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Prediction of the remaining useful life (RUL) of critical components is a non-trivial task for industrial 
applications. RUL can differ for similar components operating under the same conditions. Working with 
such problem, one needs to contend with many uncertainty sources such as system, model and sensory 
noise. To do that, proposed models should include such uncertainties and represent the belief about the 
system’s state in a probabilistic form. In this work, a Bayesian approach is proposed for predicting the RUL 
of critical components. The approach is divided into two main parts, online and offline. In the offline part, 
the approach builds k-nearest neighbours classifier (kNN) for different datasets according to their end of 
life (EOL) values. On the other hand, the online part is similar to the offline apart from the use of Bayesian 
online state estimator. Bayesian online state estimator is used to represent the uncertainty of the approach 
about the health status. The approach starts by extracting trends that represent the health evolution of the 
critical component and uses these trends to build offline models of the critical component. Then, the 
approach uses these models to predict the RUL from new online data and assigning uncertainty value to it. 
The approach can be applied to a system with variable operating conditions, however, the prediction 
horizon will span between the minimum and maximum RUL values available in the training dataset. 

1. Introduction 
Maintenance strategies can be categorized into three main groups (Figure 1). In breakdown maintenance, 
interventions take place only when the system or the subsystem fails. In time-based preventive 
maintenance, interventions are placed according to periodic interval regardless of the assets health 
condition. Finally, in condition-based maintenance (CBM), interventions are placed according to the 
information collected through system condition monitoring (Jardine et. al., 2006). 
 

 
 

Figure 1: Maintenance strategies. 
 
CBM strategy reduces maintenance costs while increasing efficiency by taking maintenance interventions 
only when there is evidence of abnormal behaviour. One of the most important CBM activities is 
prognostics and health management (PHM) (Medjaher et. al. 2012). In general, PHM approaches can be 
implemented using three different models, Physical based models, Data driven models and Knowledge 
based models (Schwabacher et. al.), (Figure 2). 



 
 

Figure 2: PHM approaches. 
 
In the physical models, the system behaviour is characterized using state-space models, dynamic ordinary 
or partial differential equations and requires extensive experimentation and model verification (Luo et. al. 
2003). However, once the model is built it will be very reliable until the next system upgrade. 
Knowledge-based models are based on building databases of previous observed events and deducing the 
health status by measuring the similarity between the new observed events and the database (Biagetti et. 
al. 2004). Knowledge-based models can be implemented using two different approaches, expert systems 
and fuzzy theory. 
Data-driven models are appropriate when the physical laws of the system in operation are not known. The 
classical data-driven models include the use of stochastic models such as the autoregressive (AR) model 
and the multivariate adaptive regression splines. Recently, more interests in neural networks (NNs) and 
neural fuzzy (NF) systems have been devoted. Different Dynamic Bayesian networks models have been 
used for prognostics (Medjaher et. al. 2012). These models range from semi-Markov models, Hidden and 
semi-hidden Markov models. Another important Bayesian estimation algorithms are Kalman and Particle 
filters which are not different types of models, but rather different approaches to implementing generic 
dynamic Bayesian networks.  
PHM consists of three main routines: fault detection, diagnostics and prognostics. Prognostics has recently 
attracted a lot of research interest due to the need of models for accurate RUL prediction. One of the 
simplest forms of RUL prediction is based on trend analysis of a single monotonic parameter correlated 
with remaining life. This parameter may have originated from single sensor or from a number of sensors 
aggregated into a single variable, which is then plotted as a function of time. Although this type of trend 
evaluation is simple and easy to implement, there are few published examples. 
In this work, an approach for data driven prognostics is presented. The approach starts by building offline 
trends database extracted from multidimensional datasets. These trends are later grouped according to 
their EOL criteria. Then, in the second stage the online data are estimated using a new discrete Bayesian 
filter. Finally, the RUL is predicted using kNN and the offline models.  
 
This paper is organised as following. Section 2 outlines the method. Section 3 describes the experimental 
work and results. Finally a conclusion of the method work is depicted at section 4. 

2. The method 
The proposed approach, depicted in Figure 3, starts by looking for non-random, nonlinear and linear 
relationships among measured signals. The idea is that information about the wear of a component can be 
extracted from relations between offline signals on-board the same system (Mosallam et. al. 2011). The 
selected signals are then used to extract trends that represent the health status evolution through time. 
Next, new data acquired online are being estimated by using a non-Gaussian non-parametric Bayesian 
filter. The new acquired online trend is then compared to the offline trends, using kNN, to be assigned to 
one of the existing groups. Finally, the RUL is predicted by using the most similar offline trend curve.  
 

 
 

Figure 3: Overall approach scheme. 



The assumptions taken in this work can be summarised as follows: 
1. The input to the proposed method is multidimensional time series sensory signals. 
2. The time series signals should capture the health status evolution through the time. 
3. Training data sets should be available to build offline model(s). 
4. The predicted RUL values will span between the values available in the offline data sets. 

2.1 Offline phase 
One way to build a reference model for critical components is to extract smooth monotonic trends from 
their sensory signals (Figure 4). The generated trends have to represent the progression of component 
health status and shall be used for RUL prediction. To do so we apply unsupervised trend extraction 
algorithm proposed by Mosallam et. al. (2012). 
 

 
 

Figure 4: Trend extraction 
 
Trend extraction 
Not all variables measured from the critical component are useful for predicting the RUL. The assumption 
is that variables that have non-random relationship carry information about the system behaviour. The goal 
is to group the variables, which have non-random relationship. To do so, a method based on mutual 
information has been applied on the dataset for feature selection: 
 

SU(X,Y ) = 2× I(X,Y )
H (X)+H (Y )

        (1) 

 
Where SU(X,Y) is the symmetrical uncertainty measure (Witten et. al. 2005); X and Y are two random 
variables; I(X,Y) is the pairwise mutual information; H(X) and H(Y) are the information entropy for random 
variables (Figure 5a).  
Next, in order to follow the trajectories of selected features over time, the number of features has to be 
reduced to a compact form. The goal in feature compression step is to compress the n features, selected 
in the feature selection step, onto one-dimensional space. One-way to compress the variables, i.e. 
reducing the number of their dimensions, without much loss of information is by using PCA. It projects data 
from features to principal component domain while keeping the highest variance by any projection of the n 
principal component. In this work standard form of principle component analysis (PCA) algorithm has been 
applied (Jolliffe et. al. 2002). 
 
Cλi = λivi    (2) 
 
Whereλi  and vi  are eigenvalues and eigenvectors respectively and C  is the covariance matrix for the 

selected variables is defined as: 
 

C =
(Xi − X)(Yi −Y )

i

n

∑
(n−1)

        (3) 

 
Where X and Y denoting the mean values for X andY , respectively. Only the first component, v

1
, from 

the resulting PCA compression is selected to represent the health evolution (Figure 5b). However, the 
resulting trends are still not monotonic to be used for later modelling. To get monotonic trends, Empirical 
Mode Decomposition algorithm (EMD), proposed by Huang et. al (1998), has been applied to the 
compressed signal (Figure 5c). 



 
Figure 5a: Selected features. 

 
Figure 5b: First principle component. 

 
Figure 5c: Final monotonic trend. 

 
Figure 5: Results of the trend extraction phase. 

 
Feature extraction 
So far, trends that represent evolution of the system’s health status have been extracted. These trends are 
used to build a reference model, and shall be used to classify new online data. In order to make the 
classification task more efficient, representative features should be extracted from the trends. A feature 
vector can represent a trend as follows: 
 
< a1(x),a2 (x),a3(x).....an (x)>        (4) 

 
Where x is a selected trend and an is the n  feature extracted from the trend. In this work, two features 

have been extracted from each trend, linear regression coefficients and mean value. The resulting feature 
matrix is of sizeM ×N × Z whereM is the length of the trend (cycles or time),N is the number of 
features and Z is the number of datasets used to build the offline model. 

2.2 Online phase 
In online phase, the same steps depicted in Figure 4 are applied to the online data. Prior to using the 
online trends to predict the RUL and due to noise, sensory readings might not be accurate to predict the 
RUL. To overcome this, sensory signals that were previously selected by the feature selection algorithm, 
have been estimated using online Bayesian estimator called Histogram filter, (Thrun et. al. 2005). 
 
Histogram filter 
Histogram filters decompose the state space into finitely many 
regions and represent the cumulative posterior for each region 
by a probability value. When applied to discrete spaces, such 
filters are called discrete Bayesian filters, and when applied to 
continuous spaces they are called histogram filters. In this 
work we assume working in a discrete space domain and 
therefore we apply Discrete Bayesian filter (Table 1). The input 
to the filter is a discrete probability distribution{pk,t} , along 

with the recent online measurement zt . The first line in the 

algorithm calculates the prediction for the new state pk,t , 

based on previous state belief pi,t−1 , and state transition model p(Xt = xk | Xt−1 = xi ) . In the second 

line, the prediction is then updated by multiplying it by the measurement transition model p(zt | Xt = xk ) , 

so as to incorporate the new measurement with the prediction. 
 
Online classification 
After the online estimation for the new value, the same features extracted from the offline trends are 
extracted from the online trends. These features are fed to kNN classifier to choose the most similar trend: 
 

p(Ck | x) =
p(x |Ck )× p(Ck )

p(x)
        (5) 

Table 1:  Discrete Bayesian filter 
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Where x is the testing pattern, Ck is the number of patterns in class k, p(x)  is the unconditional density 

associated with x , p(Ck )  is the class prior and p(x |Ck )  is the density associated with each class. The 

new data is then assigned to the class with the highest p(Ck | x) . 
 
Distance measure 
In case the online trend is assigned to a class contains more than one trend, a distance measure should 
be calculated to decide which trend is the most similar to the test trend. In this work, Euclidian distance is 
applied to measure the similarity between the testing and the offline trends. 
 

(qi − pi )
2

i=0

n
∑          (6) 

 
Where, bothqi and pi are test and offline trends with length of n. 

3. Experimental work 

3.1 Lithium-ion battery datasets 
These data are collected on lithium-ion batteries, which ran through different operational profiles (e.g. 
charge, discharge and impedance) at different temperatures. Each data set, corresponding to one 
experiment, consists of 11 variables such as charging voltage, charging current, temperature, discharging 
current, discharging voltage and capacity. The ageing of the batteries was accelerated and the 
experiments continued until the batteries reached their EOL criteria. In this work only charge and 
discharge variables are used. Each cycle is presented by the mean value to reduce the processing time. 
Lithium-ion battery aging data set is explained in more details in (ti.arc.nasa.gov/tech/dash/pcoe/). 

3.2 Results 
The data sets were divided into two groups 
(training and testing); each group has 6 data sets 
(Table 2). In the offline phase the approach starts 
by selecting variables that have non-random 
relationship. One of the results of the selection 
algorithm is the pair {6, 11}, i.e. the voltage 
measured at discharge and the capacity of the 
battery. The approach then extracts the trends 
from the selected variables. The final step in the 
offline phase is to extract features from each trend 
at each cycle. The features are used as training 
data set and the labels are the number of cycles 
of each trend. For the online phase, we repeat the 
same steps as mentioned previously in section 2 (Figure 6). Every 10 cycles the approach classifies the 
input trend using a kNN classifier. Table 3 shows the results of the classification for the test data sets. 
 

  
 

Figure 6: Prediction results for B007 (left) at cycle 50 and B0032 (right) at cycle 20. 
 

Table 2:  Training and testing data sets. 

Training  Testing  
Name Cycles  Name Cycles 
B0005 
B0006 

168 
168 

B0007 
B0018 

168 
132 

B0025 
B0026 
B0029 
B0031 

28 
28 
40 
40 

B0027 
B0028 
B0030 
B0032 

28 
28 
40 
40 

 



Then the distance is measured to all trends in the same group. From the closest trend, RUL is calculated 
as the difference between the total number of cycles in offline trend and current cycle in the test trend. As 
can be seen from (Figure 7), the prediction accuracy increases when more cycles are available. 
 

Table 3: Testing output. 

Testing   
Name Total  Correct 
B0007 
B0018 

17 
14 

16 
13 

B0027 
B0028 
B0030 
B0032 

3 
3 
4 
4 

3 
2 
1 
4 

 

 
 

Figure 7: Estimated RUL for B0007. 
 

4. Conclusion 
In this work an approach for RUL prediction has been presented. The method builds on selecting 
interesting variables using unsupervised feature selection algorithm. The selected features are then 
compressed using PCA into compact form to extract progression trends using EMD. The online data are 
then estimated using Histogram filters to build the online trends before extracting representative features. 
The similarity between the online and saved trend is being measured using Euclidian distance. The 
method is demonstrated on NASA datasets for batteries. The results show that the method indeed finds 
important relationships and used them for predicting the RUL.  
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