
SW-ELM: a summation wavelet extreme learning machine algorithm with a priori
parameter initialization

Kamran Javed, Rafael Gouriveau∗, Noureddine Zerhouni

FEMTO-ST Institute, UMR CNRS 6174 - UFC / ENSMM / UTBM,
Automatic Control and Micro-Mechatronic Systems Department

24 rue Alain Savary, 25000 Besançon, France
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Abstract

Combining neural networks and wavelet theory as an approximation or prediction models appears to be an effective
solution in many applicative areas. However, when building such systems, one has to face parsimony problem, i.e., to
look for a compromise between the complexity of the learning phase and accuracy performances. Following that, the aim
of this paper is to propose a new structure of connectionist network, the Summation Wavelet Extreme Learning Machine
(SW-ELM) that enables good accuracy and generalization performances, while limiting the learning time and reducing
the impact of random initialization procedure. SW-ELM is based on Extreme Learning Machine (ELM) algorithm for
fast batch learning, but with dual activation functions in the hidden layer nodes. This enhances dealing with non-linearity
in an efficient manner. The initialization phase of wavelets (of hidden nodes) and neural network parameters (of input-
hidden layer) is performed a priori, even before data are presented to the model. The whole proposition is illustrated
and discussed by performing tests on three issues related to time-series application: an “input-output” approximation
problem, a one-step ahead prediction problem, and a multi-steps ahead prediction problem. Performances of SW-ELM
are benchmarked with ELM, Levenberg Marquardt algorithm for Single Layer Feed Forward Network (SLFN) and
ELMAN network on six industrial data sets. Results show the significance of performances achieved by SW-ELM.

Keywords: Wavelet neural network, extreme learning machine, parameters initialization, activation functions,
prediction accuracy

1. Introduction

Among several types of ANNs, feed forward neural net-
works (FFNN) have played an important role in research
for different applications like pattern classification, com-
plex non-linear mappings and other fields as well [1]. To
instigate such structures and to achieve superior FFNN
models for more complex applications, the combination of
wavelet theory and learning ability, approximation proper-
ties of ANNs has resulted in the form of wavelet neural net-
works (WNNs) [2, 3]. In such an integration, the structure
is based on a single layer feed forward network (a special
type of FFNN) with wavelet activation functions in the
hidden layer, which can also be called as wavenet [4]. Ac-
cording to literature, different models of WNNs have been
proposed recently, Wang et al. [5] and Yamakawa et al.
[6] used non-orthogonal wavelet function as a hidden node
activation function in SLFN. Cao et al. [2] used wavelet
with a bounded non-constant piecewise continuous func-
tion and proposed a new algorithm that had composite
functions in hidden layer. Pourtaghi et al. [7] performed a
thorough assessment on wavenet ability in comparison to
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SLFN and used different wavelets as activation functions
to enhance the network performance. In order to tune such
ANNs, various kinds of training schemes can be used, like
support vector machines (SVM), evolutionary approaches,
or simple back-propagation algorithm (BP) [8]. However,
the main disadvantage of such learning methods is slow
learning time. As for others issues, consider an example
of the BP that suffers from network complexity, imprecise
learning rate, over-fitting, presence of local minimum, etc.
In order to overcome drawbacks of traditional learning
methods, Huang et al. presented recently an efficient
learning scheme for SLFN referred to as Extreme Learning
Machine (ELM) [9]. Mainly, ELM algorithm for SLFN,
randomly initializes parameters of hidden nodes and re-
stricts the learning scheme to linear methods to analyti-
cally determine output weights for a suitable readout func-
tion. In brief, some prominent advantages of ELM are: (1)
it is a one-pass algorithm, (2) it only requires tuning of one
parameter i.e., hidden neurons, (3) it can work with wide
range of activation functions including piecewise contin-
uous functions. Among these advantages, learning speed
is far superior to traditional methods like SVM and BP.
However, random initialization of hidden node parameters
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may affect the performances of ELM [10], where, human
choices, like the number of nodes or the type of activa-
tion functions, also have a great impact on the network’s
usefulness. Indeed, the last factor often plays a crucial
role [1, 11]. Finally, due to such hurdles, performances
of algorithms might not be as great as per expectations.
Moreover, for practitioners, these problems may limit the
application of an algorithm for real problems [12]. As an
example, consider prediction of time series, that can be
usually non-linear or chaotic by nature and requires to
carefully choose an appropriate approach for prediction.
According to all this, the aim of this paper is to propose a
new structure of connectionist network, the SW-ELM that
enables good accuracy and generalization performances,
while limiting the learning time and reducing the impact
of random initialization procedure. The main contribu-
tions of this paper are as follows:

• Fast learning of SW-ELM - To achieve fast learning,
ELM [9] is considered as a basis to train the SLFN.
ELM is preferred mainly due to its features of in-
creased applicability (to avoids drawbacks) as com-
pared to conventional algorithms for ANNs.

• Dual structure of SW-ELM - To ensure good approxi-
mation capability while keeping a compact structure,
a SLFN is integrated with wavelet such that each neu-
ron in the hidden layer holds a dual activations (two
different activation functions). By this configuration,
the output from individual hidden node is averaged
after transformations from dual activations [3].

• Activation functions of SW-ELM - To improve ac-
curacy of the SW-ELM, a combination of a Morlet
wavelet [2, 7] and an inverse hyperbolic sine (arcsinh)
[13] is applied to each hidden node of the network.
This enhances performances of hidden layers and en-
ables dealing with non-linearity in an efficient manner.

• Parameters initialization of SW-ELM - To further op-
timize the network, the well known Nguyen Widrow
procedure is applied to initialize hidden nodes weights
and bias [14]. Also, parameters of wavelet activations
functions are initialized thanks to an heuristic proce-
dure based on the domain of each input [15].

The paper is organized as follows. Theoretical back-
grounds of WNNs and ELM are given in section 2. This
enables pointing out advantages and drawbacks from both
models. On this basis, section 3 presents proposed SW-
ELM with new structure and learning scheme. Perfor-
mances of SWELM are benchmarked by performing tests
on real datasets from industry (section 4). Three kinds
of issues are considered: an “input-output” approxima-
tion problem, a one-step ahead prediction problem, and a
multi-steps ahead prediction problem. Thorough compar-
isons with classical ELM and Levenberg Marquardt [16]
for SLFN and ELMAN network are given. Finally, section
5 concludes this work and proposes some future aspects.

2. Backgrounds: WNN and ELM

2.1. The wavelet neural network WNN
2.1.1. Concept of wavelet

Wavelet theory is an outcome of multidisciplinary strug-
gles, that brought together engineers, mathematicians and
physicists [7]. The term wavelet means a “little wave”.
Mainly, a wavelet transform (WT) of continuous form be-
haves as a flexible time-frequency window, that shrinks
when analyzing high frequency and spreads when low fre-
quency behavior is observed [3]. The WT can be divided
into two types, continuous wavelets transform (CWT) and
discrete wavelets transform (DWT), formulated as follows:

CWT (a, b) =
1√
a

∫
x (t) Ψ

(
t− b
a

)
(1)

DWT (a, b) =
∑
i

x (t) a
−1/2
i Ψ

(
t− bi
ai

)
(2)

where Ψ is a wavelet function, and a and b are its corre-
sponding scale (dilate) and translate (shift) factors.
It should be noted that CWT has the drawback of imprac-
ticality with digital computers, so, DWT is used in prac-
tice. Thus, the scale and translation factors from Eq. (2)
are evaluated on a discrete grid of time scale to generate
scaled and shifted daughter wavelets from a given mother
wavelet Ψ. Additional details can be found in [3].

2.1.2. Structure of a WNN

An analogy can be found between the expression of the
DWT and ANN output. Indeed, Eq. (2) can be seen as the
output expression of a SLFN that would have an activation
function Ψ for a hidden node, with a linear neuron in the
output layer. Generally, such combination can be classified
into two types. In the first case, the wavelet part is de-
coupled from network learning. In this manner, a signal is
decomposed on some wavelets and its wavelet coefficients
are furnished to a FFNN. In the second category, wavelet
theory and FFNN are combined into a hybrid structure.
The scope of this paper covers the latter category.

Let note n the number of inputs of a WNN, and Ñ
the number of hidden nodes with wavelet functions (eg.
morlet, see Fig. 1). According to this, the output of a
WNN can be formulated as:

y =

Ñ∑
k=1

vkΨk

 n∑
j=1

wkjxj

 (3)

Ψk (x) = |ak|−1/2 Ψ

(
x− bk
ak

)
(4)

where x = x1, x2, ..., xn depicts the input values, Ψk repre-
sents the family of daughter wavelets that are scaled and
translated from a single mother wavelet function Ψ, ak
and bk are the corresponding scale (dilate) and translation
factors. Lastly, wk = [wk1, wk2, ..., wkn]T ∈ <n is an input
weight vector connecting the kth hidden neuron to the in-
put layer neurons, and vk is the weight to connect the kth

neuron of hidden layer and the output.
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Figure 1: Single layer feed forward neural network

2.1.3. Issues and requirement

According to literature, the initialization of dilation and
translation factors (ak and bk in Eq. (4)) is considered as a
critical phase. Indeed, it is necessary to properly initialize
these parameters for fast convergence of algorithm [2, 15].
As wavelets functions vanish rapidly, improper initializa-
tion may lead to the following issues:

• a wavelet can be too local for a very small dilation;

• improper translation may be out of interest domain.

Following that, random tuning of dilation and translation
factors of wavelets is inadvisable, and parameters initial-
ization should be based on the input domain. This aspect
is taken into account in the proposed model (section 3).

2.2. Extreme Learning Machine for SLFN

2.2.1. Learning principles

ELM is a new learning scheme for SLFN that has been
recently proposed by Huang et al. [9]. Almost all learn-
ing algorithms for SLFNs require adjustment of param-
eters that results dependence between different layers of
parameters like, weights and biases. Therefore, many it-
erative tuning steps are required by traditional learning
algorithms [17]. Where, the ELM algorithm avoids slow it-
erative learning procedure and only requires a one-pass op-
eration to learn SLFN. This is mainly due to the fact that
there is no bias for the output layer neuron (see Fig. 1).
In brief, to initiate one-pass learning operation, the hid-
den node network parameters (weights and biases) are ran-
domly generated without any prior knowledge or training
procedure [2]. Consequently, the ELM turns into a system
of linear equations and the unknown weights between the
hidden and output layer nodes can be obtained analyti-
cally by only applying Moore-Penrose generalized inverse
procedure [13, 18]. The learning scheme of ELM can be
summarized in three steps (algorithm 1).

Algorithm 1 Learning scheme of an ELM

Assume

- n inputs, m outputs, Ñ hidden nodes (k = 1 . . . Ñ)
Require

- N learning data samples (xi, ti) (i = 1 . . . N)
xi = [xi1, ..., xin]T ∈ <n, ti = [ti1, ..., tim]T ∈ <m

- An activation function g(x)

1: Randomly assign parameters of hidden nodes i.e.,
weights and bias (wk, biask).

2: Obtain the hidden layer output matrix H.
3: Find the output weight matrix β: β = H†T , where
H† represents the Moore-Penrose generalized inverse
solution for the hidden layer output matrix H [18].

2.2.2. Issues and requirement

As a synthesis, the ELM algorithm shows faster learning
speed over traditional algorithms for SLFNs. For example,
it learns faster than the Support Vector Machine by a fac-
tor of up to thousands. ELM does not suffer from problems
like imprecise learning rate, presence of local minima etc.
This underlines suitability of ELM for real complex ap-
plications that need fast prediction and response capabili-
ties. In addition, the ELM algorithm requires less human
involvement, because it does not have any control param-
eters to be manually tuned, except the number of hidden
neurons, which shows its better applicability for real appli-
cations [10]. Finally, recent works confirm the advantages
of ELM over earlier approaches for ANN [8, 17, 19, 20, 21].
Nevertheless, two key aspects should be pointed out.

• Random initialization of hidden node parameters may
affect the performances of ELM [10], that also require
high complexity of SLFN for improved performance.
This may lead to ill-condition, which means that an
ELM may not be robust enough to capture variations
in data [22].

• Considering the network complexity issue, it is es-
sential to carefully choose hidden neuron activation
functions that show good ability to handle complex-
ity, improve convergence of algorithm and result in a
compact structure of network [13, 23, 24].

These aspects are taken into account in the proposed SW-
ELM model (section 3).

3. Summation Wavelet-ELM model

3.1. Structure and mathematical perspective

As mentioned in the previous section, ELM is quiet effi-
cient as compared to traditional methods to learn SLFNs.
However, issues like parameters initialization, model com-
plexity and choice of activation functions have to be care-
fully addressed for improved performance. Therefore, we
propose the SW-ELM as shown in Fig. 2. The proposed
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Figure 2: Structure of SW-ELM

structure takes advantages of WT and SLFN. Mainly, two
significant modifications are performed in the hidden layer.

• Non-linear transformations are dealt in a better man-
ner by using a conjunction of two distinct activation
functions (f1 and f2) in each hidden node rather than
a single activation function. The output from a hid-
den node is the average value after performing trans-
formation from dual activations (f̄ = (f1 + f2) /2).

• To improve convergence of algorithm, an inverse hy-
perbolic sine ([13], Eq. (5)) and a Morlet wavelet
([2, 7], Eq. (6)) are used as dual activation functions.

f1 = θ (t) = arcsinh (t) =

∫ t

0

dx

(1 + x2)1/2
(5)

f2 = ψ (t) = cos (5t) e(−0.5t
2) (6)

Such a combination of activation functions makes the net-
work more adequate to deal with dynamic systems. That
is, the improved structure and proper choice of activation
functions enhances the capability of the network to face
low and high frequency signals simultaneously. As a con-
sequence, the number of neurons required for hidden layer
decreases and a compact structure is achieved [3, 13, 23].
According to modifications mentioned above, lets consider
n and m the numbers of inputs and outputs, N the num-
ber of learning data samples (xi, ti), where i ∈ [1 . . . N ],
xi = [xi1, xi2, ..., xin]T ∈ <n and ti = [ti1, ti2, ..., tim]T ∈
<m, and Ñ the number of hidden nodes, each one with
activation functions (f1 and f2). For each sample j, the
output oj is mathematically expressed as:

Ñ∑
k=1

βkf̄ [(θ, ψ) (wk.xj + bk)] = oj , j = 1, 2, ..., N (7)

where wk = [wk1, wk2, ..., wkn]T ∈ <n, is an input weight
vector connecting the kth hidden neuron to the input layer

neurons, (wk.xj) is the inner product of weights and in-
puts, and bk ∈ < is the bias of kth neuron of hidden layer.
Also, βk = [βk1, βk2, ..., βkm]T ∈ <m, is the weight vector
to connect the kth neuron of hidden layer and output neu-
rons. Finally, f̄ shows the average output from two dif-
ferent activation functions i.e., an inverse hyperbolic sine
activation function θ and a Morlet wavelet activation func-
tion ψ. In order to minimize the difference between net-

work output oj and given target tj ,
∑Ñ

j=1 ‖oj − tj‖ = 0,
there exist βk, wk and bk such that:

Ñ∑
k=1

βkf̄ [(θ, ψ) (wk.xj + bk)] = tj , j = 1, 2, ..., N (8)

which can be expressed in matrix form as,

Havgβ = T (9)

where Havg is a
[
N × Ñ

]
matrix expressed as,

Havg (w1, . . . , wÑ , x1, . . . , xÑ , b1, . . . , bÑ ) =

f̄ (θ, ψ)

 (w1.x1 + b1) . . . (wÑ .x1 + bÑ )
... · · ·

...
(w1.xN + b1) . . . (wÑ .xN + bÑ )

 (10)

and,

β =

 βT
1
...
βT
Ñ


Ñ×m

T =

 tT1
...
tT
Ñ


N×m

(11)

Finally, the least square solution of the linear system de-
fined in Eq. (9), with minimum norm (magnitude) of out-
put weights β is:

β̂ = H†avgT =
(
HT

avgHavg

)−1
HT

avgT (12)

where H†avg represents the Moore-Penrose generalized in-
verse solution for the hidden layer output matrix Havg [18].

3.2. Learning scheme of SW-ELM

Main learning phase derives from Eq. 10 and 12. How-
ever, according to issues and requirements related to WNN
and ELM presented in sections 2.1.3 and 2.2.2, it is desired
to take care of parameters initialization task and to provide
a better starting point to algorithm. Two types of param-
eters have to be considered: the ones from the wavelets
(dilation and translation factors) and the ones from the
SLFN (weights and bias for input to hidden layer nodes).
Details of the learning scheme are given in algorithm 2,
and an outline of the main step is synthesized herefater.

Initializing wavelet parameters. To initialize wavelet di-
lation and translation parameters (ak and bk in Eq. (4))
before the learning phase, a heuristic approach is applied
to generate daughter wavelets from a mother wavelet func-
tion (in our case, a Morlet wavelet). Dilation and trans-
lation values are adapted by considering the domain of
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Algorithm 2 Learning scheme of the SW-ELM

Require - N learning data samples (xi, ti), n inputs (j = 1 . . . n), Ñ hidden nodes (k = 1 . . . Ñ)
- An inverse hyperbolic sine and a Morlet wavelet activation functions (θ and ψ)

Ensure - Initialize weights and bias from SLFN, initialize Morlet parameters
- Find output weights matrix β to minimize the difference between the network’ outputs and the targets

SW-ELM learning procedure

1: Initialization of wavelet parameters
2: - Define the input space domain intervals
3: - Compute [xjmin ; xjmax]: {domain containing the input item xj in all observed samples}
4: - Define dilation and translation parameters per domain
5: - Compute dkj = 0, 2× [xjmax − xjmin]: {temporal dilatation parameter for input item xj}
6: - Compute mkj = [xjmin + xjmax]/2: {temporal translation parameter for input item xj}
7: - Initialize Morlet parameters (ak and bk)
8: - Compute ak = mean(dkj)j=1...n: {dilatation factor}
9: - Compute bk = mean(mkj)j=1...n: {translation factor}

10: Initialization of weights and bias parameters by Nguyen Widrow (NW) approach
11: - Initialize small (random) input weights wk(old) in [−0.5 ; +0.5]: {weights from input nodes to hidden nodes}
12: - Adjust weights parameters by applying NW approach
13: - Compute βfactor = C × Ñ 1

n : {C is a constant ≤ 0.7}
14: - Compute wk(new) = βfactor ×

wk(old)

‖wk(old)‖ : {normalized weights}
15: - Initialize bias values bk
16: - bk = random number between −βfactor and +βfactor
17: Adjust linear parameters: the ones from the hidden to the output layers
18: - Obtain hidden layer output matrix Havg using Eq. 10

19: - Find the output weight matrix β̂ in Eq. 12 by applying Moore-Penrose generalized inverse procedure

the input space where wavelet functions are not equal to
zero [15]. Besides that, wavelet function with a small di-
lation value are low frequency filters, whereas increasing
dilation factors the wavelet behave as high frequency filter
[3]. Finally, the effects of random initialization of wavelet
parameters are avoided, and the initialization guarantees
that wavelet function stretches over the whole input do-
main [15].

Initializing weights and bias. The hard random parame-
ters initialization step is substituted by well known Nguyen
Widrow (NW) procedure to initialize weights and bias [14].
The intent is to provide a better starting point for learn-
ing. NW method is a simple alteration of hard random
initialization that aims at adjusting input weights inter-
vals and hidden bias according to the input-hidden layer
topology. It has been argued that NW method has shown
improved performances over others methods for random
parameters initialization of ANNs [25].

4. Experiments and discussion

4.1. Outline: aim of tests and performance evaluation

The aim of this part is to demonstrate enhanced per-
formances of the proposed SW-ELM, that is benchmarked
with the ELM, Levenberg-Marquardt (LM) algorithm for
SLFN and ELMAN network. For simulation purpose, a
sigmoid function is used as hidden node activation func-
tion for ELM, LM-SLFN and ELMAN network, whereas

for SW-ELM, dual activations are used: an inverse hyper-
bolic sine function and a Morlet wavelet (Eq. (5) and (6)).
Note that, number of hidden neurons for each model are
assigned using trial and error approach, which obviously
could not guarantee optimal structure.
Simulations are carried on six real datasets from indus-
try as shown in Table 1, where information about model
inputs, outputs and training, testing samples are also men-
tioned (see references for further details on the datasets).
Three kind of issues related to time-series application are
considered: an “input-output” approximation problem,
a one-step ahead prediction problem, and a multi-steps
ahead prediction problem.
To compare performances, three criteria are considered.

1. Computation time to learn the dataset for a single
trial (Time).

2. Model fitting accuracy is judged by the coefficient of
determination (R2) that should be close to 1 and co-
efficient of variation of the Root Mean Squared Error
(CV RMSE) that should be as low as possible (close
to 0 - it is often expressed in percentage). Both mea-
sures are unitless and are indicative of model fit, but
each define model fit in two different ways: R2 evalu-
ates the variability in the actual values explained by
the model, where CV RMSE evaluates the relative
closeness of the predictions to the actual values.

3. Network complexity is reflected by the number of hid-
den neurons (Hid− nodes).
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Table 1: Specification of datasets to benchmark performances for time series application

Data Short description Input Output Train Test
Pump [26] Condition Root mean square Fault code 73 (samples) 19 (samples)

monitoring Variance
CNC [27] Condition Max force, Cutting amp. Tool wear C33, C09, C18 C18

monitoring Amp. Ratio, Avg. force (450 samples) (165 samples)
Ind. Dryer [28] Predict Fuel flow, Fan speed Bulb temp. 500 (samples) 367 (samples)

temperature Flow raw material yt+1

Bulb temp. yt
Hair dryer [29] Predict Voltage of device xt Air temp. 500 (samples) 500 (samples)

temperature Air temp. yt yt+1

NN3 [30] Time series Time series (4 reg.) Same time series 51, 54, 56, 58, All series
forecast (xt, xt−1, xt−2, xt−3) xt+1→t+18 60, 61, 92, 106 (18 samples)

Turbofan [31] Predict Degradation series Same series 90 engines 5 engines
degradation 3 reg. (xt, xt−1, xt−2) xt+1→t+H H ∈ [103, 283]

With each approach (i.e., ELM, SWELM, LM-SLFN, EL-
MAN), 50 simulations were performed on a particular
dataset and the best results are summarized in Table 2.

4.2. First issue: an approximation problem

In case of approximation or estimation problem, real
datasets from two different degrading machineries were
used for condition monitoring task. The first dataset was
from a Carnallite surge tank pump, which was used to ap-
proximate fault codes, where the second dataset was from
a Computer Numerical Control milling machine to esti-
mate wear of degrading cutting tools (Table 1). Results
in Table 2 show that SW-ELM for both test datasets per-
forms best approximations, with a compact structure, and
it requires less learning time.

1. ELM has clear superiority of fast learning times
(5.8e−004 and 5.0e−004 sec) for both datasets. In ad-
dition, SW-ELM and ELM can learn much rapidly as
compared to LM-SLFN or ELMAN network. This is
mainly due to the advantages of single-step learning
phase of ELM based models, whereas LM-SLFN and
ELMAN network required additional 50 epochs for
the Pump dataset and 10 epochs for CNC dataset to
achieve better accuracy performances.

2. The accuracy of SW-ELM show a best fitting among
all methods for both datasets as measured by R2 i.e.,
(R2=0.96 and R2=0.92). Comparative plots repre-
senting approximation of fault codes and tool wear
estimation are shown in Fig. 3 and Fig. 4, where
model fitting errors are also depicted for a better un-
derstanding of results. Note that, for more clarity,
plots of only two methods with higher accuracies are
compared.

3. Lastly, when considering model complexity factor, the
number of hidden neurons required by LM-SLFN and
ELMAN network appears to be twice (i.e. 30 hidden
nodes) as compared to ELM based models when ap-
plied to Pump dataset. However, same network com-

plexity of 4 hidden nodes is sufficient for all methods
with CNC dataset.
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Figure 4: Tool wear estimation and corresponding errors

4.3. Second issue: one-step ahead prediction problem

In case of one-step ahead prediction issue the datasets
used, were from an industrial dryer and a mechanical hair

6



Table 2: Comparison of model performances

Approximation: Pump Approximation: CNC
Method Hid-node Train time (sec) Epoch R2 Hid-node Train time (sec) Epoch R2
SW-ELM 15 6.5e-004 – 0.96 4 7.7e-004 – 0.92
ELM 15 5.8e-004 – 0.94 4 5.0e-004 – 0.77
LM-SLFN 30 1.02 50 0.79 4 0.22 10 0.80
ELMAN 30 8.88 50 0.81 4 0.21 10 0.77

1-step prediction: Ind. Dryer 1-step prediction: Hair dryer
Method Hid-node Train time (sec) Epoch R2 Hid-node Train time (sec) Epoch R2
SW-ELM 20 0.0024 – 0.85 4 6.1e-004 – 0.944
ELM 20 0.0012 – 0.66 4 3.4e-004 – 0.944
LM-SLFN 30 1.03 50 0.81 4 0.21 10 0.9434
ELMAN 30 8.9 50 0.80 4 0.20 10 0.9434

Multi-step prediction: NN3 (avg.) Multi-step prediction: Turbofan (avg.)
Method Hid-node Train time (sec) Epoch CVRMSE Hid-node Train time (sec) Epoch CVRMSE
SW-ELM 30 0,0014 – 10.83% 3 0.006 – 0.042%
ELM 30 5.5e-004 – 11.06% 3 0.004 – 0.0578%
LM-SLFN 30 0.20 10 11.51% 3 0.72 10 0.0570%
ELMAN 30 0.45 10 10.83% 3 0.75 10 0.0570%

dryer, that were applied to predict temperature variations
(Table 1). In order, to judge model performances, same
criteria are used. Comparative performances from all mod-
els are summarized in Table 2. Again, results clearly in-
dicate that SW-ELM shows improved performances over
ELM, LM-SLFN and ELMAN network.

1. ELM can still perform faster learning (0.0012 and
3.4e−004 sec) with both datasets, even if the learning
data size is increased (500 samples). Like in previous
issue, the learning times of SW-ELM are still close to
the ones of ELM.

2. The accuracy indicator of SW-ELM shows a higher
prediction performance with an accuracy R2 = 0.85
with dataset of an industrial dryer. However the accu-
racy of SW-ELM and ELM are the same (R2 = 0.944)
in the case of second data of a mechanical hair dryer.
It should be noted that, in the second test all methods
showed good prediction performances. As for illustra-
tion, comparative plots of predictions with only two
methods are shown in Fig. 5 and Fig. 6 by considering
model accuracy, where predictions errors are also de-
picted. In Fig. 5, one can note that SW-ELM catches
better non-linearity from the signal since the error is
quite constant among all predictions.

3. ELM based models show a more compact structure
(20 hidden nodes) as compared to LM-SLFN and EL-
MAN network (30 hidden nodes) when applied to in-
dustrial dryer data. However, again small network
complexity of 4 hidden nodes is sufficient for all meth-
ods with the second data of mechanical hair dryer.

 

 

 

0 50 100 150 200 250 300 350
-2

0

2

4

6

8

10

Time

Te
m

pe
ra

tu
re

One-step ahead prediction of a dry bulb temperature

 

 
Temperature
LM-SLFN
SW-ELM

0 50 100 150 200 250 300 350 400
-1

0

1

2

3

Time

E
rro

r

 

 
LM-SLFN
SW-ELM

Figure 5: 1-step ahead pred. of bulb temp. and corresponding errors 
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4.4. Third issue: multi-steps ahead prediction problem

4.4.1. Multi-steps ahead prediction models

Multi-steps ahead prediction (MSP) modeling by using
neural networks can be achieved in different manners. This
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can not be fully addressed in this paper, but one can re-
fer to [32] for more details. Here, MSP are met by using
the “Iterative” approach that is the most common and the
simplest to implement.
Consider a univariate time series Xt, i.e. a sequence of val-
ues describing an observation made at equidistant intervals
Xt = {x1, x2, . . . , xt}. The MSP problem consists of esti-

mating a set of future values of the time series X̂t+1→t+H ,
where H states for the final horizon of prediction. For that
purpose, the Iterative approach utilizes a single neural net-
work that is tuned to perform a one-step ahead prediction
x̂t+1. This estimated value is used as one of the regres-
sors of the model to estimate another, and the operation
is repeated until the estimation of x̂t+H (see Fig. 7).
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Figure 7: Iterative approach for multi-steps ahead predictions [32].
Parameter p states for the number of regressors

4.4.2. Results and discussion

In case of MSP problem, again two data sets were ap-
plied to test model performances. The first test data, were
from NN3 competition, where horizon of prediction was
last 18 values of each time series for test. The second
dataset were from NASA data repository that were com-
posed of run to failure sensor measurements from degrad-
ing Turbofan engines, where the horizon of prediction was
from a critical time tc upto end of degradation (see Ta-
ble 1, we used data record train−FD001.txt to train and
test the models). Similarly, like in previous issues, 50 tri-
als are performed and best results are presented.
The MSP accuracy of each model is assessed by computing
Coefficient of Variation of the Root Mean Squared Error
(CV RMSE) that enables evaluating relative closeness of
predictions, which should be as low as possible. Whereas,
computational time (for a single trial) and network com-
plexity are evaluated similarly like previous cases.
As for illustration, a comparative plot with two models
showing higher accuracies of MSP with NN3 competition
data for time series 61 is shown in Fig. 8. Averaged per-
formances of prediction models for all randomly selected
time series (51, 54, 56, 58, 60, 61, 92, 106 ) are summarized
in Table 2. In case of Turbofan engines dataset, the com-
parative plot of two models on test-engine 5 is shown in
Fig. 9, where SW-ELM explicitly shows good prediction
capability over long horizon. Averaged performances of
prediction models for all tests are summarized in Table 2.

1. Among all methods, ELM requires less computation
time for learning with both datasets (i.e., 5.5e−004

and 0.004 sec). As explained before, this is mainly
due to the one-pass learning phase, where SW-ELM
also shows rapid learning behavior closer to ELM.

2. Most importantly, accuracy indicator (CV RMSE) of
SW-ELM is highest in comparison to others models
for both datasets (i.e., NN3 competition and Turbofan
engines). A synthetic but explicit view of that is given
in Fig. 10 and Fig. 11. Note that such performances
of SW-ELM are obtained with the same structure like
other methods (see point 3).

3. The network complexity of all models was the same
with both datasets (i.e., 30 hidden nodes and 3 hidden
nodes). Note that for all test on 5 Turbofan engines)
even with more complex models of ELM, LM-SLFN
and ELMAN network poor prediction performances
were obtained, therefore the only complexity of 3 hid-
den nodes was compatible with the data.

Finally, again SW-ELM enables a good compromise among
model accuracy, learning time and network complexity.
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5. Conclusion

In this paper, a new structure of neural network is pro-
posed, the SW-ELM, which is based on ELM algorithm
for fast learning, but with dual activation functions in the
hidden layer. The output from each hidden node is the
average value after transformations from an inverse hy-
perbolic sine function and a Morlet wavelet function. This
enhances dealing with non-linearity in an efficient manner.
Also, the learning scheme of SW-ELM is improved (w.r.t
classical ELM), where wavelets and other parameters of
hidden nodes are adjusted a priori to learning. The whole
enables good accuracy and generalization performances,
while limiting the learning time and reducing the impact of
random initialization procedure. For practical problems,
SW-ELM avoids long “test and error” procedure and is
therefore suitable for real cases where few prior knowledge
is available or huge datasets have to be processed. The
performances of proposed SW-ELM are benchmarked with
ELM, Levenberg Marquardt for SLFN, and ELMAN net-
work for three types of prediction problems: input-output
approximation, one-step ahead prediction, and multi-steps
ahead predictions. In all cases, SW-ELM shows enhanced
performance to face parsimony problem.
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