
Abstract— This paper presents a weak coupling methodology 

between a 3D FEM magnetostatic model, an analytic 

magnetocaloric model and a thermal model solved with finite 

difference method. This methodology has been applied to analyze 

a magnetocaloric cooling system taking into account 3D effects in 

magnetic field computation.  

Index Terms—Magnetic refrigeration, Magnetocaloric effect, 

Numerical models. 

I. INTRODUCTION 

The reduction of energy consumption represents one 

solution to decrease the emission of greenhouse gases.  As the 

refrigeration technologies consume more than 15% of 

worldwide consumption of electricity [1], the design of 

efficient refrigeration systems is a key point for successful 

applications. The magnetocaloric cooling systems represent a 

promising alternative to classical refrigeration systems since 

the magnetic field is directly used to perform the heat 

pumping. Thus, an accurate modeling of magnetocaloric 

systems, considering its multi-physical behavior, is essential to 

obtain more realistic simulations of their real working.  

Several analytical models have been proposed to take into 

account the thermo-magnetic properties together with the 

thermo-fluidic phenomena [2-3]. In order to be to consider 

more complex geometries, the modeling of 3D effects in 

magnetic field computation using FEM magnetostatic model 

can be advantageous. Then, this paper proposes a consistent 

coupling procedure between magnetostatic equations solved 

with Flux3D
®
 code [4], an analytic magnetocaloric model and 

a thermal model solved with finite difference method, to 

simulate the thermo-magnetic behavior of a magnetocaloric 

cooling system. 

II. MAGNETOSTATIC MODEL 

The magnetostatic model requires the value of the 

electrical current in the windings and B(H) characteristic of 

the magnetocaloric material (gadolinium). As shown in Fig. 1, 

the gadolinium shows particular properties depending on its 

temperature along with external magnetic field and exhibits a 

ferromagnetic behavior for temperatures below 293 K, 

becoming paramagnetic above 293 K (critical transition). 

Therefore, before each magnetic resolution, an 

interpolation has to be done according to the temperature of 

the material, in order to determine the B(H) curve of the 

material, the magnetostatic equations being solved with a 3D 

finite element software (Flux3D
®
) [4]. The outputs of this 

model [5] are the different values of magnetic field in the 

gadolinium. 

 
Fig.  1. B(H) characteristics of the gadolinium as function of temperature  

 

 
Fig.  2. 1D model for the thermal model 

III. MAGNETOCALORIC AND THERMAL MODELS 

A. Magnetocaloric model: 

The thermal power density produced by the interaction of 

the gadolinium material according to the magnetic field 

variation is calculated with (1) [6]: 
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where T, M and H are the temperature, magnetization and 

local magnetic field intensity respectively.  

This model requires the output of the magnetostatic model. 

So, using the actual local values of magnetic field and 

temperature, and taking into account the demagnetizing field, 

we can determine the magnetization and the gradient of 

magnetic field, and then calculate the local magnetocaloric 

power production. 

B. Thermal model 

The thermal model is based on a 1D model in the fluid 

flow direction z (Fig. 2). The following equations describe the 

thermal behavior of a fluid element (subscripts: f) and a 

magnetocaloric material element (subscripts: m) [7]. 
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where T, h, S, λ, v, q, m, C, V are the temperature, convection 

coefficient, exchange surface, thermal conductivity, solid cell 

volume, magnetocaloric power density, mass, specific heat 

capacity and velocity of the fluid respectively. To solve these 
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coupled equations, the finite difference method with explicit 

scheme has been used and coded with Python; the Courant-

Friedrich-Levy criterion (  
  

  
   where       are the time 

step and the spatial discretization respectively) [8] is tested to 

ensure the convergence of the model. The ambient 

temperature is the initial condition, and the hot and cold tank 

temperatures are the limit conditions.  

IV. COUPLING MODELS AND FIRST RESULTS 

The coupling of the three models is coded in a single 

program with Python 2.7.2. The coupling strategy is the 

following (Fig. 3): 

1. According to the time and the temperature, the 

magnetocaloric material B(H) curve is interpolated and then 

defined in Flux3D software, which is driven by Python code to 

solve magnetic equations. 

2. According to the obtained internal magnetic field, the 

magnetization is deduced and the local production of heat is 

calculated. 

3. Then, the temperatures are computed according to the 

heat diffusion in the material and the fluid, and these 

temperatures are returned to the first step and the time is 

incremented.     

A fundamental experimental magnetocaloric cooling 

system has been considered to test our model. In this system, 

the magnetic field is produced by an electromagnet, which has 

been specifically designed in our laboratory (Fig. 4). 

 

 
Fig.  3. Resolution algorithm of the model 

 
Fig. 4. 3D model of a special electromagnet  

 
Fig.  5. Magnetic field in the gadolinium over time 

 

 
Fig.  6. Time evolution of the hot and cold sinks temperatures 

 

The gadolinium plates (1x13x45mm
3
) are placed in the air 

gap of the electromagnet and the thermal fluid (Zitrec-S10) 

flows between the plates in order to exchange heat 

alternatively with the hot and cold exchangers or sinks.     

Fig. 5 shows the obtained magnetic field and Fig 6 shows 

the evolution of hot and cold sinks temperatures (10 

thermodynamics cycles are simulated), illustrating the 

working of the coupled models.   

V. CONCLUSION 

In this paper a new multi-physics model has been 

proposed, based on magnetic, magnetocaloric and thermal 

phenomena in a magnetic refrigeration system. This model 

will be validated by the data obtained from an experimental 

test bench and, further, be used to optimize the thermal power 

produced by an industrial magnetocaloric system. 
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