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Abstract Prognostics and health management (PHM) methods aim at de-
tecting the degradation, diagnosing the faults and predicting the time at which
a system or a component will no longer perform its desired function. PHM is
based on access to a model of a system or a component using one or combi-
nation of physical or data driven models. In physical based models one has to
gather a lot of knowledge about the desired system, and then build analytical
model of the system function of the degradation mechanism that is used as a
reference during system operation. On the other hand data-driven models are
based on the exploitation of symptoms or indicators of degradations using sta-
tistical or Artificial Intelligence (AI) methods on the monitored system once
it is operational and learn the normal behaviour.

Trend extraction is one of the methods used to extract important informa-
tion contained in the sensory signals, which can be used for data driven mod-
els. However, extraction of such information from collected data in a practical
working environment is always a great challenge as sensory signals are usually
multidimensional and obscured by noise. Also, the extracted trends should
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represent the nominal behaviour of the system as well as should represent the
health status evolution.

This paper presents a method for nonparametric trend modelling from
multidimensional sensory data so as to use such trends in machinery health
prognostics. The goal of this work is to develop a method that can extract
features representing the nominal behaviour of the monitored component and
from these features extract smooth trends to represent the critical compo-
nent’s health evolution over the time. The proposed method starts by multi-
dimensional feature extraction from machinery sensory signals. Then, unsuper-
vised feature selection on the features domain is applied without making any
assumptions concerning the number of the extracted features. The selected
features can be used to represent the nominal behaviour of the system and
hence detect any deviation. Then, empirical mode decomposition algorithm
(EMD) is applied on the projected features with the purpose of following the
evolution of data in a compact representation over time. Finally, ridge regres-
sion is applied to the extracted trend for modelling and can be used later for
remaining useful life prediction.

The method is demonstrated on accelerated degradation dataset of bear-
ings acquired from PRONOSTIA experimental platform and another dataset
downloaded form NASA repository where it is shown to be able to extract
signal trends.

Keywords Feature Extraction · Health Indicator · Trend Construction ·
Health State Detection · Prognostics

1 Introduction

The degradation of machine critical components is one of the main reasons
of machines breakdown. Moreover, faulty components can also affect other
components in the system which might lead to sever consequences. Effec-
tive condition monitoring and health assessment of machinery deterioration
is therefore crucial for reducing the downtime and the costs while increasing
the availability [20].

Maintenance strategies can be classified into 1) Breakdown maintenance, 2)
Preventive maintenance and 3) Condition-based maintenance (CBM) [16]. In
breakdown maintenance no actions are taken to maintain the equipment until
it breaks down. Preventive maintenance only includes setting periodic intervals
for machine inspection. CBM analyses the condition measurements that do
not interrupt normal operations. Compared to other maintenance strategies,
CBM attempts to avoid unnecessary tasks by taking actions only when there
is evidence of abnormal behaviour in the machine. Thus, CBM can produce
significant saving through more convenient scheduling and therefore has been
widely explored in research and industry lately [36].

One of the most important CBM activities is prognostics and health man-
agement (PHM) which can be defined as the process of detecting abnormal
conditions, diagnosis of the fault and their cause and prognostics of future
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fault progression, see [12] [31]. PHM research has been shifting lately from
fault detection and diagnostics to prognostics. Prognostics can be defined as
the estimation of time to failure and risk for one or more existing or future fail-
ure modes [15]. It usually requires the past history of the machinery condition
sensory data [34]. The machinery health progression can be then extracted
from the acquired data. The extracted progression data are then used as input
for prediction or estimation algorithms to predict the future machine status
[22].

The process of extracting representative health progression data from sen-
sory time series data is known as trend extraction [3]. It can be performed us-
ing multiple parameters, where relations between parameters can be utilised to
represent the deterioration. However, sensory signals usually contain tremen-
dous amount of oscillations and partly or completely hidden by noise which
can be very challenging to process and to extract informative representation
of the machine status. Also, the extracted trends should be used as a reference
for the nominal behaviour and to predict the health status in the future.

In this work, time and frequency domain features have been extracted from
two sensory time series. The features have been grouped using unsupervised
feature selection algorithm based on symmetrical uncertainty measure, which
can be used as a reference model for the nominal behaviour. Then, each group
of features has been projected into a compact two dimensional representation
using principle component analysis (PCA) [19]. In order to get a monotonic
like signals, the final trends were extracted from each projected group using
empirical mode decomposition algorithm (EMD) [14] and used to build a re-
gression model of the machinery health progression. These models can be used
later for predicting the remaining useful life of the system.

This paper is organised as follows. A detailed literature review is depicted
in section 2. Section 3 explains the method in details. The experimental results
are shown in the section 4. Finally, a conclusion of the this paper and the future
work is depicted in section 5.

2 Background

Data-driven PHM methods aim at building degradation models from sensory
data acquired from sensors attached to critical components, see Figure 1. These
sensory data contain valuable information about several aspects of health pro-
gression, which has proved to be very challengeable. In this section we review
state of the art of preprocessing approaches for the main PHM activities.

2.1 Fault detection

Fault or anomaly detection is the simplest part of PHM; which can be defined
as the process of identifying when a fault/outlier has occurred. This section is
dedicated to review some of the research work conducted for this task.
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Fig. 1: PHM General Scheme

An online anomaly detection algorithm that is not based on any learning
algorithm has been proposed in [8]. The algorithm sets different operation
modes once it starts running on N observations. Any change on the number of
the clusters or the behaviour of the new data in an already defined cluster will
be considered as suspicious behaviour. The proposed method is divided into
two main parts, Initialisation and Monitoring. For initialisation 27 features
were extracted, however, the authors did not specify exactly all the features.
Then, data standardisation has been performed by applying unit variance and
mean centering. PCA has been used for data dimensionality reduction. Fi-
nally estimating the unknown numbers of operating modes clusters (OM), by
using greedy expectation maximisation clustering algorithm. For monitoring
part, first feature extraction has been applied. Then calculating of the online
data and updating the modelled mean and variance of the old dataset have
been performed. Data standardisation for the online readings was performed
as in the initialisation part and also dimensionality reduction. Then updating
OM clusters by using Mahalanobis distance measure. Finally, tracking OM
by using evolving Takagi-Sugeno model in order to predict the dynamics of
the data within each cluster. A comparison between PCA and partial least
square (PLS) for fault detection has been presented in [33]. Moreover, the
authors have used PLS for prognostics. The proposed method is divided into
three parts, feature extraction, modelling and deviation detection. For feature
extraction, 16 signals have been measured from moving gate-type incinera-
tor. Building the model on healthy datasets using PCA and PLS. Finally, T
square and Q statistics have been proposed to detect faults. The results show
that both PCA and PLS performed fairly well in fault detection and PLS
was also good for prognostics. An algorithm for machinery health monitoring
and early fault detection has been proposed in [23]. The method decomposes
the input signal into Intrinsic Mode Functions (IMFs) using Empirical Mode
Decomposition (EMD), then Combined Mode Function (CMF) is applied to
mix neighbouring IMFs to obtain the best signal. Feature extraction is then
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performed using Fourier Transform (FT) on the acquired signal. Finally, the
method uses Hidden Markov Models (HMMs) to build a model of the normal
condition of the gearbox and Average Probability Index (API) is constructed
as an index for machinery health status. A visual tool for fault detection and
monitoring temporal evolution of aircraft engines health is presented in [7].
The environmental variables and engine effects are removed from rough mea-
surements using General Linear Model (GLM). The residuals of the regression
are used after that for training Self Organised Maps (SOMs) which shows the
evolution of the motor status. Two methods for detecting anomalies in time
series datasets acquired from different machinery sensors have been proposed
in [1]. The first approach uses entropy analysis over the entire set of sensors
at once to detect anomalies that have broad system-wide impact. It starts by
smoothing and normalising time-series data for each sensor. Then, sampling
the time-series values using uniformly sized bins. Finally, Shannon Entropy is
computed for each time step as a reference model for the system. The second
approach uses automated clustering of sensors combined with intra-cluster en-
tropy analysis to detect anomalies and faults that have more local impact. For
each of the n sensors, the method computes the Pearson correlation between
each pair of sensors and form an n by n distance matrix. Then, the method
clusters the sensors by performing a graph-partitioning of the adjacency graph
and performs a time-windowed correlation within each sensor cluster. Finally,
the entropy of the m discrete values has been computed to provide the cluster
entropy for the system. The strength points in this work were no parameters to
tune and it is easy to implement. However, the entropy does not differentiate
between anomalies or noise which make it difficult for the method to detect
different types of faults. A method for fault detection for electrical machines
has been proposed in [32]. The method learns the normal behaviour over the
time and detects any changes between the signals due to degradation of the
system. The proposed method selects interesting features from the measured
signals from the system using pairwise similarity measure algorithm and uses
Gaussian Mixture Models (GMM) for relation description. Finally, a distance
measure between different signals was calculated as indicator for the system
deviation. A method for unsupervised change detection and health monitoring
for Diesel engines has been proposed in [28]. The method is based on building
a model using Independent Component Analysis (ICA). Probabilistic outlier
detection algorithm has been also proposed for anomalies detection.

2.2 Diagnostics

Another important aspect in PHM systems is diagnostics and evaluation of
wear advancements and it is presented in this section. A multidimensional
diagnostics approach for mechanical systems has been presented in [4]. Vibra-
tion signals were acquired from diesel engine, heavy fan and rubbing blades
in a turbo-set to validate the approach. The authors applied mean centering
and normalisation for the signals and then using Singular Value Decomposi-
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tion (SVD), the multidimensional dataset were reduced to a lower dimension.
Finally, health evolution indexing and fault diagnostics has been proposed by
choosing the most informative SVD indexes. The same authors also proposed
PCA instead of SVD for its computational efficiency in [5]. SOMs have been
proposed in [25] for fault diagnostics and assessment of fault severity. Kurto-
sis and line integral of acceleration signal have been extracted from bearings
vibration signals for different faults. Then a SOM has been trained using the
extracted features. Empirical Mode Decomposition (EMD) was also proposed
in many works as it returns smooth monotonic like signals. A comparison
study has been performed on the performance of 4 statistical indexes such
as crest factor, kurtosis, skewness and beta distribution function [13]. The
study shows that there is no significant advantage in using beta function com-
pared to using kurtosis and crest factor for detecting and identifying different
machinery defects. The paper also shows that the statistical parameters are
affected by the shaft speed. The proposed method is only based on extract-
ing four features mentioned earlier from vibration and sound signals acquired
from test rig. Two temporal models, HMM and Auto regressive moving model
with exogenous input (ARMAX) have been used for diagnostics in [10]. In
this work 16 features have been extracted from force signals acquired from
cutter milling machine. Selecting dominant features has been applied using
least multicollinearity along with a high R2. Finally, building models for dif-
ferent tool wears using ARMAX and HMM. A method for diagnostics and
tool state recognition has been proposed in [18]. The method shows that using
feature selection to select smaller set of features yield in more effective results.
The proposed method is divided into three parts, feature extraction, feature
selection and tool state learning. For feature extraction, 13 features have been
extracted from acoustic emission (AE) signals acquired from CNC machine.
Feature selection has been done using automatic relevance determination to
select features which appear to have more potential use. Finally, the tool state
learning has been conducted by Support Vector Machine (SVM). The perfor-
mance of four classification algorithm for fault diagnostics has been compared
in [9]. 16 features were extracted from force sensors attached to a cutting ma-
chine. Then, 3 features were automatically selected from the extracted features
using Genetic Algorithms (GA). A segmentation algorithm for health moni-
toring and signal trending has been proposed in [6]. It is conducted in four
steps: 1) On-line segmentation of data into linear segments, 2) Classification
of the segmented lines into 7 shapes, 3) Transform the obtained shapes into
three main shapes and 4) Aggregate of the current episode with the previous
ones to form the signal trend. The performance of SVM versus ANN for gear
fault diagnostics has been compared in [37]. The method is based on selecting
important features from a larger features set and it shows that this selection
increases the classification accuracy. Finally, the authors used datasets for 9
different gear fault classes. For each class 40 measures were recorded. The
comparison shows that SVM outperforms Artificial Neural Network (ANN).
An unsupervised feature selection method for deciding the optimal depth for
Wavelet Packet Decomposition (WPD) has been presented in [35]. The paper
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shows that using feature selection to determine the depth for WPD led to a
model which can retain almost all the accuracy of models built using a much
deeper transform. The proposed method determines the appropriate level us-
ing Chi squared and information gain and then builds a diagnostics model
using Naive Bayes Classifier. A method shows that if the size of the SOM is
chosen judiciously then it is possible to monitor and identify different range of
faults has been presented in [17]. The method proposes an empirically derived
equation that governs the proper network size for efficient diagnostics.

2.3 Prognostics

Prognostics can be defined as the prediction of when a failure might take place.
Prognostics has recently attracted a lot of research interest due to the need
of models for accurate estimation of remaining useful life (RUL) for different
applications.

A method for prognostics and health assessment has been proposed in [39].
The method starts by extracting 16 time and frequency features from double
suction pump vibration signals. The method then uses PCA to merge features
and to project the multidimensional features vector into a compact indicator.
Finally, fault threshold has been calculated using Best Efficiency Point. Auto
regression (AR) filter has been used to model vibration signal from bearing
test rig in [21]. The model parameters have been estimated using Levinson-
Durbin recursion (LDR). Then the energy ratio between the random parts
and the original signal was used as fault indicator. The algorithm is simple to
implement and suitable for highly accelerated signals. An integrated frame-
work for fault detection, diagnosis and prognosis using Hidden markov model
(HMM) has been presented in [40]. The proposed framework starts the data
preprocessing by using frame blocking, frequency spectral analysis and noise
filtering. Then using PCA the dimensionality of the dataset has been reduced.
Next, the health status estimator has been built using HMM and health index
interpolation by using Paris’s formula. A probabilistic model for online health
indicator of bearing wear using wavelet package decomposition and HMM has
been proposed in [27]. The method is divided into three parts, vibration signal
is divided into equal-sized signal epochs, nth level WPD was applied to these
signal epochs and finally the probabilities of the HMM for the normal condi-
tion are calculated which can be used as the health indicator. The main con-
tribution in this method was the proposition of a new probabilistic model for
machinery health monitoring using HMM. A single hidden semi-markov model
for prognostics has been proposed in [11]. In this work 7 signals, 3 force, 3 vi-
bration and 1 acoustics have been acquired from CNC milling machine. Then
16 statistical features were extracted from the three force acquired signals.
Wavelet Feature extraction from the force signals and Discrete Meyer Wavelet
have been applied to vibration and Acoustic Emission (AE) signals. Finally,
by using Fisher’s discriminant ration and Gaussian Mixture Model clustering
algorithm, the important features have been selected. A semi-supervised fea-
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ture selection algorithm for selecting dominant features for later wear status
monitoring has been proposed in [41]. The method extracts 16 features from
the raw force signals acquired from cutting tools. Then applying SVD on the
feature space and select manually the n most dominant components. K-means
clustering was applied on the feature space using n clusters and the set of
closest m features to the clusters centroids have been identified. Finally, mul-
tiple regression model has been built using the selected set of m features. The
authors reported the quality of the regression results using different sets of
selected features and also against different feature selection approaches. SOM
was also proposed for prognostics. A method for prognostics and trend analysis
using modified SOM has been proposed in [38]. The paper proposes unequal
scaling method for improving the performance of SOM. It shows that the SOM
outperforms Constrained Topological Mapping (CTM) on estimation of an un-
known function with multiple indices. Particle filter has been widely used for
fault progression modelling and estimation specially for nonlinear systems, [2].
The particle filter dose not assume a general analytic form for the state space
probability density function (PDF). The extended Kalman filter (EKF) is the
most popular solution to the recursive nonlinear state estimation problem.
However, the desired PDF is approximated by a Gaussian, which may have
significant deviation from the true distribution causing the filter to diverge. In
contrast, for the Particle Filter (PF) approach, the PDF is approximated by a
set of particles representing sampled values from the unknown state space, and
a set of associated weights denoting discrete probability masses. The particles
are generated and recursively updated from a nonlinear process model that
describes the evolution in time of the system under analysis, a measurement
model, a set of available measurements and an a priori estimate of the state
PDF. Particle filter has been proposed in [30] and [29] for RUL estimation.

From the review it can be seen that the processing of sensory signals differs
according to the task to be done, i.e. fault detection, diagnostics or prognostics.
The goal of this work is to develop a method that can be used to extract
features representing the nominal behaviour of the monitored component and
detecting any abnormal behaviour. And then, from these features, the method
extracts smooth trends to represent critical components’ health evolution over
the time. The extracted trends will be used to build reference models that
could be used for health status prediction.

3 The Method

The idea is to extract parameters from successive multi-dimensional features
acquired from machinery sensory signals, without making any assumptions
concerning the source of the signals and the number of the extracted features,
which reflect the machinery deterioration over time. The assumptions taken
in this work can be summarised as follows:

1. The input to the proposed method is in general multidimensional time
series sensory signals acquired from critical components.
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2. The time series signals should capture the health status evolution through
the time.

3. There are no assumptions about the nature and number of the sensors.
4. Historical data sets should be complete in order to build reference model(s).

The algorithm consists of five main phases as show in Figure 2.

Feature 
extraction 

Unsupervised 
feature 

selection 

Feature 
compression 

Trend 
extraction 

Health state 
modeling 

Fig. 2: The proposed method

3.1 Feature extraction

Gathered signals from machine components contain generally immense number
of data which require a large amount of memory and computation power to
be analysed as shown in Figure 3. In order to transform raw input data into
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Fig. 3: Example of raw signal extracted from bearing test bid

reduced informative representation, different features can be extracted from
raw signals. These features can be derived from time domain, frequency domain
or joint time-frequency domain. Figure 4 depicts an example of root mean
square (RMS) feature extracted from raw signal.

In this work features from both time and frequency domains have been
extracted from raw signals and are listed in table 1
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Table 1: Summary of features extracted from raw signals

Feature Formula

Peak-to-Peak mean(upperpks) +mean(lowerpks)

Maximum peak value max(findpeaks(signal))

Root mean square
√

1
n

(x2
1 + x2

2...+ x2
n)

Kurtosis
E(x−µ)4

σ4

Skewness

N∑
i=1

(xi−x̄)3

(N−1)σ3

Mutual information I(X,Y ) = H(X) +H(Y ) −H(X,Y )

Entropy H(X) = −
∑
x∈X p(x) log p(x)

Arithmetic mean of PSD 20log10

1
n

∑
abs(fft(x))

10−5

Line integral i =
n∑
i=0

abs(xi+1 − xi)

Autoregressive model xt = c+
p∑
i=1

φixt−i + εt

Energy e =
n∑
i=0

x2
i
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3.2 Unsupervised feature selection

Not all extracted features acquired in the previous step are interesting, that is,
contain information about the degradation of the system. We are interested
in signals that have non random relationships and consequently contain in-
formation about system degradation. To select such signals, an unsupervised
feature selection algorithm [24] based on information theory is applied. The
algorithm first calculates pairwise symmetrical uncertainty for all the input
signals, defined by:

SU(X,Y ) = 2
I(X,Y )

H(X) +H(Y )
(1)

where I(X,Y) is the mutual information between two random variables X
and Y ; H(X) and H(Y) are information entropy of a random variable. Then,
the algorithm measures the distance between all the pairs using hierarchical
clustering. The algorithm finally ranks the resulting clusters according to the
quality of the included signals in representing interesting relationships, that
is, contain information about machinery degradation using normalised SOM
distortion measure. The selected features now can represent the nominal be-
haviour of the critical component. Any change in the relations between selected
features can indicate a potential fault in the system. The selected features are
then compressed into lower dimension using PCA to represent the critical
components’ health evolution over the time.

3.3 Features compression

In order to follow the trajectories of selected features over time, the number
of features has to be reduced to a compact form. The goal in this step is to
compress the n features selected in the previous step onto one-dimensional
space. One way to compress the variables, i.e. reducing the number of their
dimensions, without much loss of information is by using PCA. PCA projects
data from features to principal component domain while keeping the greatest
variance by any projection of the data on the first principal component and
the second greatest variance on the second principle and so on. PCA can
be used for data compression of the input dataset by using one or more of
the principle components. In this way, the method can compress the n input
features, selected in the previous step, into single trend to represent the health
evolution over the time.

In this work we use standard PCA method where eigenvalues λi and eigen-
vectors vi have been calculated for covariance matrix C of the selected features

Cλi = λivi (2)
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Then, the first component is used to represent the health status evolution
with respect to time as shown in Figure 5. The compressed features are then
further processed to get a smooth trend of the health status.
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Fig. 5: Example of group of selected feature compressed using PCA

3.4 Signal trend extraction

So far, the reduced signals exhibit high level of oscillations and noise. Such
oscillations make the signal hard for visualisation and superfluous for model
building tasks. In this section, the internal structure of the data is extracted
in a way which best explains the degradation in a simple monotonic signal
and the rest of oscillations are discarded using empirical mode decomposition
algorithm (EMD).

EMD, which was originally proposed by Huang et al [14], is a way for
signal decomposition into a successive Intrinsic Mode Functions (IMF), such
as depicted in Figure 6, and is composed of the following steps:

– Find all the local maxima and minima of the input signal and compute the
corresponding upper and lower envelopes using cubic spline respectively

– Subtract the mean value of the upper and lower envelopes from the original
signal.

– Repeat until the signal remains nearly unchanged and obtain IMFi.
– Remove IMFi from the signal and repeat if it is neither a constant nor a

trend.
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Fig. 6: Example of decomposition process using EMD

3.5 Health Status Modelling

Machine learning provides large methodologies such as simple regression algo-
rithms which are used to fit models through training data. In case of regression
we assume that the real underlying function is the sum of our estimation and
an error, i.e. the error can be estimated by a difference between the real un-
derlying function and our estimate:

y = wx + ε⇒ ε = y −wx (3)

The goal is to use this to find a vector w for which the regression model best
fits the training data, which corresponds to finding the minimum value of the
error. Usually, this procedure called training the model is done by minimising
the sum-of-squares error function for each data point:

E = SSE =

N∑
n=1

{y −wx}2 (4)
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There are many linear regression methods which can be used to learn the
degradation process. In standard linear regression the pseudo-inverse of the
input training data is used to compute the coefficients for a linear model. As
the name suggests this involves to invert a matrix and which might not always
be possible because of zero eigenvalues of the matrix. Ridge regression tries to
cope with this by perturbation of the diagonal entries of the matrix.

If we expand the square in equation 4 and then differentiate the expansion
with respect to w we end up with the equation below from where we can
isolate w as a function of known data.

XTXw = XTy⇒ w = (XTX)−1XTy (5)

The major weakness of equation 5 is that the X is a non-square matrix and
thus it is not invertible. To solve this problem pseudo-inverse generalisation of
the notion of matrix inverse to non-square matrices has been applied.

w = (XTX)−1XTy = X†y (6)

Nevertheless, if XTX in equation 6 has zero eigenvalues it is not invertible
and said to be singular. Ridge regression tries to cope with this by adding a
term λI to XTX which perturbs the diagonal entries of XTX to encourage
non-singularity.

XTX⇒ (XTX + λI)⇒ w = (XTX + λI)−1XTy (7)

In a practical application, we need to determine the values of the regression
parameter λ, and the principle objective in doing so is usually to achieve the
best predictive performance on new data. The performance on the training set
is not a good indicator of predictive performance on unseen data due to the
problem of over-fitting. Here, we use cross-validation to take the available data
and partition it into a training set, used to determine the coefficients w and
a validation set used to optimize the model complexity (in this case finding a
proper value for λ).

4 Experiments

This work has been verified using two different datasets, PRONOSTIA and
NASA datasets. First, the trends have been extracted from the raw data then
a selected trend has been modelled for RUL estimation. The details of the
datasets and the experiments are explained in the following subsection.
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4.1 Trend Extraction

4.1.1 PRONOSTIA dataset

PRONOSTIA, (see Figure 7), is an experimentation platform dedicated to test
and validate bearing fault detection, diagnostic and prognostic approaches. It
is composed of four main parts: a rotating part, a degradation generation part
(with a radial force applied on the tested bearing) a measurement part and
test bearings, [26]. In this work three data sets, acquired from this platform,
have been used to validate the algorithm, where only the acceleration data
has been used. For the first dataset, the algorithm generates 9 signals, each

Tested 
bearing

Data 
acquisition 
module

Rotating 
module

Load 
module

Fig. 7: PRONOSTIA experimentation platform

of that represents evolution of the bearing degradation over the time with
different trajectories. Figure 8 shows two selected monotonic health indices
for the first experiment. As can be seen from the figure the trends show a
smooth increasing signals over the time which can be used to deduce health
status of the machinery. The plot on the left side is the result of fusing two
AR parameters for the first sensor and one parameter for the second sensor.
The plot on the right side shows another indicator which was a result of fusing
also three features namely, skewness for the first sensor along with the second
parameter of AR model and line integral feature extracted from the second
sensor signal. Figure 9 shows two selected non-monotonic health indices for
the same experiment. The plot on the left side is the result of fusing two fea-
tures, skewness of the second sensor and energy of the first sensor. The plot
on the right side shows another indicator which was a result of fusing also two
features namely, kurtosis and skewness extracted from the second sensor. For
the second dataset, the algorithm generates 10 signals, each of that indicates
the health degradation over the time. Figure 10 shows two selected monotonic
health indices for the first experiment. The plot on the left side; which is al-
most linear function, is the result of fusing two features, maximum peak value
and AR parameter, both have been extracted from the first sensor. The plot on
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Fig. 8: PRONOSTIA first monotonic dataset
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Fig. 9: PRONOSTIA first non-monotonic dataset

the right side shows a smooth monotonic function. It is a result of fusing also
two features, RMS and line integral acquired from the second sensor. Figure
11 shows two selected non-monotonic health indices for the same experiment.
The plot on the left side is the result of fusing three features, entropy of both
sensors and AR model parameter for the first sensor. The plot on the right
side shows another indicator which was a result of fusing four features namely,
peak-to-peak, maximum peak value, energy for the second sensor and the mu-
tual information between both sensors. For the third dataset, the algorithm
generates 9 signals that indicate the health degradation over the time. Figure
12 shows two selected monotonic health indices for the aforementioned experi-
ment. The plot on the left side; which is almost linear function, is the result of
fusing three features, peak-to-peak, maximum peak value and AR parameter
where all the features have been extracted from the first sensor. The plot on
the right side shows a smooth decreasing monotonic function. It is a result
of fusing three features, arithmetic mean of power spectral density (PSD) ex-
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Fig. 10: PRONOSTIA second monotonic dataset
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Fig. 11: PRONOSTIA second non-monotonic dataset

tracted from both sensors and kurtosis which has been extracted from second
sensor.

(a) (b)

Fig. 12: PRONOSTIA third monotonic dataset
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Figure 13 shows two selected non-monotonic health indices for the same
experiment. The plot on the left side is the result of fusing two features, skew-
ness which has been extracted from the first sensor and entropy of the first
sensor. The plot on the right side shows another indicator which was a result
of fusing two features namely, kurtosis and line integral acquired from second
sensor.

(a) (b)

Fig. 13: PRONOSTIA third non-monotonic dataset

4.1.2 NASA dataset

This data set is fully described in NASAs website (ti.arc.nasa.gov/tech/dash/pcoe/).
In this work only the first two sensors readings have been used to validate the
algorithm. For the first dataset the algorithm generates 10 trends from the
raw data. Figure 14 shows two selected monotonic health indices for the afore-
mentioned experiment. The plot on the left side shows the result of fusing
four features; peak-to-peak, maximum peak value and energy acquired from
the second sensor and entropy from the first sensor. The plot on the right side
shows a smooth decreasing monotonic function. It is a result of fusing two fea-
tures, Mutual information between both sensors and entropy which has been
extracted from second sensor. Figure 15 shows two selected non-monotonic
health indices for the same experiment. The plot on the left side is the result
of fusing two features, maximum peak value which has been extracted from
the first sensor and Skewness which has been extracted from the second sensor.
The plot on the right side shows another indicator which was a result of fus-
ing two features namely, kurtosis and line integral acquired from first sensor.
For the second dataset the algorithm generates 6 trends from the raw data.
Figure 16 shows two selected monotonic health indices for the aforementioned
experiment. The plot on the left side shows the result of fusing two features;
maximum peak value acquired from the second sensor and energy acquired
from the first sensor. The plot on the right side shows a smooth decreasing
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(a) (b)

Fig. 14: NASA first monotonic dataset

(a) (b)

Fig. 15: NASA first non-monotonic dataset

monotonic function. It is a result of fusing two features, Entropy of the first
sensor and arithmetic mean of PSD acquired from the second sensor. Figure
17 shows two selected non-monotonic health indices for the same experiment.
The plot on the left side is the result of fusing two features, peak-to-peak and
energy which have been extracted from the second sensor. The plot on the
right side shows another indicator which was a result of fusing two features
namely, peak-to-peak and entropy acquired from first sensor. For the final
dataset the algorithm generates 10 trends from the raw data and non of them
was monotonic. Figure 18 shows two selected non-monotonic health indices
for the same experiment. The plot on the left side is the result of fusing two
features, peak-to-peak; acquired from first sensor, and entropy of both sen-
sors. The plot on the right side shows another indicator which was a result
of fusing two features namely, root mean square and AR coefficient acquired
from second sensor.
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Fig. 16: NASA second monotonic dataset
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Fig. 17: NASA second non-monotonic dataset
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Fig. 18: NASA third non-monotonic dataset

4.2 Ridge regression

From NASA and PRONOSTIA datasets, two trends have been selected for this
step. One trend is used for building the regression and the other trend is used
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for testing. The experiments have been done on the same time t. Figure 19a
and 19b show the original trends for PRONOSTIA and NASA respectively.
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Fig. 19: Selected trends for modeling

We first calculate the coefficients with minimum error as shown in the pre-
vious section. Figures 20a and 20b show the effect of using regression parame-
ter λ where the minimum error has been selected for the regression modelling
for both PRONOSTIA and NASA respectively. Finally, we test the model by
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(a) Error minimisation for PRONOS-
TIA dataset
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(b) Error minimisation for NASA
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Fig. 20: Error minimisation

using test trends for both datasets and calculate the mean absolute error (8).

mean(abs(Expected−Real)) (8)

Figure 21a shows the results of predicted trends. The results show that the
estimation was so close to the test values with absolute error = 0.4165. Figure
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Fig. 21: Prediction error for PRONOSTIA dataset
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Fig. 22: Prediction error curves for NASA dataset

22a shows the results of predicted trends. The results show that the estimation
was so close to the test values with absolute error = 0.0751.

5 Conclusion

In this work a health estimation model based on unsupervised trend extrac-
tion algorithm from sensory data has been proposed. The generated trends
showed a smooth representation of the progression of machinery health status
and have been used for health degradation modelling. The proposed method
is based on extracting successive multi-dimensional features from machinery
sensory signals acquired from machines’ critical components. Then, unsuper-
vised feature selection on the features domain is applied without making any
assumptions concerning the source of the signals and the number of the ex-
tracted features. An empirical mode decomposition algorithm (EMD) is ap-
plied on the projected features with the purpose of following the evolution of
data in a compact representation over time. Finally, a ridge regression has been
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applied for the generated trends for modelling the degradation. These models
can be used to identify the current machinery health status and predict the
RUL of the machine. The algorithm is demonstrated on accelerated degrada-
tion dataset of bearings acquired from PRONOSTIA experimental platform
and NASA dataset where it is shown to be able to extract interesting signal
trends. The results show that the algorithm is generic and can extract the
progression of the machinery health status in a compact form. The generated
trends have been used also for model building and validation.
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