour saturation, membrane and gas diffusion layers are also 

simulated. Nevertheless the electrical model is not enough to simulate the system behaviour in 

extreme conditions. The parameters are identified through a recurrent least squared method, 

linearizing the system around the operating point in real time. The model has been validated showing a 

good representation of the system dynamics. Moreover, the flexibility of the approach allows 

implementing this model in any commercial software dealing with electrical network analysis. 

Hernandez [22] developed a diagnosis algorithm considering three main types of failures: (i) flooding; 

(ii) drying; (iii) membrane deterioration.  



Figure 3 PEMFC equivalent circuit developed by Hernandez et al. [22]. 

Another diagnosis technique based on the electrochemical impedance spectroscopy (EIS), which is a 

powerful technique to monitor the low and high temperature proton exchange membrane fuel cells (LT 

– HT PEMFC) systems. Different studies in the literature demonstrate the potentialities of this non-

destructive testing method as a tool for investigating electrochemical processes and developing a 

robust parameter identification based diagnosis [23-28]. The EIS is a widespread experimental 

technique able to characterize the behaviour of an electrochemical system, and therefore allows 

analysing several phenomena inside the cell and evaluating the system losses. The idea behind the EIS 

is to analyse the response of the electrochemical device after a sinusoidal perturbation imposed on the 

system terminals. The perturbation input is a signal of small amplitude, superimposed on the nominal 

value of the operating current (galvanostatic mode) or voltage (potentiostatic mode). Per each 

operating condition the perturbation frequency changes within  a based range of values, usually for 

PEMFC the interval is [0.1 Hz – 1 kHz]. The galvanostatic mode is usually preferred for fuel cells. 

The impedance (Z) is calculated as the ratio between the response and the perturbation, then it is 

possible to analyse the impedance spectrum moving use of Nyquist and Bode. The obtained 

impedance spectrum is a function of the operating conditions and any variation leads to a change of 

the spectrum shape: in the Nyquist plot different arcs can appear as function of the phenomena 

occurring inside the cell. The impedance spectra can be represented by a typical equivalent circuit 

model, named Randle’s model (see fig. 4). This circuit consists of two resistors, a capacitor and a non-

linear element, known as Warburg’s impedance. The system’s Ohmic losses are modelled by the first 

resistance (Rm). In order to describe the effects of the electrodes’ polarization, the Faraday’s 

impedance is also considered, which takes into account both the activation and the diffusion losses. It 

is made of a resistance (Rct) for the charge transfer modelling and a non-linear Warburg’s impedance 

(Zw) adopted to reproduce the effects of the mass transfer. The Faraday’s impedance is connected in 

parallel with a capacitor characterizing the charge accumulation phenomena in the double layer (Cdl).  

Figure 4 Randle’s equivalent circuit. 

Fouquet et al. [23] study the flooding/drying phenomena during PEMFC operation. Several tests were 

made observing the system behaviour versus time. Their article focuses on the development of a 

suitable on-line monitoring technique based on impedance spectroscopy. Experimental results were 

analysed and an equivalent circuit model was developed to reproduce the impedance spectra. The 

authors propose a modified Randle’s circuit (see fig. 5). The double layer capacitor is replaced by a 

constant phase element (CPE) able to characterize the porous electrodes’ effect. The authors propose a 

robust fault detection and isolation diagnosis for PEMFC hydration monitoring. They state that 

isolating the hydration faults is possible by observing the position of the circuital resistance values in a 

3-dimensional space. 

Figure 5 Randle’s model with CPE element adopted by Fouquet et al. [23]. 

Also Asghari et al. [24] study the PEMFC performance via the EIS technique. Different experiments 

were conducted to study the performance variations by increasing and decreasing the bipolar plate 

clamping torque and the temperature; flooding effects were also analysed. An equivalent circuit model 

has been developed (see fig.6) in order to simulate the impedance arcs in Nyquist plot. The authors 

estimate each process by observing the variation of the parameter values. The parameter trends versus 

the current density were also shown. The aim of the paper is to study the effects of PEMFC losses on 

the impedance spectrum in order to develop a diagnosis tool able to detect and isolate the faults by 

observing the model parameters variation. 



Figure 6 Equivalent circuit proposed by Asghari et al. [24]. 

In their paper Legros et al. [25] simulate the system behaviour in order to detect flooding. The authors 

propose two different methodologies, the first one based on EIS, while the second one adopting the 

acoustic emission (AE) technique. The AE analysis is based on elastic waves theory, and is adopted 

for non-destructive control. The analysis of the system conditions is carried out in real time, sensing 

the imposed acoustic waves’ propagation. The physical-chemical phenomena occurring inside the cell 

influence the wave’s amplitude, energy, frequency and form. Therefore, through the monitoring of 

these parameters, the PEMFC characterization is performed by using spectral and multi-parametric 

analyses. AE outputs are processed by automated statistical techniques, which classify different cluster 

in a multidimensional space. This technique allows investigating mechanical damages and flooding or 

drying phenomena. After several tests, both the EIS and the AE results confirm the possibility to 

monitor the flooding process in the cell. This article states the relevancy of these methodologies in 

order to develop an innovative non-invasive online diagnosis tool. 

Another paper on PEMFC monitoring based on EIS technique is proposed by Narjiss et al. [26]. The 

authors develop an innovative method for PEMFC performance optimization and on-line fault 

detection. The small sinusoidal signal is superimposed on the system directly through the DC/DC 

converter and the control system allows the on-line spectroscopy without any disturbance in the 

electrical load. The idea is that all the phenomena involving an impedance variation can be monitored 

detecting and isolating the possible faults. The current and the hygrometry variation effects were 

analysed. A similar approach is also proposed by Bethoux et al. [27].  

Some authors [28-30] suggest a circuit model for high temperature (HT) PEMFC monitoring. These 

systems operating at temperature of about 160 °C are less sensible to CO poisoning. An interesting 

paper on HT-PEMFC performance characterization in presence of CO2 and CO through EIS technique 

is proposed by Andreasen et al. [28]. Moçotéguy et al.[29] analyses the HT-PEM behaviour through 

the EIS technique within a frequency range of [20 kHz to 0.1 Hz]. The target of this paper is to 

propose the results of long term tests for μ-CHP applications, this study is also interesting for the 

development of a diagnosis tool based on EIS monitoring. First tests are focused on system ageing 

considering pure hydrogen and reformate gas at the anode and oxygen and air at the cathode side. The 

system performance are evaluated at different current densities, it is shown that the best results were 

obtained for pure gases. Then the impedance spectra are analysed to evaluate the influence of the 

ageing. An equivalent circuit able to reproduce the physical behaviour of the system has been 

proposed in figure 7. This circuit is composed of an Ohmic resistance in series with two resistance-

capacitor parallel circuit. The first one reproduces the high frequency loop, and the second one models 

the low frequency loop where a constant phase element is introduced. As a first result, it is observed 

that the value of the Ohmic resistance does not change with ageing, nevertheless at high frequencies, 

the first loop seems to disappear as the ageing proceeds. On the contrary, the low frequency loop and 

the values of the associated resistances varies with ageing. To this purpose Jespersen et al. [30] 

focuses the research on parameters’ identification including current density, stack temperature and 

fuels’ stoichiometry. The authors specify how the model can ensure a correct fitting at each frequency; 

at the same time a physical meaning is given and a good adaptability to variations of the operating 

condition is obtained. This paper aims to analyse the parameters’ behaviours at different operating 

conditions in order to develop a robust diagnosis for HT-PEMFC. Nevertheless several tests and a 

qualified human interpretation of the identified parameters are still required.  

Figure 7 Equivalent circuit proposed by Moçotéguy et al. [29]. 



3.2. Observer-based models 

Observer-based model is one of the most common approaches implemented for model-based 

diagnosis. In this approach the model is integrated with the system and runs in parallel with it. The 

feed-forward evolution of residuals allows the development of the FDI. An observer-based diagnosis 

scheme is reported in figure 8. A great limitation about its on-line application for PEMFC systems is 

the calculation time required for the non-linear model solution.  

Figure 8 Observer-based residual generator scheme [Witczak, M. (2003)][31]. 

An example of observed-based model for PEMFC diagnosis is proposed by de Lira et al. [32,33], they 

adopted a FDI scheme based on adaptive threshold. The method has been tested on the industrial 
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 system by simulating different faults [32]. The developed dynamic model takes also 

into account the behaviours of the auxiliaries. The physical process modelling is based on mass 

conservation law, electrochemical, thermodynamic and zero-dimension fluid dynamic principles 

coupled with empirical equations. A linear parameter varying (LPV) observer with the Luenberger 

structure is applied for the residual calculation. This methodology allows the system equation 

linearization and solving the analytical problem in a discrete-time state space. For this purpose, a 

linear time-varying system is adopted. The diagnosis is developed by comparing the real system on-

line behaviour with the dynamic model response. Fault isolation is performed by checking the 

Euclidean distance between the observed and the theoretical relative residuals. The use of adaptive 

threshold guarantees the method robustness in PEMFC diagnosis. A set of possible faults was 

developed to test the algorithm robustness. Sensor outputs are analysed by testing the faults in: i) 

system supply pressure, ii) oxygen consumption, iii) stack voltage and iv) speed of the compressor 

motor. Sensor outputs has been successfully valuated detecting all the offsets. The technique has been 

evaluated successfully for all the considered faults.   

3.3. Parity space methods 

Based on state space model for the residual region characterization, parity space methods adopt the 

parity relations instead of an observer for residual generation. As for the observer-based, the parity-

space approach allows linearizing the system in a discrete subspace in order to simplify the 

computation. The advantage of this methodology is its subspace framework, which is presented in 

form of linear algebraic equations [6]. This approach for on-line diagnosis of PEMFCs is proposed by 

Buchholz et al. [10], (figure 9). The paper highlights the complexity of the on-line implementation for 

model-based approaches, due to the requirement of high amount of measurements and computational 

efforts for non-linear equation solution. In order to deal with these matters, the authors propose to 

linearize the physical model in the parity space linear domain. Different subspace identification 

methods were considered, namely: the numerical algorithms for subspace state-space system 

identification “N4SID”, the multivariable output error state-space identification “MOESP” and the 

canonical variate analysis (CVA). The CVA method, first introduced by Larimore [34], showed the 

best compromise between the model accuracy and the numerical stability. The authors consider two 

different approaches for the FDI development, one based on Kalman Filter and the other on the 

inverse model. The purpose is to demonstrate the applicability of these two methods. In the first 

approach, the authors reconstruct the Kalman filter state sequence directly based on the system 

input/output data. In the second approach, they use the CVA to develop the model. For the purpose of 

the method implementation all the stack measurable inputs and the mean cell voltage are used. Kalman 

filter and invers model approaches show how the linear CVA state-space models can be implemented 



to estimate the non-measurable inputs. The inverse model approach shows the best results when used 

for diagnosis, allowing the detection of all the evaluated faults. 

Figure 9 Inverse model scheme considered by Buchholz et al. [10]. 

The parity space method is also considered by Yang et al. [35]. Based on the phenomenological 

dynamic model developed by Pukrushpan [36], the authors linearize the model and generate the 

relative subspace. The analytical redundancy (AR) approach is adopted for FDI applications by setting 

the system parity matrix and generating the residuals. This method allows deriving a mathematical 

representation of the FCs through an algebraic system of equations. Residuals are generated by 

comparing the measured quantities with their mathematical representation [6]. Two of the twenty-two 

residuals calculated through the parity space approach are selected and analysed in the paper, leading 

to the relative fault matrix. The authors consider only two residuals based on the stack current, voltage 

and on the compressor over-voltage values. Results confirm that the selected residuals are valid for 

flooding, drying and compressor fault detection. The paper also focuses on demonstrating the 

method’s validity and its possible improvement by introducing adaptive thresholds for the fault 

detection. In a recent paper [37] the same authors extend the procedure to a non-linear case. They 

develop a five-order state representation to simplify the model, which in this case has not to be 

linearized. In this case, the FDI is performed by adopting the non-linear analytical redundancy 

(NLAR) approach. 

To summarize the descriptions just reported on grey-box models it can be clearly stated that the 

parameter identification approach shows a good accuracy and genericity. Indeed, by adopting an 

equivalent circuit model, it is possible to characterize the different electrochemical phenomena 

involved in a fuel cell, while simplifying the algorithm implementation and reducing the 

computational time. Moreover, the equivalent circuit approach can be achieved through the electrical 

network analysis. In literature, many authors highlight the use of the EIS technique for parameter 

identification [23-27,29,30]. The capability of characterizing and analysing the PEMFC impedance 

spectra through an equivalent circuit allows realizing the on-line monitoring and developing a suitable 

FDI. Some papers [7,32,33,35,37] underline the possibility to improve the FDI robustness adopting 

adaptive thresholds. In fact, the isolation approach based on binary fault matrix  seems to cause some 

information losses in FDI. For this purpose the use of relative fault matrix have been proposed. The 

table 1 reports a summary of the approaches discussed.  

Table 1. Grey-box models applications. 

4. Black-box models 

The black-box models are based on statistical data-driven approach. The relationships between the 

system inputs and outputs are not based on physical equations as for analytical models, but are 

deduced through suitable experimental databases. The experimental data are split in two different sets, 

one dedicated to the training procedure for the identification of the input/output correlations and one 

used for the model validation. Implementation for black-box models is well suited for complex non-

linear systems such as PEMFCs, where the identification of physical parameters of grey-box models 

may require high numerical efforts [17]. On the other hand, a large amount of experiments is required 

for model identification. The models available in the literature for PEMFC black-box modelling are 

introduced in the next sections.  

4.1 Neural network 



Inspired by biological neural networks, artificial neural network (ANN) has been proved to be a 

powerful tool for nonlinear system modelling [38]. Given a set of input and output data, the ANN has 

the ability to learn and build a non-linear mapping of the system, which provides encouraging solution 

for modelling of complex systems, especially those without well-known variable relationships. The 

basic unit of an ANN is called artificial neuron. According to the organization of the neurons, there are 

three fundamental topologies: single-layer feed-forward networks, multi-layer (MLP) feed-forward 

networks and recurrent networks [39]. In feed-forward networks, neurons are organized in certain 

parallel layers; all input signals flow in one direction, from inputs to outputs. As for recurrent ANN, 

the outputs of some neurons are fed back either to the same neurons or to the neurons in the preceding 

layers [40]; thus, a dynamic effect is introduced into the computational system by a local memory 

process. Moreover, by retaining the non-linear mapping features of the static networks, the RNN are 

suitable for black-box nonlinear dynamic modelling [41,42]. Among various ANNs, the most applied 

one for PEMFC modelling is the MLP type. An example of a Multi-layer NN (MLPNN) with two 

hidden layers is depicted in figure 10. 

Figure 10.Example of a multi-layer feed-forward neural network [38]. I: inputs, H and H’: hidden 

neurons, O: output neurons, W j,I 
h
: weights between hidden neuron j and input I, W k,j 

h’
: weights 

between hidden neuron j and hidden neuron k,  W m,k 
o
: weights between hidden neuron k and output 

neuron m. 

Numerous ANN models for various PEMFC systems have been developed in recent years, including 

both static and dynamic ones. Good agreements between models and actual systems are reported in 

literature. A multilayer perceptron (MLP) type ANN is established in [38] for modelling a 500 W 

PEM fuel cell stack. The stack voltage, as the single model output, is predicted by applying four inputs 

including the stack current, the stack temperature, the hydrogen and the oxygen flows. However, this 

model is a static one, which means that it can only make prediction in static operating conditions. A 

dynamic model composed of four parallel network modules is proposed in [43], with each module 

dealing with a different frequency range of the input signals. A high accuracy is obtained with the 

maximum difference between experimental results and model outputs less than 2.9%. In 

Sisworahardjo et al. [44], a dynamic MLPNN is applied to model a 100W PEMFC stack. Two 

variables stack current and stack temperature are arranged in input layer, while stack voltage, output 

power and hydrogen flow are as output nodes. Close agreement with the results of the experimental 

data are observed. In Chang’ paper [45], a new approach combining NN built on the basis of genetic 

algorithm (GANN) and an optimizing method, the Taguchi method  for characterizing various control 

factors in NN model, is proposed to estimate the output voltage of PEMFC. The proposed method is 

proved to have better performance than GANN without Taguchi method and the back-propagation 

neural network (BPNN) model. 

Based on the models, fault diagnosis can be further performed based on the residuals generated 

between the model outputs and the experimental results. Yousfi-Steiner et al. [40] applied two 

individual Elman recurrent neural networks (ENN)s to detect the occurrence of flooding and drying in 

a PEMFC system. As one type of a recurrent neural network, ENN is first introduced by Elman in 

1990. It consists of three layers: input, hidden and output layers. Firstly, the most influential variables 

in water management are chosen from a fault tree analysis as NN inputs according to human expert 

knowledge, that are  the current, the air inlet flow rate, the stack temperature and the dew point 

temperature. As the stack voltage indicates the degradation and the pressure drop is a relevant 

parameter to describe the flooding in an electrode, these two variables are determined as NN outputs. 

In the next step, threshold values are set to define their normal ranges of variation. A diagnosis 

decision is finally made based on the threshold to discriminate flooding, drying and normal operations. 



Since the physical parameters used in this model can be easily estimated even in an embedded fuel cell 

system, the proposed method can be adapted to an on-board system. NN models mentioned in this 

section are further summarized in table 2. 

Table 2. NN applied for PEMFCs modelling 

Compared with the analytical methods, ANN has the advantage of an excellent non-linear 

approximation ability and fewer assumptions for model construction [45]. Furthermore, it has a low 

sensitivity to noise and can be built based on incomplete database [46]. However, usually a large 

amount of dataset under a wide range of operating conditions is needed. When using MLPNN, the 

determination of the number of hidden layers and the number of neurons of each layer is also a critical 

issue. 

4.2 Fuzzy logic 

The main motivation of applying fuzzy logic to perform fault diagnosis is to deal with the system 

uncertainties, ambiguities and non-linearities [47]. A fuzzy model maps inputs to outputs by 

combining three components: if-then rules, membership functions and logical operators i.e. AND and 

OR [48].  Unlike the neural network, it establishes relationships between inputs and outputs by 

mimicking the human reasoning. Numeric data are converted into linguistic variables by membership 

functions which define how well a variable belongs to the output i.e. degree between 0 and 1 [48].  

In Kishor and Mohanty [49], fuzzy models are developed for the adaptive prediction of the cathode 

pressure/oxygen partial pressure, the stack voltage and the hydrogen partial pressure in a 50kW 

PEMFC system. Most relevant and non-redundant input variables for each module are firstly selected 

through utilizing mutual information based technique. Then, a Gastofan-Kessel (GK) clustering 

algorithm, which has an adaptive distance norm and is suitable for detecting clusters of different 

geometric shapes in the data set, is applied for extracting fuzzy rules from data. An efficient prediction 

is finally provided at different load conditions, evaluated by two performance indices, the variance 

accounted for (VAF) and the root mean square error (RMSE). However, dataset for training and 

testing is obtained from an analytical model of a 50kW PEMFC system constructed in 

MATLAB/SIMULINK, not from a real operational system. 

Fennie et al.[50] aims to predict the state of health (SOH) of PEMFC stacks by developing a fuzzy 

logic model. Data from two 5 W PEMFC stacks are used for training, and data from the other two are 

for testing. Both EIS measurements and I/V data are applied for building the fuzzy logic model. By 

applying a subtractive clustering to find initial membership functions and rules, a three-input and one-

output model is developed. An encouraging correct rate of 87% is finally obtained on the test data for 

detecting three types of health states-drying, flooding and healthy. To further improve the accuracy 

and the robustness, more complete dataset should be collected and a fine tuning of the model using 

supervised learning algorithm is needed. 

In [17], a fuzzy model with two inputs, the stack voltage and the stack current, and one output-

satisfaction rate (SR) is built for detecting two types of faults in a 500W PEMFC system. The first 

fault type is the accumulation of nitrogen or water in the anode compartment, and the second fault type 

is the drying of the membrane. An experimental polarization curve under nominal operating conditions 

is obtained as the expected nominal operating points. The output of the fuzzy model provides directly 

an SR, which indicates the degree of the fuel cell system V-I points deviating from the reference static 

points (1 means the system is in static operating mode). In order to discriminate the two types of 

faults, a fault decision process based on the threshold value of SR and also that of first time derivative 



of SR is developed. The proposed method has been validated by experiments. At last, the author has 

also provided a possible extension of this method for diagnosing a greater number of faults, by 

defining and tuning one different fuzzy surface per fault. 

Compared with ANN which needs precise learning in a broad range of the faults, the design of rules 

and membership functions in a fuzzy logic model is  based on operating experience or expert 

knowledge [51]. Thus it has the advantage of simplicity and easy implementation. At the same time, 

since it is based on prior knowledge only, it has the problem of the on-line adjustment. That means 

when new types of faults are needed to be considered, rules and membership functions have to be 

rebuilt. 

4.3 Adaptive neuro-fuzzy inference systems (ANFIS) 

Compared with the previous artificial intelligence methods, ANFIS is still not so popular in PEMFC 

diagnosis domain. However, numerous models based on it can be found and have demonstrated 

obvious advantages in the literature [51-53], which could be useful for further developments of model-

based diagnosis methodologies.  

ANFIS model, as an effective combination of neural network and fuzzy logic, has gained more and 

more acceptance in the field of non-linear system modelling. As already mentioned, neural network 

has the limitation that a wide range of data set under different operational conditions is needed, while 

fuzzy logic depends completely on human expert knowledge. In an ANFIS model, the membership 

functions and rules of the fuzzy system are defined and optimized by ANN, thus not requiring any 

prior knowledge of the system [52]. The typical structure of an ANFIS model includes five layers: the 

fuzzification layer, the rule layer, the normalization layer, the defuzzification layer and the summation 

neuron layer [51]. 

Tao et al. [51] mainly focus on thermal management, which is critical for the improvement of 

PEMFC’s performance and lifetime. ANFIS is applied to build a temperature model of PEMFC 

adopting a neural network identification method. Input variables of the model include flow rates of 

fuel and air, and the output variable is the stack temperature. Simulation results show its feasibility to 

establish a non-linear model for complicated system such as PEMFC. In order to realize the system 

thermal management, a neural-fuzzy controller is further developed by regulating the gas flow rates. 

Simulation results indicate that by adopting the controller, PEMFC can reach the desired temperature 

rapidly with small fluctuation. 

Another ANFIS is presented in [52], it predicts a PEMFC voltage under different operating conditions. 

The structure of the proposed model consists of five inputs, two membership functions for each input, 

32 rules and one output. The current density, the fuel cell temperature, the anode and cathode 

humidification temperatures and the operational pressures are set as input variables. The prediction 

capability of the model is verified under all considered operational conditions by comparing with 

experimental data. At last, a perspective of combining the ANFIS model with a physical model is 

made in order to extend the capability of the model when adding new influential input variables. 

In Ramos-Paja et al.  [53], three fuzzy-ANFIS models are constructed to model both the steady-state 

and dynamic behaviour of PEMFC and its support system. The first model allows the prediction of the 

polarization curves depending on the fuel flow ratio and the current while the second one relates to the 

time constant of the first-order delay model during a current transient. The third one is a double-layer 

charge effect model. A satisfying performance of the proposed model is observed both in simulation 

and in experimental results under all the considered current transient conditions. 



Since ANFIS models combine the benefits of both ANN and fuzzy system, it has been proven to be a 

powerful tool for PEMFC health state monitoring. However, its present applications are most off-line 

ones and most of the models are focused on a single cell. Its further development on real-time 

diagnosis of larger power PEMFC stack is much desired. 

4.4 Support vector machines (SVM) 

Another interesting method that has emerged in recent years for black-box modelling is Support 

Vector Machines (SVM). It was originally developed by Vapnik on solid Vapnik-Chervonenkis theory 

(VC-theory) foundations, but has been extended to handle regression problems more recently [54,55]. 

It is a novel and powerful tool based on statistical learning theories [56]. The basic idea of SVM is to 

map nonlinear data into a higher dimensional linear space which is called feature space. Then, in the 

feature space linear regression is performed [57]. It is different from the most traditional ANN which 

is based on the empirical risk minimization principle as the SVM is based on the statistical learning 

and structure risk minimization principle, thus the quality and the complexity of the SVM will not be 

influenced by the dimensionality of the input space [58,59]. 

Recent applications of SVM in PEMFC domain mainly focus on fuel cell/ stack modelling instead of 

pattern classification. Its characteristics such as a high degree of accuracy in prediction and a powerful 

nonlinear-system modelling capacity can be found in the literature [55,56, 60]. Although it is still not 

widespread in fault diagnosis yet, there seems to be an increasing necessity in its further application in 

PEMFC diagnosis field.  

In Zhong et al. paper [55], a black box SVM model of a Ballard MK5-E
©
 PEMFC is proposed to 

predict the cell voltage. The current density and temperature are included in the model as input 

parameters. An illustration of the model is depicted in figure 11. During the development of the 

model, a key step is selecting optimal SVM parameters. A cross validation method is used to 

determine their values. In the end, a high degree of precision is acquired in the voltage prediction with 

a mean squared error of 0.02% and a squared correlation coefficient of 99.7%. It is worth noting that 

the proposed model can be further expanded by incorporating other operating parameters due to its 

high generalization capability. However, the proposed method is an off-line one, and real-time 

implementation will be considered in future work. 

Figure 11 Illustration of a SVM PEMFC model, with inputs-current density I and temperature T, and 

output-voltage U. Support vectors and weights are decided during training. [Zhong, Z.-D. et al. 

(2006)][55]. 

Another non-linear off-line model based on least squares SVM (LS-SVM) method is reported in Li et 

al. [60]. Compared with SVM, LS-SVM can significantly reduce the computation time while 

maintaining maximum precision. A SVM-ARX (linear auto-regression model with exogenous input) 

Hammerstein type model is developed in this paper to describe dynamic characteristics of a 3 kW 

PEMFC stack. LS-SVM is applied to represent a static nonlinear block in the Hammerstein model, 

with three inputs (oxygen gas stoichiometry, current, cooling liquid flow rate) and two outputs 

(hydrogen partial pressure and stack temperature). It applies a radial basis function (RBF) kernel. 

Output of the Hammerstein model is compared with a dynamic physical model of the stack. Good 

predicting performance can be observed.  

Application of LS-SVM for modelling can also be found in Zhong et al. [56]. The LS-SVM is used as 

a part of a hybrid model to forecast the  voltage behaviour based on stack current and temperature, 

while another pressure-incremental model concerns the cathode and the anode pressure. A particle 



swarm optimization (PSO) algorithm is adopted to obtain automatically the best set of hyper-

parameters for the LS-SVM model. The LS-SVM model shows better agreement with the 

experimental results by optimizing PSO algorithm. However, the proposed model has limitations in its 

performance under significant pressure changes; also, it isn’t valid in low humidity or under extremely 

high current density.  

Compared with models based on other artificial intelligences, the SVM model has a good 

generalization capability and this capability is independent on the input-data dimensionality [55]. 

Therefore, it could be quite interesting to extend the SVM model for fault diagnosis of multivariate 

complex system like PEMFC system, once the threshold of the nominal operating conditions is set. A 

summary of SVM models employed in the literature is shown in table 3. Compared with fuzzy logic, it 

possesses a high precision while no necessity of prior knowledge is presented. Compared with ANN, it 

has excellent generalization ability and it is more robust [55,56]. All of these merits make it very 

promising in further research of PEMFC system.  

Table 3. SVM applied for PEMFCs modelling 

5. Evaluation of model-based approaches for on-line FDI 

When developing a model, the first step is to have a deep understanding of the system. The system 

behaviour has to be analysed in order to reproduce all the involved  physical phenomena with  

mathematical laws. Sometimes, the system complexity could limit the model application. In fact, 

although the physical phenomena are well known, it could be difficult to formulate simple 

relationships for physical process modelling [61]. The choice on the type of model (white, grey, or 

black-box) is therefore influenced by the modelling purpose.  

Table 4. Model-based approach comparison for PEMFC applications. 

White-box models are usually employed in many chemical and  thermodynamics problems. Partial 

differential equations are introduced for mass and energy transport  phenomena involving radiation, 

convection, and diffusion processes [61]. After the model structure formulation, the data matching 

allows the identification of the model parameters which are not known a priori. The  PEMFC system 

operation is influenced by electro-chemical, thermal, and fluid-dynamics phenomena. Theoretical 

relationships such as Nernst-Planck, Butler-Volmer and Fick’s laws are usually adopted to reproduce 

electronic and ionic transport, and mass transfer phenomena. PEMFC physical models are usually very 

accurate and show a high genericity as long as the knowledge of the geometry and the materials is 

available to evaluate the parameters. However, very detailed models require complex equations to be 

solved and are not suited for on-line estimation. Therefore, developed white-box in PEMFC are 

usually considered for system understanding, off-line monitoring, and training simulators.  

In general, for PEMFC on-line FDI applications grey and black-box models are suited. Introducing the 

grey-box models, both the advantages of physical knowledge, and data-driven are exploited. In this 

way, complex differential equations can be replaced with empirical formula, or artificial intelligence 

structures. These models may simulate static and dynamic, linear and non-linear behaviours, allowing 

a correct accuracy and genericity. The use of semi-physical models reduces the structure complexity, 

verifying the on-line implementation requirements. The overview of different grey-box models aimed 

to develop an on-line FDI for PEMFC systems have been organised in parameters identification based, 

observed-based, and parity space methods. In parameter identification models, PEMFC monitoring is 

achieved to reproduce the system voltage and/or impedance. To this purpose, different papers propose 

a circuit-based approach modelling the electro-chemical phenomena through circuit element. Although 



in static models, a series of resistances are usually considered to reproduce all the system losses, 

dynamic circuit components are considered for the dynamic modelling. All the papers analyse the 

influence in PEMFC performance and degradation of state and control variables such as stack current 

and temperature or fuel stoichiometry. Relevant results are available for flooding detection 

[22,23,25,26]. In order to implement in-situ diagnosis, the parameter sensitivity analysis is required. 

Moreover, the available algorithms have been tested together with a parametric analysis for different 

operating conditions. Although these studies allowed the method robustness improvement, many 

efforts are still required to achieve on-board implementation. The parameter identification based on 

EIS monitoring [23-27,29,30] seems to be the most suitable  for on-line FDI applications. As a matter 

of fact, the impedance monitoring by EIS allows detecting several electro-chemical variations 

involved in PEMFC. The basic idea is then to associate each physical phenomenon to an equivalent 

circuit component and analyse its parameter variations. A suitable technique for EIS on-line 

implementation has been proposed by Narjis et al. [26]. This paper could be considered the base 

ground for future development of on-board FDI based on EIS. Other approaches are also considered. 

Both observer-based [32,33] and parity space methods [10,35,37] allows the system model equation 

reduction. Physical models are linearized and an observer or a parity space linear domain is introduced 

for residual calculation. Although the system equations are simplified, these methods could generate 

several residuals. However due to the high dimensions of PEMFC models these methods are validated 

only for a set of residuals. Yang et al. highlight their efforts in a recent work [37] for FDI 

improvements, extending their model applications also in non-linear domain. Some papers 

[7,32,33,35,37] underline that the isolation approach based on binary detection could causes some 

information losses in FDI. Therefore in order to improve the method robustness an adaptive threshold 

method has been proposed. All authors stated that residual sensitivity provides both quantitative and 

qualitative information about the fault influence on the residual and in their sense of variation. This 

methodology offers a great contribution to FDI improvement, representing a suitable reference for 

future developments.  

Finally, a relevant contribution for PEMFC FDI development is also given by black-box models. 

Although black-box models are more suitable for complex non-linear system on-line monitoring, they 

are less generic. In fact, when system operates in new configurations or it is influenced by external 

factors, not considered in training procedures, the robustness of these approaches is reduced [61] as 

they don’t allow extrapolation, only interpolation. Neural networks, fuzzy logic, adaptive neuro-fuzzy 

inference systems, and support vector machines methods applications have been reported in this paper. 

Artificial neural networks are mostly used in non-linear dynamic modelling [38,40,43-45]. Starting 

from an input/output data set, ANN learning process allows the system non-linear mapping. Residuals 

are directly generated comparing model outputs and experimental results with a high accuracy (less 

than 2.9%) [43]. ANN guarantees an excellent non-linear approximation with a low sensitivity to 

noise. The main drawback is that the training process needs of a large amount of dataset under a wide 

operating condition range which collection might be costly and time consuming. Some authors 

[17,49,50] introduce successfully the fuzzy logic techniques for on-line PEMFC monitoring, 

especially for flooding detection. This choice is due to fuzzy logic capability to deal with the system 

uncertainties, miming human reasoning. This methodology is very easy to implement, but the issue of 

the on-line adjustment in case of new faults’ occurrence has to be considered. In order to solve this 

constraint adaptive neuro-fuzzy inference systems are adopted. ANFIS allows the coupling of the 

ANN and fuzzy-logic benefits. The fuzzy rules are defined through the ANN approach, and not 

through a priori knowledge. However these models are suitable for system behaviour prediction and 

off-line diagnosis. Also support vector machines have a good generalization capability. In fact this 



method is based on statistical learning and don’t need a prior knowledge. However, only off-line SVM 

applications have been applied [55].  

The different model-based approaches reported in this paper underline that many efforts are still 

required in PEMFC on-line FDI. In literature non-model based approaches are also available. These 

methodologies can be knowledge-based or signal-based. In the non-model based approaches, FDI is 

performed through fault classification and no residuals are generated. Available experimental data are 

therefore processed and normalized. Then the different  features, which are relevant for fault detecting 

are extracted. These features are analysed in a proper low-dimensional space. Several techniques such 

as NN, fuzzy logic, ANFIS, and SVM are employed as fault classifier. This is the main difference 

between black-box models and clustering techniques. While in the first approach, artificial intelligence 

and statistical techniques are adopted to model the system and generate residuals, in the second one 

they  are used to classify the fault in a feature space  

  

6. Conclusion 

A classification of different model-based approaches for PEMFC systems diagnosis has been proposed 

including white-box, grey-box and black-box models. A suitable model-based diagnostic tool requires 

an appropriate combination of system physical characterization and fast implementation of the 

algorithm. The white-box models can be very accurate. The computation of algebraic and/or 

differential equations allows a correct characterization of the system behaviour involving a high 

genericity of the method. Nevertheless in some cases, they could be very difficult to implement on-

line. These models are suitable for different purposes such as the system design and  fault generation 

for FDI algorithm test. The grey-box models are introduced, showing a good accuracy and less effort 

in computation for on-line diagnosis applications. In particular, the parameter identification 

approaches based on impedance spectra evaluations emerges as a suitable solution for diagnosis. The 

equivalent circuits developed in this methodology allow characterizing the PEMFC electrochemical 

phenomena while at the same time can be easily implemented on board. However the high non-

linearity of the problem could introduce many correlations between the model parameters. Therefore, 

the use of adaptive threshold for FDI has been introduced. Finally, black-box models for PEMFC 

diagnosis application have been presented. Compared with the above two models, they do not require 

physical equations, thus allowing to develop faster algorithms able to ensure also a good prediction of 

the system dynamics behaviours. Moreover, black-box models give a high approximation of non-

linear phenomena. However, these approaches show a lack of genericity due to the fact that the model 

characterization is directly based on system empirical data. ANFIS and SVM methods could provide a 

suitable solution to this issue, however their contribution in PEMFC diagnosis are still for off-line 

applications.  

This paper is the first part of a preliminary work aimed to give an overview on diagnosis techniques 

considered in literature. An overview on non-model based approaches is proposed in the second part. 

The objective of the present work is to create the base ground for the development of a suitable 

diagnostic tool for PEMFC on-line applications. 
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Table1



Authors Input variables Output variables NN type Dynamic/static 

, S. et al. 
(2003) [38] 

(1)stack current; 
(2)stack temperature; 
(3)hydrogen flow; 
(4)oxygen flow 

(1) stack voltage MLPNN trained 
with back-
propagation 

Static model 

, S. et al. 
(2008) [43] 

(1)stack current; 
(2)stack temperature; 
(3)hydrogen flow; 
(4)oxygen flow; 
(5)air humidity 

(1) stack voltage MLPNN trained 
with back-
propagation 

Both dynamic 
and static 
models 

Sisworahardjo 
et al. (2010) 
[44] 

(1)stack current; (2) 
stack temperature 

(1) stack voltage; 
(2) stack power; 
(3) the hydrogen 
flow 

MLPNN trained 
with back-
propagation 

Dynamic 
model 

Steiner, Y. N. et 
al. (2011) [40] 

(1)stack current, flow 
rate, stack and dew 
temperature 

(1) pressure drop 
(2) stack voltage 

Elman recurrent 
NN 

Dynamic 
model 

Chang, K (2011) 
[45] 

(1) operation 
temperature, (2)oxygen 
flow rate, (3)hydrogen 
flow rate, (4)load 
current, (5)oxygen and 
hydrogen pressure 

(1) output 
voltage 

MLPNN 
constructed on 
basis of genetic 
algorithm and 
optimized by the 
Taguchi method 

Static model 

 

Table2



Authors Input variables Output variables Applications 

Zhong Z-D et al. (2006) 
[55] 

(1) current density 
(2) cell temperature 

(1)cell voltage Predict cell voltage of 
a PEMFC 

Li C-H. et al. (2008) 
[60] 

(1) oxygen gas 
stoichiometry 
(2) stack current 
(3) cooling liquid flow 
rate 

(1)hydrogen partial 
pressure 
(2) stack 
temperature 

Describe dynamic 
characteristics of 3 
kW PEMFC stack 

Zhong, Z-D. et al. 
(2007) [56] 

(1) stack current 
(2) stack temperature 
(3)cathode pressure 
(4) anode pressure 

(1)cell voltage Develop a system-
level hybrid model of 
a PEMFC 

Lu J. and Zahedi A. 
(2011) [57] 

(1)stack current 
(2)compressor voltage 

(1) oxygen excess 
ratio 

Air flow control of a 
PEMFC system 

Li, X. et al. (2006) [59] (1) hydrogen flow rate 
(2) cooling water flow 
rate 
(3) air flow rate 

(1) operating 
temperature 

Stack temperature 
control of a 1 kW 
PEMFC stack 

 

Table3



 White-box Grey-box Black-box 

Structure complexity High Moderate Low 

Accuracy High Good Good 

Genericity High Good/moderate Moderate/Low 

Processing time High Moderate/Low Low 

Physical knowledge High Moderate Low 

Data-driven Low Moderate High 

Application area System understanding 

Off-line diagnosis 

Training simulators 

On-line FDI 

 

On-line FDI 

Control 

 

Static models OK OK OK 

Dynamic models OK OK OK 

Non-linear response Good Good High 

On-line applications Not indicated OK OK 

 

 

Table4



 

 

PROCESS 

PROCESS 

MODEL 

INPUT OUTPUT 

RESIDUAL 

RESIDUAL GENERATION 

 

RESIDUAL EVALUATION 

RESIDUAL 

PROCESSING 

DECISION 

LOGIC 

Model-Based Fault Diagnosis System 

FAULT 

Figure1 Model-based fault diagnosis scheme
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Figure3 PEMFC equivalent circuit developed by Hernandez et al.
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Figure5 Randle's model with CPE element adopted by Fouquet et al
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Figure6 Equivalent circuit proposed by Asghari et al. 
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Figure7 Equivalent circuit proposed by Moçotéguy et al.
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Figure8 Observer-based residual generator scheme 
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Figure9 Inverse model scheme considered by Buchholz et al. 
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Figure10 Example of a multi-layer feed-forward neural network 
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Figure11 Illustration of a SVM PEMFC model


