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Abstract

Prognostics and Health Management (PHM) of rotating machines is gain-
ing importance in industry and allows increasing reliability and decreasing
machines’ breakdowns. Bearings are one of the most components present in
mechanical equipments and one of their most common failures. So, to assess
machines’ degradations, fault prognostics of bearings is developed in this pa-
per. The proposed method relies on two steps (an offline step and an online
step) to track the health state and predict the remaining useful life (RUL)
of the bearings. The offline step is used to learn the degradation models of
the bearings whereas the online step uses these models to assess the current
health state of the bearings and predict their RUL. During the offline step,
vibration signals acquired on the bearings are processed to extract features,
which are then exploited to learn models that represent the evolution of the
degradations. For this purpose, the isometric feature mapping reduction
technique (ISOMAP) and support vector regression (SVR) are used.
The method is applied on a laboratory experimental degradations related to
bearings. The obtained results show that the method can effectively model
the evolution of the degradations and predict the RUL of the bearings.
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1. Introduction

Prognostics and Health Management (PHM) of industrial systems is a
central activity of intelligent maintenances, such as Condition-Based Main-
tenance (CBM) and predictive maintenance (PM). PHM deals with condition
monitoring, fault detection, fault diagnostics, fault prognostics and decision
support. It can concern the whole industrial system as well as its critical
components. The analysis of the experience feedback performed on electrical
machines by the Electric Power Research Institute (ERPI), and researchers
in the reliability of electrical machines, has shown that the bearings and the
stator are the components which present the most failures [1]. Consequently,
doing PHM on these components may increase the availability, the reliability
and security of the machines. The purpose of PHM on rotating machinery
is not only to detect the faults, but also to predict how much longer the
machine can operate safely and perform its function. Interesting reviews on
prognostics are given in [2, 3]. Failure prognostics can be done by using three
main approaches: model-based, data-driven and hybrid prognostics. among
these approaches, data-driven prognostics offers a trade off in terms of pre-
cision and complexity.
Bearings’ prognostics targets the prediction of RUL in order to minimize
the time breakdown and maintenance costs. Most of prognostic methods
related to bearings can be considered within the data-driven approach and
use vibrations analysis [2]. In this framework, Shao et al. [4] proposed a
progression-based prediction model for remaining useful life of bearings, [5]
estimated the RUL of bearings by using both a proportional hazard model
and a logistic regression. Gebraeel et al. [6] used the Feedforward Neu-
ral Networks (FFNNs) to project the degradation by computing exponential
parameters that give the best exponential fit. Similarly, Huang et al. [7] pro-
posed a self organizing map (SOM) and an artificial neural network based
method for performance degradation assessment and residual life prediction
of bearings, Yan et al. [8] utilized a logistic regression to achieve machine
performance assessment and finally, Lingjun et al. [9] applied support vector
data description (SVDD) to assess the equipment health state and to detect
bolt crack.
One of the main challenges in prognostic of bearings is how to construct
and evaluate health indicators from available features, which can represent
the degradation states. In practice, the construction of health indicators
depends on the nature of the degradations and the related monitoring data
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provided by the sensors [10]. In this domain, the raw monitoring signals
are pre-processed and used to extract features. However, the number of fea-
tures can be of high dimensionality and can be reduced before building the
health indicator. Various techniques for data reduction have been proposed
in the literature [11]. Among these techniques, Principal Component Analy-
sis (PCA) [12] is one of the most used. Thus, Liao and Lee [13] utilized the
PCA to extract features by using wavelet packet decomposition (WPD) on
vibration signals of bearings. Recently, Malhi et al. [14] proposed a PCA-
based feature selection approach for bearing fault classification. However,
PCA is a linear reduction technique.
The main contribution of this paper concerns the utilization of the isometric
feature mapping (ISOMAP) technique, to perform nonlinear feature reduc-
tion, combined with nonlinear support vector regressions (SVR) to construct
health indicators allowing the estimation of the health state of bearings and
predict their RUL. The purpose of the ISOMAP technique is to find a small
number of features that represent a large number of observed dimensions.
ISOMAP has the advantage to be nonlinear and non-iterative and gives
globally optimal solutions [15]. The objective of the SVR is to estimate the
relation between an input and output random variable under the assumption
that the joint distribution of the input and the output variables is completely
unknown. The SVR technique has been successfully applied in various ma-
chine learning problems, which are especially prominent for regression [16]
and in different applications such as sunspot frequency prediction [17] and
drug discovery [18]. In this paper, the SVR is used to learn the nonlinear
degradation models of the bearings.
The method proposed in this paper is divided into two steps: an offline step
and an online step. The offline step is used to learn the bearings’ degrada-
tion models by using the ISOMAP and the SVR techniques. This step is
also used to learn more about the variability of the monitoring data, to tune
the parameters of the ISOMAP and SVR techniques and to define the failure
thresholds of the bearings. The online step uses the models learned during
the offline step to assess the current health state of new tested bearings and
to predict their RUL.
This paper is organized as follows. Section 2 presents the framework for
component-based PHM, section 3 describes the proposed method for RUL
estimation of bearings based on ISOMAP and SVR, section 4 deals with ex-
perimental verification and results and finally, section 5 concludes the paper.
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2. Component-oriented Prognostics and Health Management

Prognostics and Health Management (PHM) is a central activity for
the implementation of Condition Based Maintenance (CBM) and Predic-
tive Maintenance (PM). PHM includes seven modules [19], one of them is
failure prognostics. The international standard organization defines failure
prognostics as the estimation of the operating time before failure and the risk
of existence or later appearance of one or more failure modes [20], whereas
most reported literature related to PHM defines it as the estimation of Re-
maining Useful Life (RUL) [2, 21, 3]. The estimation of RUL can be done by
using three main approaches: model-based prognostics (also called physics
of failure), data-driven prognostics and hybrid prognostics (combination of
both previous approaches). Each one of these approaches has its strength
and its weakness. Model-based prognostics gives more precise results, but
its implementation is difficult because in most applications the construction
of the physical model is not a trivial task. Data-driven prognostics relies on
the data provided by the sensors to extract features which are then used to
build models for RUL estimation. This approach is easy to implement but
the results it provides are less precise than those of model based approach.
Finally, hybrid approach takes the best of both previous approaches, but also
some of their weaknesses.
The contribution presented in this paper belongs to data-driven prognos-
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Figure 1: Component-oriented PHM framework.

tics with the hypothesis that the RUL estimation is done on the critical
components of the industrial system. Figure 1 shows the framework of the
component-oriented prognostics.
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In this paper we make assumption that the prognostic of the whole indus-
trial system corresponds to prognostic of its critical components. The first
step of the prognostic process is then to identify the critical components.
This step is followed by the definition of the degradation phenomena, the
parameters to monitor and the sensors to install. The raw data provided
by the sensors are then processed to extract features and health indicators,
which are used to do fault detection, diagnostics, prognostics and decision
support on the industrial system. In the following of the paper, only feature
extraction/reduction and fault prognostics are concerned.

3. RUL estimation based on ISOMAP and SVR

The main steps of the proposed contribution are shown in figure 2. Fea-
ture extraction and reduction and degradation modeling steps will be de-
scribed in the following of the paper.
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Figure 2: Main steps of the proposed prognostic method.

3.1. Feature extraction and reduction
This section presents the feature extraction and reduction technique. The

features are first extracted from raw monitoring signals by using wavelet
packet decomposition. This latter technique allows calculating the energy
of the nodes at each level of decomposition. Then, a dimensionality reduc-
tion is performed on the extracted features by using the ISOMAP technique.
ISOMAP is a manifold learning technique based on pairwise distances de-
rived from high dimensional data [15] and is a way of enhancing classical
multi-dimensional scaling (MDS). The purpose of the ISOMAP technique is
to find a small number of features that represents a large number of observed
dimensions. It has the advantage to be nonlinear, non-iterative and gives
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global optimal solutions [15].
Given a set of data points Sm = {xi, i ∈M = {1, 2, ...,m}} ⊂ Rn, the
geodesic distance is defined by the length of the shortest curve that connects
two points on the manifold. The aim of ISOMAP is to find an embedding
of the given dataset Sm into a lower dimensional space Rd, where d is the
intrinsic dimension of the manifold. The ISOMAP algorithm is summarized
by the following three steps.

1. Construction of the neighborhood graph over all observations by con-
necting the ij− th point if point i is one of the k nearest neighbors of j
(or if the distance between them is less than ε). Then, put the lengths
of the edges equal to dij.

2. Approximation of the geodesic distances with the shortest paths be-
tween points in the graph.

3. Finding the d-dimensional embedding by applying classical MDS to the
geodesic paths found in step 2. For this point, one firstly computes the
matrix k = −HSH/2, where S is the matrix of the squared geodesic
distances among the points and H is a centering matrix for which
the generic element is defined by hij = δij − 1/m, with δij denoting
the Kronecker’s delta. Then, the first d eigenvalues {λ1, λ2, ..., λd} of
the matrix K and the corresponding eigenvectors {v1, v2, ..., vd} are
taken. The pth of the ith point in the new space is then defined as
zi,p =

√
λpvi,p, p = 1, 2, ..., d.

3.2. Support vector regression
The theory of support vector machine (SVM) has been introduced by

Vapnik [22]. SVM is divided into two main categories: support vector classi-
fication (SVC) and support vector regression (SVR). SVR is the most com-
mon application form of SVMs. It has been proposed in 1997 by Vapnik
et al. [23]. The main objective of SVR is to estimate a functional relation
between input and output random variables under the assumption that the
joint distribution P of the input and output variables is completely unknown.
The model created by SVR depends only on a subset of the training data,
because the cost function for the model construction ignores all training data
that are close within a threshold ε to the model prediction. Regression es-
timation can be formalized as the problem of inferring a function y = f(x)
based on a training set X = {(xi, di) , i = 1, ..., l} , where xi ∈ Rn is the ith
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input vector for the ith training example, di ∈ R is the target value for the
ith training example and l is the number of training set. Training a support
vector regression (SVR) machine is equivalent to finding a regression function
of the form:

f(x) =
l∑

i=1

(αi − α∗i )k(xi, x) + b (1)

where k(xi, x) is a positive definite kernel function, α = (α1, α2, ..., αl)
T ,

α∗ = (α∗1, α∗2, ..., α∗l)T and b the parameters of the model. To find αi, α∗i , i =
1, ..., l one needs to minimize the objective function:

∑
i,j=1

(αi − α∗i )(αj − α∗j )k(xi, xj) + ε
l∑

i=1

(αi + α∗i )− d
l∑

i=1

(αi − α∗i ) (2)

which is subject to the following expression:

l∑
i=1

(αi − α∗i ) = 0 andαi, α
∗
i ∈ [0, C] (3)

where ε and C are the hyper-parameters.
The kernel k(xi, x) can have different forms; the most used one is the Gaus-
sian function k(xi, x) = exp

(
−‖xi−x‖

2

σ2

)
, where σ > 0 is the kernel’s width.

The training of SVR needs to solve the quadratic optimization problems
given in Eq. (2) and Eq. (3) with 2 parameters. If αi − α∗i 6= 0 the sample
xi is called support vector, if 0 < |αi − α∗i | < C , xi is an unbounded sup-
port vector, if |αi − α∗i | = C , xi is a bounded support vector and finally if
|αi − α∗i | = 0 , xi is a non support vector. With the notion of support vector,
the regression function given in Eq. (1) of SVR can be simplified as:

f(x) =
l∑

xi∈SV

(αi − α∗i )k(xi, x) + b (4)

3.3. RUL estimation
The diagram of the SVR method proposed for bearing’s fault prognostics

is given in figure 3. The method is decomposed into two main steps. The
first step is done off-line and aims at generating an appropriate model that
allows describing the evolution of the bearing’s degradation. Specifically, the
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Figure 3: Framework of the RUL estimation procedure.

goal of this step is to build the regression model by using the SVR technique.
The second step, which is achieved on-line, utilizes the model generated in
the first step to continuously assess the health state of the bearing and to
predict its future one leading to the calculation of its RUL.

4. Application and results

4.1. Description of the experimental platform PRONOSTIA
PRONOSTIA is an experimental platform dedicated to test, verify, and

validate methods related to bearings’ health assessment, diagnostics, and
prognostics. A general overview of the platform is shown in figure 4. The
main purpose of PRONOSTIA is to provide real data related to bearings’
degradations. In this platform, the experiments are carried out by applying
loads on the bearings exceeding the loads allowed by the catalog in order to
accelerate their degradation. The bearings with the reference NSK 6804DD,
which can operate at a maximum speed of 13000 rpm, and a load limit of
4000 N are used in this application.
PRONOSTIA is composed of two main parts: a first part related to the

speed variation, and a second part dedicated to load profile generation. The
speed variation part is composed of a synchronous motor, a shaft, a set of
bearings, and a speed controller. The synchronous motor develops a power
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Figure 4: The experimental platform Pronostia.

equal to 1.2 kW, and its operational speed varies between 0 and 6000 rpm.
The load part is composed of a hydraulic jack connected to a lever arm used
to create different loads to degrade the bearing mounted on the platform. The
radial load can be varied between 0 and 10000 N, and the operating speed
of the bearing can be controlled within the interval 0 - 2000 rpm. The force
delivered by the pneumatic jack is indirectly applied on the external ring of
the bearing through a clamping ring (figure 5-(b)). The effort is transmitted
by a lever arm in rotation, which applies the load on the clamping ring.
Two high frequency accelerometers (DYTRAN 3035B) are mounted, one

horizontally and one vertically, on the housing of the tested roller bearing
to pick up the horizontal and the vertical accelerations. In addition, the
monitoring system includes one temperature probe to record the temperature
of the tested bearing. A speed sensor and a torque sensor are also available on
the PRONOSTIA platform. The sensors are connected to a data acquisition
card (NI DAQCard-9174) to provide the user with monitoring data. The
sampling frequency is set to 25600 Hz, and the vibration data provided by
the two accelerometers are collected every 1 second.
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Figure 5: Multiplication system and load transmission: (a) top view and (b)
elements of the transmission chain.

4.2. Experimental results
Three experimentations corresponding to three degraded bearings are

used to test the method. The durations of the experiments are: 6 hours
and 50 minutes, 6 hours and 16 minutes, and 4 hours and 30 minutes. Two
vibration signals (vertical and horizontal accelerometers) collected from each
experiment are used for feature extraction. More information about the
tested bearings is given in table 1. Moreover, the results presented in this
paper are valid within the framework defined by the following assumptions.

1. The tested bearings have the same reference and are provided by the
same manufacturer.

2. No faults are initiated on the bearings before the beginning of each
experiment.

3. During the experiments, each bearing, which is initially new, is used
until it is failed. Furthermore, the degradation of each bearing is sup-
posed to be any (fault of the balls, the ring, the races or a combination
of all these faults).

4. The data of each experiment are then used to extract features and learn
the degradation model of the corresponding bearing.
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5. The bearings which are degraded under the same operating conditions
(same load, same velocity, etc.) form a same group. The model learned
for a group of bearings is then used to estimate the RUL of another
bearing belonging to the same group.

Duration of the tested bearings 6h50 6h16 4h30
Loading (N) 4000 4000 5000
Speed(RPM) 1800 1800 1500
Training error 0.0494 0.0248 0.0187

Table 1: Bearings dataset from PRONOSTIA test rig.

4.2.1. Selection of the optimal parameters of ISOMAP and SVR
The input parameters of ISOMAP technique are k or ε. Usually, these

parameters are specified by the user. However, in this contribution the pa-
rameters are selected by using the optimization method proposed in [24].
The implementation of the method led to a value of k equal to 4 (figure 6).
After feature reduction, and before using the SVR for model construction,

Figure 6: Optimized value of the ISOMAP parameter k.

it is necessary to select the optimal kernel that gives the minimum error
of training. In the following tests, a Gaussian kernel with a width param-
eter σ equal to 10−5 is considered. Indeed, the value of the kernel width
can affect the number of support vectors used to construct the regression
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Kernel Gaussian σ = 10−5 Polynomial Radial Basis Function
RMSE 0.014 0.294 0.095

Table 2: Performance of training data by different kernels.

function. In this work, the kernel width values were varied in the range of{
10−6, 10−5, ..., 1

}
and the optimal value is set 10−5.

4.2.2. Feature extraction and reduction
In this application, eight features are extracted from the vertical and

horizontal accelerometers (vibration signals) of each degraded bearing by
using the wavelet packet decomposition technique. The features represent
the percentage of energy at each level of decomposition on the raw vibration
signals. An example of three features plotted together is shown in figure 7.
The eight features extracted for each bearing are then reduced to one

Figure 7: Three features extracted from the bearing degraded within 6 hours
and 50 minutes.

variable (called health indicator) by using the ISOMAP technique. Figure 8
shows the eight features extracted from the vibration signals of the bearing
degraded within 6 hours and 50 minutes, and figure 9 presents the health
indicator obtained after reducing the eight features by using the ISOMAP
technique.
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Figure 8: Eight features extracted from the bearing degraded within 6 hours
and 50 minutes.
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Figure 9: The health indicator extracted from the eight features by using the
ISOMAP technique.

4.2.3. SVR models and RUL estimation
The support vectors obtained by using the SVR, and the predicted mod-

els corresponding to the three experiments are shown in figures 10, 11 and
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Figure 10: Degradation evolution obtained from SVR for the experiment
corresponding to 4h30.
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Figure 11: Degradation evolution obtained from SVR for the experiment
corresponding to 6h16.

12. The support vectors are then fitted to exponential regressions used to
predict the degradation level of each bearing and calculate the correspond-
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Figure 12: Degradation evolution obtained from SVR for the experiment
corresponding to 6h50.

ing RUL values. Moreover, to calculate the confidence value of each RUL,
upper and lower bounds are added to the regressions as shown in figure 13.
The calculation of the RUL is done on the regression models by defining a
failure threshold for each degradation. The failure threshold can be given
by experts, learned automatically from experience data, defined according to
performance criteria, etc. In this application, the threshold is set equal to
1.4 of the root mean square of the vibration signal. This value corresponds
to the accepted level of degradation in the tested bearings.
The RUL and the associated confidence at 95% are calculated by using the
following equation:

RULu/l(tj) = (tfailure − tj)± (tfailure − tfailure95 ) (5)

Test size data SSE R-square RMSE
Test1 (6h50) 24632 0.3339 0.9695 0.02158
Test1 (6h16) 22589 0.3279 0.9645 0.02245
Test1 (4h30) 16366 0.3268 0.9693 0.02316

Table 3: Fitting data.
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Figure 13: fitting data after reduction.

The time tj is obtained by inverting the model y(t) = a1.e
b1.t + c1:

tj =
1

b1
log

(
y − c1
a1

)
(6)

The RUL corresponding to the experiment which duration is 4 hours and 30
minutes is given in figure 14. From the figure it can be seen that the RUL in
the middle of predictions is under the real RUL value. This can be seen as
a pessimistic prediction, which is suitable for maintenance planing (do the
maintenance interventions before the real time of a failure).

5. Conclusion and future work

This paper presented a prognostic method based on a nonlinear feature
reduction (ISOMAP) and SVR. The method belongs to data-driven prog-
nostics and the application was on bearings’ degradations. Moreover, the
method can be applied on degradation of other critical components (batter-
ies, train doors, gearboxes, etc.) at a condition that appropriate sensors are
available. For the ISOMAP technique, the input parameters were defined by
using an optimization approach. In the case of SVR, a Gaussian kernel was
considered. Then, exponential regression models were used to fit the support
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Figure 14: Predicted RUL of a bearing degraded in 4 hours and 30 minutes.

vectors obtained from SVR and the derived models allowed to calculate the
RUL of the degraded bearings.
The proposed contribution concerned critical components operating under
constant conditions (same speed, load, temperature, etc.) and without any
maintenance intervention during the degradation. Indeed, the performance
of the component is only deceasing in time. These two aspects (variable
operating conditions and maintenance interventions) are the ongoing works
which may help generalizing the method.
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