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 Abstract: 

A review of non-model based methodologies applied to diagnosis of Proton Exchange Membrane Fuel 

Cell (PEMFC) system is presented. Three types of non-model based methods including artificial 

intelligence, statistical method and signal processing method are discussed and compared. The 

artificial intelligence one, divided into Neural Network (NN), Fuzzy Logic (FL) and neural-fuzzy 

method, is applied as a fault classifier which is quite different from its role in model-based method. 

Linear feature reduction methods including Principle Component Analysis (PCA) and Fisher 

Discriminant Analysis (FDA), and nonlinear ones such as Kernel PCA (KPCA) and Kernel FDA 

(KFDA) are demonstrated as part of statistical methods. Additionally, a statistical theory based 

classifier- Bayesian Network (BN) is also introduced in this part. As for signal processing method, 

both Fast Fourier Transform (FFT) for stationary signals and short-time Fourier Transform (STFT), as 

well as Wavelet Transform (WT) for non-stationary signals are introduced. Since each method has its 

advantages and limitations, a comparison is made finally and hybrid approaches resulting from 

integration of different methods are believed to be promising. 

Keywords: PEMFC; non-model based diagnosis; artificial intelligence; statistical method; signal 

processing 

1. Introduction 

Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising energy technologies 

nowadays. It has the advantage of low-operating temperature, high current density, fast start-up ability 

and also suitability for discontinuous operation [1,2]. All of these characteristics make it attract more 

and more attentions. However, reliability and durability remain the most challenging problems for its 

commercialization. A PEMFC system is a complex integration of chemical, electrical, mechanical and 

thermal managements. In general, degradation or failure of the system may be induced by bad water 

management [3], Membrane Electrode Assembly (MEA) contamination, and reactant starvation [4]. 

Some common fault sources of a system such as sensors and actuators malfunction [5], improper 

operation and control, are also possible causes. In terms of occurring time, three degradation classes 

could be distinguished: long-term degradation, degradation due to transients and also incident-induced 

degradation [4]. Generally, monitoring of PEMFC system should be capable to deal with nonlinear, 

multi-fault source and different time-scale problems. 

In recent years, various diagnosis methodologies have been developed and each has its advantages and 

limitations. According to whether a model is necessary, diagnosis methods can be classified into two 

general types: model-based one and non-model based one. For the former one, an analytical model 
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based on a deeper understanding of the internal process of the fuel cell system or a black-box model 

should be built first. Since fault diagnosis in this case is usually based on the residuals generated 

between the experimental results and the model outputs, this kind of method is also called residual-

based method [6]. Non-model based method could be either knowledge-based or signal-based. The 

objective of this kind of method is to obtain fault information based on heuristic knowledge or signal 

processing or a combination of both. Compared with model-based method, non-model based one is a 

relatively new trend in diagnosis of PEMFC system, but its application in other fields has already been 

widely and extensively studied.  

Although there are some existing reviews about PEMFC system, few of them have focused on 

respective diagnosis methods. Yuan et al. 2007 [7] presented AC impedance technique applied in 

PEMFC field. Hissel et al.2008 [8] summarized various modeling techniques used for PEMFCs and 

also the systems including the ancillaries. Different electrochemical diagnostic tools such as 

Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV) in PEM research were 

reviewed in [9]. Yousfi Steiner et al. 2008 [10] proposed a review focused on PEMFC voltage 

degradation associated with water management. Further, Yousfi Steiner et al. 2009 [4] published 

another review mainly dealing with PEM catalyst degradation and starvation issues. However, 

emphases of these two papers are mainly on causes and consequences of respective faults instead of 

fault diagnosis. Venkatasubramanian et al. 2003 [5,11,12] classified various diagnosis methods into 

qualitative, quantitative and process history based methods, based on which three reviews are achieved 

respectively. These three reviews are very comprehensive and detailed, but they don’t address any 

special applications.  

With the development of various methods dedicated to PEMFC system diagnosis, there seems to be 

necessary to summarize them and indicate a possible trend for PEMFC diagnosis. In this paper, fault 

diagnosis methods, mainly non-model based ones applied in PEMFCs field are emphasized on.  

According to their principles of operation, non-model based methods in this paper are classified into 

artificial intelligence (AI) ones, statistical ones and signal processing ones. AI approach including 

Neural Network (NN), Fuzzy Logic (FL) and neural-fuzzy method plays an important role in fault 

diagnosis domain. Usually, they can be applied to constitute a pattern classifier for discriminating 

different types of faults.  Statistical method including variable dimension-reduction methods- Principle 

Component Analysis (PCA) and Fisher Discriminant Analysis (FDA), and also a statistical classifier-

Bayesian Network (BN) are addressed. Stationary signal processing methods like Fourier transform 

(FT) and non-stationary signal processing methods such as short-time Fourier Transform (STFT) and 

Wavelet Transform (WT) are efficient tools in extracting valuable features that can reflect the 

occurrence of certain types of faults. The various non-model based methods can be summarized in 

figure 1. 

Figure 1. Classification of non-model based method 

In the following sections, three kinds of non-model based approaches are introduced successively. 

Evolutions and improvements of the applied approaches are also suggested on the basis of the results 

obtained in other domains. It is worth noting that no single method can satisfy all the requirements of 

system-monitoring. Hybrid methods integrating characteristics of different methods could be very 

interesting for overcoming the limitations of each one, and it could be also a new trend. Finally, 

comparison of each method is made and hybrid methods are discussed. 



2. AI methods for PEM fault diagnosis  

In the field of fault diagnosis, AI has attracted a lot of attention. It is very effective in recognition of 

fault patterns or its sources without system structure knowledge.  The idea is to find relevant features 

that describe specific patterns in the feature hyperspace, depending on the state of the system (in 

normal or faulty operation). There is thus a need to classify the data points and determine at which 

class they belong to. This part focuses on applications of three kinds of AI methods: NN, FL and 

neural-fuzzy method. Due to its inherent pattern recognition capabilities and its ability to handle noisy 

data, NN is one of the most popular methods for fault diagnosis [13]. FL is mainly devoted to handle 

the impreciseness or uncertainty in the system in a way that mimics human reasoning [14]. A neural-

fuzzy method combines the adaptive capability of NN and also the qualitative reasoning ability of FL. 

It has been proved to have superior recognition accuracy and better generalization capability compared 

with a single NN [15,16].  

2.1 Neural network (NN) 

Inspired by biological NNs, artificial neural network (ANN) was proven to be a powerful tool for 

learning and constructing a nonlinear mapping when a given set of input and output data is available. 

In recent years, numerous papers about PEMFC diagnosis using ANN have been published. However, 

most of them are model-based [17–21]. In this paper our focus is on its application in non-model based 

fault diagnosis as a fault classifier. 

Hamming neural network (HNN) is a competitive NN which is specially designed for binary pattern 

recognition issues. Given an input pattern, its objective is to decide a representative pattern closest to 

it. HNN usually consists of two layers: a feed-forward layer and a recurrent layer, as shown in figure 

2. The former one calculates correlations or inner products between each representative pattern and 

input pattern while the latter one determines a winner that can finally represent the input pattern. 

Figure 2. Hamming neural network [22]. P: prototype input vector, W
1
: weight matrix of feedforward 

layer, b
1
: bias vector, S: the number of neurons, W

2
: weight matrix of the recurrent layer. 

In [22], a HNN is used for pattern recognition in order to monitor the state of health (SOH) of 

PEMFC. Representative FC output voltage (FOCV) patterns are collected by performing a designed 

pulse current profile on 20 single PEMFCs. Four statistical features including average, standard 

deviation (both with and without fixation at the initial operating points) and minimum of the FCOV 

are extracted from each pattern and are further used for HNN training. In the next step, the HNN is 

applied to identify the FCOV pattern that is the closest to the pattern of the arbitrary cell to be 

measured.  

The representative loss ΔRd, defined as the sum of activation and concentration losses, is applied as a 

SOH indicator. ΔRd of 20 representative patterns are calculated, based on which SOH of each pattern 

is given, e.g. SOH=1 corresponds to a fully fresh cell, while SOH=0 corresponds to a fully aged cell. 

Thus, given an arbitrary cell, its FCOV pattern can be recognized through HNN and then based on the 

selected pattern, its SOH can be calculated easily without the need of repeated parameter measurement 

of the cell. However, SOH diagnosis in this paper is only performed on a single FC. Furthermore, only 

SOH is given without knowledge of fault type. 

Besides HNN, Multi-layer Perception Neural Network (MLPNN), Probabilistic Neural Network 

(PNN), Radial Basis Function (RBF) network and Learning Vector Quantization (LVQ) are also 

commonly used methods for pattern recognition. Comparative studies of those NN’s performances in 

various applications like disease diagnosis and vehicles gear estimation are given by  [23–25]. 



Compared with the traditional analytical methods, a NN approach has the advantage of excellent 

nonlinear approximation ability [20]. Furthermore, it has a low sensitivity to noise and can be built 

based on incomplete database [18]. However, several limitations exist when applying NN for fault 

diagnosis. Firstly, the mentioned NN classifiers are always supervised techniques, which means that 

data set under normal and different faulty operating conditions should be obtained and trained for fault 

classification. This could be time-consuming when performing experiments on FC system and may 

cause irreversible damage to the system under faulty operating conditions. In fact, this is a common 

problem existing in non-model based methods. Another concern of employing NN is related to its 

training. As measured variables and fault patterns increase, a bigger and more complex network has to 

be designed to diagnose the faults properly. This could lead to a difficult learning of all fault patterns 

within an acceptable performance goal [26]. 

2.2 Fuzzy Logic (FL) 

Like NN, FL can either be used as a residual generator or as a pattern recognition method. One of the 

interesting tools for fault diagnosis is the fuzzy clustering: the idea behind is the allocation of data 

points into a number of clusters. Data points with the most similarity will be allocated in the same 

cluster, while dissimilarities between each cluster will be as large as possible. When used for fault 

diagnosis, each cluster could represent a certain type of fault in the system. Each data point to be 

diagnosed can be represented by a vector consisting of certain number of features which are relevant 

to the faults relevant fault information. Figure 3 shows a schematic diagram, in which three clusters 

(c1, c2 and c3) are obtained on a two-dimensional feature space (f1 and f2). Fuzzy clustering has been 

already widely applied in fields such as image processing [27,28], rotating machinery [29], human 

activity [27], etc.  

Figure 3. Fuzzy clustering diagram 

The application of fuzzy clustering for PEMFC system diagnosis was proposed in [2]. Authors have 

proposed a PEMFC durability diagnosis methodology based on fuzzy k-means clustering. Two types 

of experiments, steady-state operation and real transportation load cycle respectively, are performed 

on 100 W FC stacks during 1000 hours. The first step is to extract features that can mostly represent 

the stack aging. Two features namely the difference between polarization resistance and internal 

resistance, and maximal absolute phase value of the Nyquist plot are considered according to prior 

knowledge. Fuzzy clustering algorithm is then performed on the 2-D feature space to produce three 

clusters; each of them corresponds to a specific behavior of the FC stack, named “young”, “middle 

aged” and “old”. 

The proposed methodology has the advantage of easy implementation and capability to explain the 

cause of degradation. As it is not time-consuming, it can be applied as an efficient tool for real-time 

monitoring and diagnosis. However, some further work can be done to complete diagnosis task. Since 

this work mainly focus on aging test, features used may not be suitable when coming to diagnosis of 

other kinds of faults in PEMFC system. Furthermore, it only deals with one type of fault/degradation. 

In the case of two or more than two faults, dimension of feature space may need to be extended. 

In order to diagnose multi-faults existing in a system, Liu et al.2005 [29] provided an encouraging 

solution. They combined fuzzy c-means clustering and fuzzy integral techniques to form a two-step 

diagnosis strategy. First, multi-classifiers were constructed based on different feature groups. 

Recognition rates of each classifier for existing faults were then obtained, which reflect the importance 

of the classifier in recognizing each fault. In the next step, both membership degrees and recognition 

rates were applied as inputs of the procedure of fuzzy integral fusion. The membership degrees reflect 



the initial judgments of the classifiers for the current faults, and recognition rates contain historical 

information. A final decision was then made. The proposed method is evaluated by data collected 

from rolling element bearings. Three kinds of faults were classified with an excellent accuracy which 

was superior to that of a single classifier. However, feature selection has to be improved, which means 

that the most relevant or effective features corresponding to a specific fault should be identified first. 

This procedure is highly expected to be applied for PEMFCs’ diagnosis of multi-faults given relevant 

features (e.g. drying, flooding and gas leakages inside the stack which are the most investigated ones). 

When applying fuzzy clustering for fault diagnosis of PEMFCs, several critical points should be taken 

into account: feature selection, determination of optimal number of clusters, objective function 

construction. Optimal number of clusters can be given either by prior knowledge [2] or considering 

some criteria such as partition coefficient (PC), classification entropy (CE) , separation index (SC) and 

Xie-Beni index [30–32].  

About objective functions, besides those of the well known fuzzy k-means or c-means clustering, other 

improved versions, such as kernel based fuzzy clustering [32] and fuzzy clustering with multi-medoids 

(FMMdd) [33]seem to be very interesting. As for feature selection, it is a common concern for the 

classifiers mentioned in this paper. It can be done either by human expertise or by automatic feature 

extraction methods such as wavelet transform (WT), PCA. Certain parts of section 3 and section 4 are 

contributed to introduce various feature selection methods.  

2.3 Neural-fuzzy method 

A new trend in applying AI for fault diagnosis is the combination of FL and NN, of which one most 

popular form is adaptive Neuro-Fuzzy System (ANFIS). It integrates ANNs’ adaptive capability and 

fuzzy logic qualitative approach [34]. By adopting ANN to construct the fuzzy system, which means 

designing and adjusting the parameters of a fuzzy inference system by utilizing the learning method of 

ANN, a reliable fuzzy inference system can be realized according to input and output samples even 

without human expertise [35]. A typical ANFIS has been shown in figure 4. It consists of five layers, 

including input membership function layer, rule layer, normalization layer, output membership 

function layer and output layer. A cycle represents a fixed node and a square corresponds to an 

adaptive node.  

Figure 4. A typical ANFIS architecture [15] 

Several papers can be found about applications of ANFIS in PEMFC diagnosis, but most of them are 

model-based [35–37]. However, in other fields such as rotating machinery and medicine, numerous 

applications of ANFIS as a fault classifier can be found.  In [15], authors applied ANFIS for 

classification of four types of faults occurring in bearings. Four most superior features are selected 

through an improved distance evaluation technique as inputs of ANFIS. The outputs are seven 

numbers corresponding to seven kinds of faults. Through comparison with a MLPNN classifier, it can 

be found that ANFIS has better classification success rate and generalization performance. Khezri et 

Jahed 2007 [38] introduced ANFIS in electromyography domain for recognizing six patterns. The 

study indicated that ANFIS real-time based learning method is viable and has high degree of 

correctness. In [39], ANFIS was constructed for heart valve disease diagnosis based on features 

extracted by discrete wavelet transform (DWT) and reduced by PCA. A Linear Discriminant Analysis 

(LDA) –ANFIS based intelligent diagnosis system was presented in [40] for diabetes. LDA was 

applied for feature extraction which supply feature vectors including most of the useful information 

from original vectors to inputs of ANFIS classifier. A classification accuracy of 84.61 % was obtained. 



Through these papers, the feasibility of ANFIS in recognizing fault patterns can be proven and these 

could also be instructive for its further application in PEMFC system.  

Unlike its application for modeling, when used for pattern classification, ANFIS takes superior 

features that contain rich faulty information as its inputs instead of those who can mostly represent the 

system. As its reliability and robustness in real-time fault classification, it is very suitable for nonlinear 

systems such as FC system which may have noisy data measurements, multi-faults and incomplete 

human expertise. When appropriate features corresponding to objective faults have been found, 

ANFIS can also be trained and validated for FC diagnosis. It can be believed that ANFIS could be an 

alternative promising technique for future fault diagnosis of PEMFC system. 

3. Statistical methods for PEM fault diagnosis 

Methods based on multivariate statistical analysis offer an alternative for diagnosis of PEMFC system. 

Usually, a huge amount of data from the system can be obtained during different processes, while 

most of them are highly correlated. In order to extract the most discriminating features from the 

original data, dimension-reduction methods are highly expected. According to the literature, the most 

frequently used variable dimension-reduction methods are Principle Component Analysis (PCA) and 

Fisher Discriminant Analysis (FDA). Since they are linear methods which assume there is a linear 

correlation among the variables, they are not suitable for extracting variables’ nonlinear features. Thus 

nonlinear methods, like KPCA and KFDA are also introduced. In addition, a probability theory based 

classifier-BN is also included in this part. 

3.1 Principle Component Analysis (PCA) 

PCA is one of the most popular dimension-reduction methods, which can reduce effectively the 

dimensionality of process variables while retaining the most valuable information contained in the 

variables. Through PCA, correlated variables are converted into uncorrelated principle components 

which could represent the largest variance among the variables. A geometric interpretation of PCA is 

shown in figure 5, in which x1 and x2 are original variables. The first principle component (y1 axial 

vector) represents the largest variance existing in the variables; the second principle component (y2 

axial vector) represents the second largest variance in x1 and x2. As for higher dimensional spaces, 

more principle components could be obtained to represent the high dimensional original variables 

[41]. 

Figure 5. A geometric interpretation of PCA [41] 

In [42], PCA was employed to explore the most contributing variables to the system outputs (stack 

voltage and stack current). The authors performed polarization curves on a PEMFC stack and acquired 

more than 100 variables, including inputs, outputs and others. PCA was applied to visualize and 

analyze correlations of all the variables in two hyperspaces. The first hyperspace displayed the 

evaluation of the principle components with sample time, which can reflect the FC stack state, stable 

or transient. A second hyperspace demonstrated the participation of each original variable within the 

value of the principle components. The analysis results of PCA were finally verified by a multi-linear 

regression based empirical model. PCA is shown to be a useful tool to explore correlations among 

variables and could be helpful for understanding the physical process in the FCs. 

According to the literature, PCA can be applied for fault diagnosis in two ways. The first way is 

related to a principle component model. According to the theory of statistics, all the process variables 

under normal operating conditions are random variables which have near normal distributions [41,43]. 

Thus, the principle component model built under normal operating conditions can be used as a fault 



detection reference. When the divergence of the components from the model exceeds a certain value, a 

fault can be alarmed. Usually, some statistics such as T
2
, square prediction error (SPE) or Q statistic, 

exponentially weighted moving average (EWMA) will be applied as FC health indicators [44,45]. The 

second way is implemented combining PCA (dedicated to feature reduction) with fault classifiers such 

as NN, Bayesian network. In multivariate systems such as PEMFC system, usually a large amount of 

variables can be obtained simultaneously. If these variables are directly used as inputs of pattern 

classifiers, a heavy burden both on the computations and accuracies of the classifiers will be produced. 

Thus a feature reduction step is extremely necessary. 

Examples of applications of PCA can be found in [41]. A principle component model is built for 

diagnosis of PEMFC systems used in shuttle buses. Four principle components are obtained by 

applying PCA based on analysis of 17 different significant parameters of the system. For fault 

detecting, an improved statistic namely exponentially weighted average of SPE is applied for the 

system monitoring. Advantages of this method are its easiness and low requirements in computing 

capability. Thus it can be realized in real time control. However, when a significant number of faults 

in the system occur, a single PCA model seems difficult to deal with. In this case, a possible solution 

is constructing multi-PCA models which are separately trained with variables under each fault 

condition [43,46]. 

The second way by taking the outputs of PCA for fault classification can be found in [47]. PCA was 

performed based on data obtained from Acoustic Emission (AE) technique. Two-dimensional 

projections in axis spaces were employed for visualization of three AE events occurring in a single 

PEMFC. A good agreement was reached compared with the experimental conditions. However, the 

clustering was performed manually and no classifier was applied for automatic classification. In fact, 

combination of PCA method and fault classifier is very common in other fields, which could provide a 

promising choice for multi-fault diagnosis in PEMFC system [48–51]. For example, in [48], PCA has 

been applied in conjunction with an ANFIS classifier for disease diagnosis. Four kinds of states are 

finally classified with a highest accuracy of nearly 90% compared with other classifiers without 

applying PCA. A combination of PCA and NN classifier is proposed in [49]. A 60 dimensional input 

space is reduced to a 20 dimensional one by using PCA. The classification performance is 

significantly improved compared to an “alone-NN” classifier. In this sense, PCA can be employed to 

help designing classifiers, which is attractive for online operations.  

Despite its ability in handling high-dimensional, noisy and high correlated data, PCA still has the 

limitation of poor performance in nonlinear chemical processes [52]. That is due to its assumption that 

the process variables are linear-correlated. One of the nonlinear forms of PCA is Kernel PCA (KPCA) 

which is developed in recent years for tackling the nonlinear problems. Relevant applications can be 

found in [45,52–56].  

3.2 Fisher Discriminant Analysis (FDA) 

FDA is another kind of dimensionality reduction technique that shows excellent performance for fault 

diagnosis. In practical processes, data collected from different operating conditions are recorded and 

categorized into different classes. The main idea of FDA is to determine a set of discriminant vectors 

by maximizing the scatter among the classes while minimizing the scatter within each class [57]. 

According to this characteristic, FDA can be used to isolate different fault classes and thus help to 

analyze the fault sources [58]. As FDA’s objective is consistent with that of fault identification, FDA 

usually has better performance than PCA in fault diagnosis [43,59]. 



 A graphic interpretation with two variables is shown in figure 6. The two dimensional space is 

composed of x1 and x2 axial components, in which triangle and circular points represent points in two 

different classes, and y1 is the projection axis. Unlike PCA which seeks a direction for the largest 

variance, FDA seeks a direction that is efficient for discrimination. 

Figure 6. A geometric interpretation of FDA 

FDA’s application in PEMFC system diagnosis is still a new field. But its excellent performances in 

other nonlinear chemical processes provide a promising perspective. An application of FDA for 

diagnosis of Tennessee Eastman (TE) process was presented in [43]. In this paper, FDA was 

performed to diagnosis 21 faults occurring in the plant and its misclassification rate is much lower 

compared to that of PCA.  

Though FDA has better performance than PCA in classification problems, it is still a linear method, 

which means for nonlinear systems its performance may degrade. In order to have a better monitoring 

of the nonlinear systems, some improved versions such as KFDA is proposed and has been more and 

more used in recent years [59–61]. The basic idea of KFDA is to map the original variable space into 

high-dimensional feature space via a nonlinear kernel function and then to perform linear FDA in the 

nonlinear mapped feature space to find the discriminant vectors for classification [61]. In [59], a 

KFDA based pattern recognition method was developed for diagnosing a TE process. For comparison, 

PCA, KPCA, FDA, KFDA based feature extraction methods are also performed. Detection and 

isolation rates of four fault patterns applying each method are listed and KFDA shows better 

performance. 

A simple comparison of methods described in part 3.1 and part 3.2 is summarized as follows. For 

diagnosis of nonlinear system, it is better to choose kernel function based (K-) methods. Although they 

are nonlinear methods, they do not involve nonlinear optimization procedure. Linear PCA/FDA 

calculation procedures can be directly applied on the feature spaces (mapped from original space via 

kernel functions). However, these nonlinear methods have drawback of increasing computation time 

compared with linear ones. In addition, data patterns in the feature space are rather hard to interpret in 

the input data space [59]. From the aspect of fault classification, FDA and KFDA generally have better 

performance than PCA and KPCA. As in the calculation procedure, their objective is to have optimal 

discriminant vectors, while for PCA methods, during the extraction of maximal variances, some 

important information for classification may be lost comparing with FDA. 

Table 1. A comparison of the introduced dimension-reduction methods 

 

3.3 Bayesian Network (BN) 

Bayesian network (BN) is one kind of statistical classifiers. It can be expressed under the form of 

probabilistic graphical models in which the nodes represent random variables, and the arcs represent 

conditional independence [62]. Construction of a BN consists of two parts: finding the network 

structure and calculating the conditional probabilities from the measured data [63]. A representative 

structure of BN is shown in figure 7: nodes are arranged into three layers- sensors, patterns and fault 

causes. The relationship among the nodes in each layer is cause-effect one which can be quantified by 

conditional probabilities.  

For fault diagnosis, a large database composed of various fault records is essential for the construction 

of a BN. The cause-effect structure is then generated based on the database by applying probabilistic 



methods or a combination with human knowledge [62]. According to the literature, BN provides a 

natural tool for dealing with three diagnosis problems: reasoning, decision and uncertainty [63,64].  

 

Figure 7. Bayesian network structure for fault diagnosis in a PEMFC [65] 

An application of BN for diagnosis of a PEMFC system was presented in [62]. Four types of faults in 

this system were diagnosed: faults in the air fan; faults in the refrigeration system; growth of the fuel 

crossover; and faults in the hydrogen pressure. In the first step, fault records are collected based on a 

mathematical model of the FC system. Then probabilistic methods including Bayesian-score (K2) and 

Markov Chain Monte Carlo (MCMC) algorithms are applied on the databases to qualify and quantify 

the dependency relationship among the variables. To improve the network structure, some constrain-

based conditions and knowledge are applied. For the diagnostic process, the evidence was based on 

observations of variables that can be easily monitored by sensors like voltmeters, ammeters, 

thermocouples, etc. This allows an easy implementation of fault diagnostic processes in FC systems. 

The final diagnostic results show agreement with the original fault causes. However, this work is 

validated only by simulation results. Furthermore, the fault supervisor always indicates the fault cause 

as the one showing the biggest probability. This could reduce the diagnosis accuracy in some extent. 

More recent work [63] focused on the diagnosis investigation on large PEMFC stacks composed of a 

number of elementary cells, unlike the former ones mainly on a single cell. In order to facilitate the 

characterization and diagnostic of the FC stack, a new high voltage impedance spectrometer is 

designed. A naïve Bayesian classifier, based on the so-called Bayesian theorem has been chosen as 

Bayesian structure. It is particularly suitable when the dimensionality of inputs is high. To differentiate 

between 6 operating modes, twelve variables are chosen as inputs. This paper has mainly focused on 

researching the influence of Learning Database (LD) size. It was found that when LD size was chosen 

as 25%-75% of the global database, a maximum rate of good classification (91%) can be reached. 

A discrete BN was designed in [66] to estimate the input variables of FC system given a set of output 

measurements. The BN structure was determined by combination of expert knowledge and K2 

algorithm. Data discretization is stressed in this paper, during which variables are represented by 

multi-distinct values instead of Booleans ones like in (Riascos et al. 2007). In order to prove the 

generality of the network structure, two different SOFC stacks with 6 cells are applied and reasonable 

accuracies are obtained. 

Although encouraging diagnosis results for PEMFC system can be reached, this method is still not so 

popular in FC domain until now. A related problem may concern the large data set which is needed for 

construction and calculation of a BN. A recent paper by Liu et Jin [64] provides a possible solution. 

The authors aimed to explore an improved BN method to detect and diagnose the faults based on an 

incomplete and small data set. The proposed method is applied in the assembly process. BN approach 

shows strong diagnostic robustness under the condition of incomplete evidence and measurement 

noises. However, it still has a way to go for real process monitoring.  

4. Signal processing methods for PEM fault diagnosis 

Many signals obtained from the PEMFC system processes show oscillations that are due either to 

harmonic or to stochastic nature, or both. If changes of these signals are related to faults in the process, 

signal processing approaches can be applied for fault diagnosis [67]. When performing a signal 

processing based diagnosis method, there are two things needed to be considered: determining which 



signals to be applied for monitoring, and choosing an efficient signal analysis approach for 

interpreting [68]. 

In this part, two kinds of signal processing techniques, including Fast Fourier Transform (FFT) and 

Wavelet Transform (WT) will be introduced. These two techniques provide a view of signals in 

frequency domain, which may explore some significant information that cannot be conceived in time 

domain otherwise. Main principles are simply introduced and their applications in PEMFC system 

diagnosis are focused. Additionally, some interesting signals related to certain types of faults in the 

system are summarized according to the literature (Table 2). 

4.1 FFT and STFT 

The main idea of FFT is converting a signal from time domain into frequency domain by applying 

some transform functions. The signal is then represented by magnitude and phase components at each 

frequency. Customarily, the original signal is converted into power spectrum, which is magnitude of 

each frequency component squared [69]. Then significant components can be obtained by analyzing 

the spectrum. 

Chen et al. (2008) [69] used FFT to correlate the stack voltage evolution with the pressure drop signal 

across the electrodes. Both the steady-state and dynamic behavior of a commercial 10-cell PEMFC 

stack were investigated. To indicate the water behavior in cathode/anode, dominant frequency of 

pressure drop signal was obtained. And the stack voltage change can also be predicted. The idea of this 

approach is utilizing frequency analysis of pressure drop signal as a diagnostic tool for PEMFC stack 

dynamic behaviors. However, even if the FFT-based methods lead to fine frequency resolution, they 

are not adapted to non-stationary signals which are typically extracted from the FC during operation. 

According to the principle of FFT, satisfactory analysis can be acquired only limited to stationary or 

periodic signals, whose frequencies remain constant. In contrast, when analyzing transitory signals, 

FFT has poor performance due to its constant time and frequency resolution [70,71]. Thus, it is not a 

suitable method for diagnosis of PEMFC system, whose operation always contains a lot of transient 

processes, i.e. start-up process, load changes. Therefore, other approaches are required for 

investigating non-stationary signals which may contain important information about the occurring 

fault. 

STFT is a modified version of the traditional FFT. Having a similar principle to the FFT’s, it is easy to 

understand and apply. The basic difference with FFT, however, is its moving window process, through 

which the original signal in time domain is broken up into a set of small segments. Each segment can 

be assumed to be stationary and then is processed by the traditional FFT [72]. Additionally, it has a 

two-dimensional (time-frequency) representation that shows directly how the frequency of the signal 

changes with time. 

Usually, STFT has good performance for signals that have uniform energy distribution within an 

analyzing window [73]. However, an apparent drawback of STFT that prevents its wider application is 

its invariant window size, which will lead to a dilemma between time and frequency resolutions for 

non-uniform distributed signals. In this case, a good location in both time and frequency  for a signal 

cannot be achieved simultaneously [71,74]. 

To overcome this shortcoming, other algorithms such as Windowed Fourier Ridges, Wigner-Viller 

Distributions [75], Choi–Williams Distribution (CWD), Born–Jordan distribution and the Zhao–Atlas–

Marks distribution [76] are applied. These transformations have the following general form [77]: 
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where t is the instantaneous time, ω the instantaneous frequency; τ, ξ and μ the integration variables; 

and φ(ξ, τ) a kernel function.  The selection of an relevant kernel function is a critical issue. 

Prieto et al. (2011) [71] presented a diagnosis method based on CWD for detecting permanent-magnet 

synchronous motors (PMSM). CWD is applied here as an alternative of STFT for feature extraction. 

Feature coefficients are calculated based on an effective feature-extraction parameter- fractal 

dimension (FD). Healthy and faulty conditions of the motor can be clearly differentiated by applying 

the proposed method. Applications on FC stack are also promising since there is some similarity 

between FC stack and PMSM since both of them operate under non-stationary conditions. 

4.2 Wavelet Transform (WT) 

For the analysis of transitory signals, wavelet analysis is another option that mitigates the dilemma 

between time resolution and frequency resolution. The wavelet theory was developed in the late 1980s 

by Mallat [78], and Daubechies [79]. The basic idea of the WT is to represent any arbitrary function f 

(t) as a superposition of wavelets (quick definition of wavelets). It can be performed based on many 

types of wavelet basis, called mother wavelets. With them, one can obtain a better approximation of 

short-time signal changing with sharp transients [67].  Compared with STFT, WT uses a size-

adjustable window. When the local area has a high frequency, the window will be shorter; on the 

contrary, when the local area has a low frequency, the window will be larger [68]. Its main advantage 

is its ability of providing the best possible tradeoff between time and frequency resolution. 

There are two general types of WT: the Continuous Wavelet Transform (CWT) and the Discrete 

Wavelet Transform (DWT). The former one is more efficient for the time and frequency resolution of 

the signal, while DWT has a higher calculation speed [80,81]. Additionally, DWT has a powerful de-

noising capability [82]. An important issue when utilizing WT is the selection of mother wavelets 

[83]. Since our focus is on WT’s application for fault diagnosis, this issue will not be addressed here. 

 

Figure 8. Three level signal decomposing diagram [84] 

Recent application of WT in PEMFCs is shown in [85]. WT analysis is performed based on stack 

voltage measurements for discriminating whether the stack is flooded or not. Complete wavelet Packet 

decomposition is applied, consisting in decomposing the approximation signal and also the detailed 

signal, resulting in richer information. In the analysis, all the voltage measurements obtained during 

each experiment (flooding and non-flooding) were transformed into WP domain using Daubechies 

wavelets at level 3. A preliminary analysis of data used in each class is thus performed in order to 

check whether the data collected within the same class exhibit a similar behavior. Finally, two features 

were extracted to build a two-dimensional space for classifying the state of the stack. The 

experimental results obtained in this study proved the feasibility and reliability of WT method.  

This method uses only the stack voltage and can be adapted to a large set of FC configurations and 

applications. However the work is to be continued and improved in three aspects. The first 

improvement is to adapt the algorithm to an online, real time diagnosis. On the other hand, features 

reduction and selection as well as the discrimination must be automated. Finally, the present method 

gives a global FC SOH but do not localize the flooding. 



When applying WT for fault diagnosis, the more common way is combining it with a fault classifier 

like ANN, BN and Support Vector Machines (SVM), in which WT is used for feature extraction. In 

[86], a DWT and ANN based algorithm for estimation of fault location is presented. DWT is used for 

data preprocessing and ANN is applied as pattern classifier, for training and testing. In [74], PNN is 

performed for detecting 3 fault types based on WT. A high accuracy is achieved in the simulation 

work for determining the type of the fault in the power system. In [87], ANFIS is trained as the pattern 

classifier for decision making based on DWT feature vectors. In [88], a new technique combining 

DWT and SVM is proposed. By comparison with BPNN and the coefficients DWT, the proposed 

method gives highly satisfactory accuracy. In [84], Bayesian classifier is used for the identification of 

fault location and its size based on the feature extracted by DWT. 

As mentioned above, the determination of signals to be monitored should be the first thing to do when 

applying signal processing methods. Numerous researches focus on finding out a relationship between 

certain signals and the occurrence of some specific faults. According to the literature, signals that may 

reflect the occurrence of a certain type of fault are listed in table 2. 

Table 2. Signals related to certain types of faults in PEMFC system 

It can be found that stack/cell voltage and pressure drop signals are more commonly used. Since they 

are quite easy to monitor, it could be believed that a powerful tool combined with these fault relevant 

signals and WT analysis will be very promising for future real-time diagnosis of PEMFC system 

monitoring. 

5. Integration of various methods 

In the above sections, three general types of methods are presented. Each one has its advantages and 

weaknesses. Table 3 has been given to show some examples of applications of each method. Some 

methods, such as FDA are not listed in the table since they have not yet been put into practical uses for 

FEMFC diagnosis according to the current literature. 

Table 3. Examples of set-up of each method and their comparison 

According to the different characteristic of each method, a general structure of fault diagnosis based 

on non-model based method can be depicted in figure 9. It consists of four steps-data preprocessing, 

feature extraction, feature reduction and fault classification. 

 

Figure 9. Role of each kind of method in fault diagnosis 

1)  Monitoring and pre-processing of original data. Polarization curves, electrochemical impedance 

spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV), etc, can be applied as 

original data for further fault analysis [9]. Since data from different sensors may have different ranges, 

e.g. pressure in millibars and voltage in tens of volts, it is necessary to normalize them into range of [-

1, +1] (for example). This could facilitate further processing steps. Additionally, original data usually 

contains some extent of noise. A de-noising procedure may help to decrease the misclassification rate. 

2)  Feature extraction. Its task is to extract features which are relevant to the target fault from the 

original data. It is worth noting that the process of extraction also contains a certain degree of 

reduction. FFT, STFT and WT techniques can be included into this step, since they aim to convert the 

time-domain data into frequency- domain one, providing a new view of the original data. 



3)  Feature reduction. In most cases, features extracted from the original data are highly correlated. A 

feature reduction step means to convert a high-dimensional feature space into a low-dimensional 

feature space, while retaining as much information as possible. In this sense, (K) PCA, (K) FDA can 

be involved. What should be noted is that, sometimes feature extraction and reduction can be 

integrated into one step. Also, roles of methods included into these two parts could be exchanged. 

4)  Fault classification. Based on the low-dimensional feature space, a proper classifier should be 

further designed for fault classification. This classifier can either be a qualitative one or be a 

quantitative one. NN, FL, neural-fuzzy method and BN can be chosen in this step. 

As it is well known, no single method can satisfy all the requirements for the monitoring of a complex 

system like PEMFC system. One method may complement another to obtain better performance. Thus 

hybrid approaches based on the above mentioned methods are highly expected. In fact, during former 

discussions about each single method, some combinations such as WT with ANN, ANFIS and BN 

classifier, also PCA with ANN classifier, have already been demonstrated to be effective for fault 

diagnosis. 

Here, another good example is shown in [94]. A digital band-pass filter is first designed to reduce the 

negative effect of noise. Then PCA is applied to reduce the correlations among each sensor measures. 

Based on the new uncorrelated sensors, WT is performed to extract the wavelet coefficients, the 

dimension of which is further reduced by PCA. Fault classification is finally done by constructing a 

binary decision tree. Efficiency of the proposed methodology is validated on a complex chemical 

plant-TE process.  

6. Conclusions 

In this paper, three non-model based methodologies are outlined and discussed. Artificial Intelligence 

methods are very suitable for fault classification when given discriminating features. The second class 

of methods which is based on statistical analysis, such as PCA, provides an effective tool for variable 

dimension-reduction. Thus initially high correlated variables are converted into a small number of 

uncorrelated features. Furthermore, a PCA model under normal conditions is built as a reference for 

fault detection. Or the acquired features are used as inputs of fault classifiers. It is worth noting that, 

although PCA is the most widely used method, FDA has better diagnosis performance, as it seeks a 

relevant direction for discrimination. In order to extract nonlinear features among variables, Kernel 

PCA and Kernel FDA which apply kernel functions are further introduced. Additionally, Bayesian 

Network (BN), as one kind of statistical classifiers is also included in the second class. It consists of 

two parts- a network structure and conditional probabilities among nodes in different layers, and it 

provides an effective tool for dealing with three diagnosis problems: uncertainty, decision and 

reasoning. The third class-signal processing method is based on analysis of signals which can reflect 

the occurrence of certain types of faults. According to former researches, some relevant and 

commonly used signals, such as stack/cell voltage and pressure drop signals are listed. As the 

traditional FFT has the limitation of incapability to analyze non-stationary signals, some improved 

versions, such as STFT, CWD and WT are further discussed. Among them, WT is believed to be the 

most promising one due to its excellent time and frequency resolutions. In the final part of this paper, 

hybrid method which integrates different kinds of methods is introduced. This kind of method is 

believed to be a new trend in fault diagnosis of PEMFC system.  

This paper is the second part of two review papers which aim to give an overview on diagnosis 

methodologies for PEMFCs. Compared with model-based methodology, a potential problem existing 

in non-model based one relates to the need of datasets that must include the targeted fault condition. 



This could be very time-consuming when generating the related fault in the actual system, especially 

in the case of multi-faults. Furthermore, this may cause irreversible damages to the system.  

However, non-model based methodology is still believed to be promising in future study of PEMFC 

system, due to its characteristics of simplicity, flexibility, capability of dealing with nonlinear 

problems, no requirement of system structure knowledge. 
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Representation PCA KPCA 

Classification FDA KFDA 

 

Table1 A comparison of the introduced dimension-reduction method



 

Articles Signals  Related fault type  in PEFCs 

Chen et Zhou. (2008) 

[69] 

Cathode pressure drop Cathode flooding  

Anode pressure drop Water present at anode 

Hernandez et al. (2006) 

[89] 

Individual cell voltage 

variance; mean voltage 

Flooding 

Shen et al. (2008) [90] A temporary voltage 

fluctuation 

Air starvation 

Niroumand et al. 2010 

[91] 

Pressure–cell voltage ratio  Low cathode/ anode flow 

rates 

Barbir et al. (2005) [92] Cathode pressure drop Flooding 

Cell resistance Drying 

Tian et al. (2008) [93] Stack open current voltages Anode/ cathode crossover 

Yousfi Steiner et al. 

(2011) [85] 

Stack voltage Flooding 

 

Table2 Signals related to certain types of faults in PEMFC syste



Non-model 

based methods 

Refere

nces 

Single cell/stack Type of sensors used 

for diagnosis 

Fault types On /off-

line 

Neural 

network 

[22] 20 single cells 
(25cm2) 

40 sensors: 
voltage-20; current-20 

SOH (status of 

health) 

off 

Fuzzy logic [2] 100 W FC stack  
(3 cells, 100cm2) 

EIS spectrometer  
(voltage, current) 

1 types: 
durability 

off 

Principle 

component 

analysis 

(PCA) 

  

[42] 2.5 kW FC stack  
(50 cells, 150cm2) 

35 sensors: 
voltage-2; current-1; 

temperature-22; 

pressure-6; flow 

(water, air H2)-5; 

humidity-1 

SOH off 

[41] 2 FC stack  
(80kW in total) 

17 sensors: 
voltage-6;current-2; 

temperature-6; 

pressure-3 

SOH on 

Bayesian 

network (BN) 

[62] Fault tolerant fuel 

cell 

5 sensors: 
voltage-1; current-1; 

temperature-1; 

pressure-1; power-1; 

4 types: 
Fault by fuel 

crossover, H2 

pressure; fault in 

the air blower, 

refrigeration 

system.  

on 
(simulation 

in MatLab) 

[63] FC stack 
 (20 cells, 100cm2) 

EIS spectrometer 
(voltage, current) 

2 types: 
flooding; drying 

off 

Fast Fourier 

transform 

(FFT) 

 [69] FC stack 
 (10 cells) 

3 sensors: 
cathode/anode 

pressure; stack voltage 

1 type: 
flooding 

off 

Wavelet 

transform 

(WT) 

[85] FC stack  
(20 cells, 100cm2) 

1 sensor: 
Stack voltage 

1 type: 
flooding 

off 

 

Table3 Examples of set-up of each method and their comparison



 

Non-model based 

method

Artificial 

intelligence

Statistical 

method

Signal processing 

method

Neural 

network

Fuzzy 

logic

Neural-

fuzzy
PCA PDA

Bayesian 

network
FT/STFT

Wavelet 

transform
 

Figure1 Classification of non-model based method
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Figure2 Hamming neural network
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Figure3 Fuzzy clustering diagram
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Figure4 A typical ANFIS architecture
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Figure5 A geometric interpretation of PCA
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Figure6 A geometric interpretation of FDA
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Figure7 Bayesian network structure for fault diagnosis in PEMFC
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Figure8 Three level signal decomposing diagram
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Figure9 Role of each kind of method in fault diagnosis


