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Design of a fixed-order RST controller for interval systems: application to the

control of piezoelectric actuators

Sofiane Khadraoui, Micky Rakotondrabe and Philippe Lutz

ABSTRACT

This paper presents a technique to design a robust polynomial RST
controller for parametric uncertain systems. The uncertain parameters
are assumed to be bounded by intervals. The computation of the
controller is addressed by introducing the interval arithmetic. The
controller synthesis is formulated as a set inversion problem that can be
solved using the SIVIA algorithm. The proposed method is afterwards
applied to design a robust controller for a piezoelectric microactuator.
The experimental results show the efficiency of the proposed method.
Finally, a fine stability analysis is performed to analytically prove the
robustness of the designed controller.

Key Words:Parametric uncertainty, interval model, robust perfor-
mance, RST controller design, piezoelectric microactuators.

I. Introduction

During the last decade, the problem of design-
ing robust control laws for parametric uncertain
systems has attracted much attention [1, 2, 3, 4, 5,
6, 7, 8, 9]. Practical considerations have motivated
the study of control systems with unknown but
bounded parameters uncertainties. Indeed, these
uncertainties are often due to various factors such
as the sensitivity to the environment conditions
(vibrations, evolution of ambient temperature, etc),
nonlinearities (hysteresis, time varying parameters,
creep, etc), sensors limitation and un-modelled
dynamics of systems [1, 5, 6]. If not considered,
these uncertainties cause the degradation of the
closed-loop performances or the loss of stability. It
is therefore necessary to take them into account and
to incorporate enough robustness to the controller
in order to maintain the nominal performances.
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The compensation of these parametric uncer-
tainties is often accomplished by means of
adaptative control [9, 10] or by means of robust
control laws such as H2, H∞ and µ-synthesis
[11, 12]. The adaptative control methods require
a precise model which is difficult to obtain.
Concerning the robust H2, H∞ and µ-synthesis
approaches, their efficiency is proved in several
applications (SISO and MIMO systems) while their
major disadvantage is the derivation of high-order
controllers which are time consuming and which
limit their embedding possibilities, particularly for
embedded microsystems. One way to represent
parametric uncertainties is to let each parameter
takes its value within a range called interval
[3, 4, 13]. In addition to the natural way and
simplicity of using intervals to bound uncertain
parameters, interval arithmetic presents a symbolic
or a numeric certificate to the results. Thus, using
interval arithmetic to modeling and control design
leads to certified robust stability and performances
if a solution exists. For instance, the stability
analysis of a characteristic polynomial subjected to
uncertain parameters has been discussed in many
works [3, 14, 15]. It was often based on the Routh’s
criteria and/or on the Kharitonov’s theorem. The
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work in [16] presents the stability of uncertain
systems with interval time-varying delay. [17]
discusses an approach to design robust stabilizing
controller for interval systems in the state-
space representation. A systematic computational
technique to design robust stabilizing controller
for interval systems using constrained optimization
problem was proposed in [18]. While the above
works consider robust stability, robustness on
performances for interval systems has also been
discussed in several work [19, 4, 20, 21, 22, 23].
The work in [19] presents an interesting result
on the inclusion of interval systems performances.
[20] proposed a prediction-based control algorithm
and its application to a welding process modelled
by intervals. In [21], a state feedback controller
was first considered to ensure the robust stability,
then a pre-filter that guarantees the required
performances was constructed by applying a curve
fitting technique. In [22], an approach to design a
robust PID controller for interval transfer function
was derived. However the method was limited
to 2nd order uncertain systems. In the previous
work [23], we proposed to extend the method for
nth order uncertain systems but still with zero-
order numerator. However, the order of the derived
controller was not a priori fixed and thus might
not adapted to the hardware for implementation in
embedded microsystems.

In this paper, we propose the interval modeling
of a generalized nth order uncertain parameters
(without restriction on the numerator’s order),
and the design of a robust fixed-order controller
to ensure specified performances. The robust
controller considered in this contribution is a
polynomial RST controller. The polynomials R and
S allow to create a feedback control in order to be
robust to the uncertainties, while the polynomial
T is introduced in the feedforward to improve the
tracking. The computation of these polynomials
is based on the inclusion performances theorem
[19]. The main advantages of the proposed method
relative to existing works are: 1) no restriction is
imposed on the system order, 2) and the order of
the controller is a priori fixed and thus low-order
(robust) controllers can be yielded. Furthermore,
the suggested approach in this paper is simple
and involves less computational complexity. The
controller synthesis problem is formulated as a
set-inversion problem defined as the inclusion
parameter by parameter.

The paper is organized as follows. In section-
II, preliminaries related to interval arithmetic and

systems are reminded. Section-III is dedicated
to the computation of the controller using the
proposed approach. In section-IV, we apply the
proposed method to model and control piezoelectric
actuators. The experimental results and discussion
are presented in section-V. Finally, to evaluate the
robustness of the implemented controller, a closed-
loop stability analysis is presented in section-VI.

II. Interval analysis preliminaries

2.1. Definition of interval

An interval [x] can be defined by the set of
all real numbers given as follows:

[x] = [x−, x+] =
{
x ∈ R/x− ≤ x ≤ x+

}
(1)

x− and x+ are the left and right endpoints
respectively. [x] is degenerate if x− = x+ .

The width of an interval [x] is given by:

width([x]) = x+ − x− (2)

The midpoint of [x] is given by:

mid([x]) =
x+ + x−

2
(3)

The radius of [x] is defined by:

rad([x]) =
x+ − x−

2
(4)

2.2. Operations on intervals

The result of an operation between two inter-
vals is an interval that contains all possible solution
as follows. Given two intervals [x] = [x−, x+] ,
[y] = [y−, y+] and ◦ ∈ {+,−, ., /} , we can write:

[x] ◦ [y] = {x ◦ y |x ∈ [x], y ∈ [y]} (5)

Therefore, the sum of two intervals [x] + [y]
is given by:

[x] + [y] = [x− + y−, x+ + y+] (6)

the difference of two intervals [x]− [y] is:

[x]− [y] = [x− − y+, x+ − y−] (7)

the product of two intervals [x].[y] is:

[x] . [y] =
[
min

(
x−y−, x−y+, x+y−, x+y+

)
,

max
(
x−y−, x−y+, x+y−, x+y+

)] (8)
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and finally, the quotient [x]/[y] is given by

[x]/[y] = [x].[1/y+, 1/y−], 0 /∈ [y] (9)

The intersection of two intervals [x] ∩ [y] is
defined by:

1- if y+ < x− or x+ < y− the intersection is
an empty set:

[x] ∩ [y] = ∅ (10)

2- Otherwise:

[x] ∩ [y] = [max
{
x−, y−

}
,min

{
x+, y+

}
] (11)

In the latter case, the union of [x] and [y] is
also an interval:

[x] ∪ [y] = [min
{
x−, y−

}
,max

{
x+, y+

}
] (12)

When [x] ∩ [y] = ∅, the union of the two
intervals is not an interval. For that, the interval
hull is defined:

[x]∪[y] = [min
{
x−, y−

}
,max

{
x+, y+

}
] (13)

it is verified that: [x] ∪ [y] ⊆ [x]∪[y] for any
two intervals [x] and [y] .

2.3. Interval systems

Definition II.1 Parametric uncertain systems
can be modelled by interval systems. A SISO
interval system that defines a familly of systems is
denoted [G](s, [p], [q]) and is given by:

[G](s, [p], [q]) =

m∑
j=0

[qj ]s
j

n∑
i=0

[pi]si

=


m∑

j=0

pjs
j

n∑
i=0

pisi

∣∣pi ∈ [p−i , p
+
i ], pj ∈ [p−j , p

+
j ]


(14)

Such as: [q] = [[q0], ..., [qm]] and [p] =
[[p0], ..., [pn]] are boxes (i.e. vectors of interval).

The following lemma and theorem concern the
performances of two interval systems and are due
to [19]. Consider two interval systems having the
same structure (degrees of polynomials):

[G1] (s) =

m∑
j=0

[b1j ] s
j

n∑
i=0

[a1i] si
(15)

and

[G2(s)] =

m∑
l=0

[b2l] · sl

n∑
k=0

[a2k] · sk
(16)

Lemma II.1 (Inclusion of two interval systems)

if

 [a1k] ⊆ [a2k] , ∀k = 1 · · ·n
and
[b1l] ⊆ [b2l] , ∀l = 1 · · ·m

⇒ [G1] (s) ⊆ [G2] (s) ;

Theorem II.1 (Performances inclusion theorem)
if [G1] (s) ⊆ [G2] (sto) ;

⇒


[g1](t) ⊆ [g2](t) ∀t{

[ρ] ([G1] (jω)) ⊆ [ρ] ([G2] (jω))
[ϕ] ([G1] (jω)) ⊆ [ϕ] ([G2] (jω))

∀ω

where [gi](t) is the (temporal) impulse response
of system [Gi](s), [ρ] ([Gi] (jω)) is its modulus and
[ϕ] ([Gi] (jω)) is its phase.

Proof II.1 See [19].

Theorem II.1 states that if [G1] (s) is included
in [G2] (s), its temporal response (impulse response,
step response, etc.) will be included in that of
[G2] (s). The same holds for the frequential response
(bode, nyquist, black-nichols). Such inclusion
of responses directly induces the performances
inclusion and can be used to design a robust
controller as we propose in this paper.

III. Problem statement

Consider an interval system [G](s, [a], [b]) to be
controlled by a RST controller (Fig. 1). The choice
of the RST structure of controller is that it is a more
general structure. The PID controller is a particular
case of the RST controller when R(s) = T (s).
Now, the problem consists in finding the different
polynomials R, S and T of the controller that
ensures some given performances for the closed-loop
[Hcl](s, [a], [b]) (see Fig. 1) whatever the parameters
a and b ranging in [a] and [b] respectively.
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Fig. 1. Closed-loop transfer [Hcl](s, [a], [b]).

In the sequel, the system [G](s, [a], [b]) will be
denoted by:

[G](s, [a], [b]) =
[N ](s, [b])

[D](s, [a])
(17)

where [N ](s, [b]) and [D](s, [a]) are interval
polynomials defined by:

[N ](s, [b]) = 1 +
m∑
j=1

[bj ]s
j

[D](s, [a]) =
n∑
i=0

[ai]s
i

Such as [a] = [[a0], ..., [an]], [b] = [1, [b1], ..., [bm]]
and m ≤ n.

This form of representation (unit on the
numerator) facilitates the application of the
proposed control method. In fact, it is always
possible to describe the system using this
representation form.

Consider the following performances that we
expect for the closed-loop:

• no overshoot.
• settling time tr5% ∈ [tr−, tr+].
• static error |ε| ≤ η

These specifications can be easily described by
means of an interval model called interval reference
model denoted [H](s):

[H](s) =
[Ke]

1 + [τ ]s
(18)

where [τ ] = [τ−, τ+], [Ke] = [K−e ,K
+
e ].

Settling time and static error of (18)
are defined by [tr5%] = 3.[τ ] and |ε| = |[Ke]− 1|
respectively.

Based on Theorem II.1, the following problem
is therefore addressed.

Problem III.1 Given an interval system [G](s)
and an interval reference model [H](s) that defines
some given performances, find a controller [C](s)
such that [Hcl](s) ⊆ [H](s). In other words, the
problem consists in finding a set of controllers
C(s), gathered in an interval [C](s), such that the
performances of the closed-loop [Hcl](s) are included
in the specified performances.

3.1. Computation of the closed-loop model
[Hcl](s)

In this part, we compute the closed-loop
model using the interval system and the controller
transfers. The generalized form of the RST
controller can be defined as follows:

[R](s) =
rn∑
i=1

[ri]s
i

[S](s) =
sn∑
i=1

[si]s
i

[T ](s) =
tn∑
i=1

[ti]s
i

(19)

such as sn ≥ rn ≥ tn in order to have the
causality of the controller.

Let us now define fixed-order RST structure
with a fixed and low degree for each interval
polynomials [R], [S] and [T ]. Polynomials with first-
degree are chosen for that:

[R](s) = [r1]s+ [r0]
[S](s) = [s1]s+ [s0]
[T ](s) = [t1]s+ 1

(20)

We have chosen t0 equals to one in order to
minimize the number of the controller parameters
to be sought for. On the one hand, this facilitates
the computation of the controller. On the other
hand, even if we choose t0 6= 1, any setting on the
parameters t1, r1 and r0 will lead to t0 = 1.

Remark III.1 If further we cannot find a con-
troller [C](s) that satisfies Problem III.1, the degree
of one or more of the polynomials [R], [S] and
[T ] can be increased and the controller synthesis is
performed again.

Let us define the box of the controller
parameters [θ] = [[t1], [r1], [r0], [s1], [s0]].

From Fig. 1, and using the interval system (17)
and the controller RST (20), the interval closed-
loop transfer [Hcl](s, [a], [b], [θ]) is derived:
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[Hcl](s, [a], [b], [θ]) =
[T ](s)

[S](s)
[G](s,[a],[b]) + [R](s)

(21)

(21) can be rewritten as follows:

[Hcl](s, [a], [b], [θ]) =
[T ](s).[N ](s, [b])

[S](s).[D](s, [a]) + [R](s).[N ](s, [b])
(22)

After replacing the different polynomials,
we obtain the interval closed-loop transfer
[Hcl](s, [a], [b], [θ]) depending on the different
interval parameters:

[Hcl] (s, [a], [b], [θ]) =

([t1]s+1)(1+
m∑

j=1

[bj ]s
j)

([s1]s+[s0])
n∑

i=0

[ai]si+([r1]s+[r0])(1+
m∑

j=1

[bj ]sj)

(23)

After developing (23), we obtain:

[Hcl](s, [p], [q]) =

1 +
e∑
j=1

[qj ]s
j

r∑
i=0

[pi]si
(24)

Where e = m+ 1 and r = n+ 1. The boxes of
interval parameters [p] and [q] are function of the
boxes [a], [b] and [θ].

3.2. Controller derivation

The main objective consists to find the set Θ
of the controller parameters vector for which robust
performances hold:

Θ := {θ ∈ [θ]|[Hcl](s, [p], [q]) ⊆ [H](s)} (25)

This computation of Θ is feasible if and only if
[Hcl](s, [p], [q]) has the same structure than [H](s),
i.e. their numerators have the same degree and the
same holds for their denominators. As the structure
of [Hcl](s, [p], [q]) is a priori fixed, we should adjust
the structure of [H](s) to satisfy such condition if
it was not yet the case. For that, first let us have
a look on the structure of [Hcl](s, [p], [q]) as in (24).
The degree of the numerator is (m+ 1) while it
is (n+ 1) for the denominator. Let us now adjust
the structure of [H](s) (see (18)) in order to have
the same structure by adding some zeros and poles
far away from the imaginary axe. This leads to the
following reference model:

[H](s) =
(1 + [τ ]

κ s)
m+1

1
[Ke]

.(1 + [τ ]s)(1 + [τ ]
κ s)

n
(26)

With κ� 1.
After developping (26), we have:

[H](s, [w], [x]) =

1 +
m+1∑
j=1

[xj ]s
j

n+1∑
i=0

[wi]si
(27)

Where [xj ] and [wi] (for j = 1, ...,m+ 1 and i =
0, ..., n+ 1) are functions of the interval parameters
[Ke], [τ ] and of the real number κ.

3.3. Inclusion condition

The research of parameter Θ in (25) of the
controller is done by using the inclusion [Hcl](s) ⊆
[H](s) (see Problem III.1). However, according
to Lemma II.1, such inclusion can be satisfied
by considering the inclusion of each parameter
of [Hcl](s) inside that of [H](s). Thus, by using
(24) and (27), the problem becomes the research
of the controller parameters under the following
constraints:

[qj ] ⊆ [xj ],∀j = 1, ...,m+ 1
[pi] ⊆ [wi],∀i = 0, ..., n+ 1

(28)

and therefore, the computation problem in (25)
of the set parameters Θ is reduced to the following
problem:

Θ :=

{
θ ∈ [θ]

∣∣∣∣ [qj ]([θ]) ⊆ [xj ],∀j = 1, ...,m+ 1
[pi]([θ]) ⊆ [wi],∀i = 0, ..., n+ 1

}
(29)

This problem is known as a Set-Inversion
Problem which can be solved using interval
techniques [3, 13]. The set inversion operation
consists to compute the reciprocal image of a
compact set called subpaving. The set-inversion
algorithm SIVIA (more details are given in [3, 24])
allows to approximate with subpavings the set
solution Θ described in (29). This approximation
is realized with an inner and outer subpavings,
respectively Θ and Θ, such that Θ ⊆ Θ ⊆ Θ.
The subpaving Θ corresponds to the controller
parameter vector for which the problem (29) holds.
If Θ = ∅, then it is guaranteed that no solution
exists for (29).
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Tab. 1 resumes the recursive SIVIA algorithm
allowing to solve a set inversion problem in
intervals. We give in Fig. 2 a flow chart that
describes this recursive SIVIA algorithm when
applied to the computation of the RST controller
parameters and which is given by the problem
(29). SIVIA algorithm requires a search box [θ0]
(possibly very large) called initial box to which
Θ is guaranteed to belong. The inner and outer
subpavings (Θ and Θ) are initially empty.

Table 1. Algorithm SIVIA for solving a set-inversion
problem [3, 24].

SIVIA(in: [p], [q], [w], [x], [θ], ε; inout: Θ, Θ
)

1 if [[p]([θ]), [q]([θ])]
⋂

[[w], [x]] = ∅ return;
2 if [[p]([θ]), [q]([θ])] ⊆ [[w], [x]] then
{Θ := Θ

⋃
[θ]; Θ := Θ

⋃
[θ]} return;

4 if width([θ]) < ε then {Θ := Θ
⋃

[θ]}; return
5 bisection of [θ] into L([θ]) and R([θ]);
6 SIVIA([p], [q], [w], [x], L([θ]), ε; Θ, Θ);

SIVIA([p], [q], [w], [x], R([θ]), ε; Θ, Θ).

Remark III.2 In the most cases, we are interested
to compute an inner subpaving Θ for which we are
sure that Θ is included in the set solution Θ, i.e.
Θ ⊆ Θ, but when no inner subpaving exists (Θ = ∅),
it is possible to choose parameters inside the outer
subpaving, i.e. choose θ ∈ Θ.

IV. Application to piezocantilevers

In this section, we apply the proposed method
to control the deflection of piezoelectric actuators
used in microgrippers. The latters are considered
as microsystems. These microgrippers are widely
used in micromanipulation and microassembly
tasks where the required performances are sever
(submicrometric accuracy, tens of milliseconds of
settling time, no overshoot, etc.) [25]. A micro-
gripper is based on two piezoelectric cantilevers
(microactuators) also called piezocantilever [26, 27].
While one piezocantilever is controlled on position
(deflection), the second one is controlled on force.
This allows to precisely position a manipulated
small object by controlling at the same time

[p]([θ])    [w]=U φ

[q]([θ])    [x]=U φV

[p]([θ])    [w]U

[q]([θ])    [x]

V

U

Θ = ΘU[θ]
Θ = ΘU[θ]

Θ = Θ
Θ = Θ

width([θ]) <ε

Θ = ΘU[θ]
Θ = Θ

Compute          , 

Θ = ΘΘ = Θ and 

[p]([θ]) [q]([θ])

bisect      into
        and

[θ]
[θ ] [θ ]1 2

Θ = Θ = and 

[θ]=[θ ], [x], [w]

φ φ
0

Start

True

False

True

False

True

False

End

True

False
Θ = φ

The user must change
      and/or the order of 
the polynomials R,S,T
[θ ]0

Θ = Θ
Θ = Θ

Apply the algorithm on        and[θ ] [θ ]1 2

Fig. 2. Algorithm SIVIA used to solve the set-inversion
problem (29) [3, 24].

the handling force. In this work, we focus our
study on the position control. The piezocantilever
used during the experiments is a unimorph
piezocantilever with rectangular cross-section. Such
cantilever is made up of one piezoelectric layer
(piezolayer) and one passive layer. When a voltage
U is applied to the piezolayer, it contracts/expands
accordingly to the direction of the applied electric
field. As the piezolayer and the passive layer are
glued themselves, a global deflection y of the
structure is yielded (Fig. 3).

Due to their small sizes, piezocantilevers are
very sensitive to environment (thermal variation,
vibration, surrounding surface forces, etc.) and
to the reaction of the manipulated objects.
This high sensitivity leads to a change of their
behavior during the tasks (manipulation, etc.).
Unfortunately, the change of the environment
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is hardly known and hardly modelizable at the
micro/nano-scale making impossible the use of a
kind of real-time adaptive control law. Beyond, this
difficulty is confirmed the lack of convenient sensors
that can be used to measure the environment
variation at this scale. This is why it is more
attractive to employ more simplified models and to
synthesize robust control laws for piezocantilevers.
Classical H∞ robust control laws have successfully
been used in our previous works [28], however the
orders of the derived controllers were high and
may not be convenient for embedded microsystems
such as embedded microgrippers. Controllers that
account eventual nonlinearities were also used
but they required the use of precise models
of these nonlinearities [29, 30] which finally
make complex the controller implementation. The
technique presented in this paper is thus used.
Its advantages are 1) the ease of modeling the
parametric uncertainties by just bounding them
with intervals, 2) and the derivation of a low order
controller since its structure is a priori fixed.

Usupport

passive layer

piezolayer
δ

Fig. 3. Principle of a unimorph piezocantilever.

As it is impossible to characterize the model
variation of a given piezocantilever during its
functioning and then to derive an interval model
[G](s, [a], [b]), we use the following procedure.

Two piezocantilevers are randomly taken from
a set of stock of piezocantilevers having the same
dimensions and the same physical characteristics.
Such stock is essential in micromanipulation
and microassembly context in order to ensure
a quick replacement in case of breakage of
actuators. In that case, it is rightfully wished
that the same controller is used for the new
actuator. However, even if these piezocantilevers
are physically and geometrically similar, there
are always non negligible differences in their
models parameters. These differences on models

parameters are due to small and non-perceptible
differences in the sizes of the piezocantilevers (in the
order of tens of micrometres) due to the fabrication
accuracy. The two different models of the chosen
piezocantilevers will be therefore used to derive an
interval model [G](s, [a], [b]).

4.1. Presentation of the setup

Fig. 4 presents the experimental setup. It is
composed of:

• two unimorph piezocantilevers. Each piezo-
cantilever is based on a PZT (lead zirconate
titanate) for the piezolayer and on copper
for the passive layer. The dimensions
of the cantilevers are approximately L×
b× h = 15mm× 2mm× 0.3mm, where the
thicknesses are 0.2mm and 0.1mm for the
PZT and for the Copper respectively,

• an optical sensor (Keyence LC-242) used to
measure the deflection of the piezocantilevers.
The sensor has 10nm of resolution,

• a computer-DSpace hardware combined with
the Matlab-Simulink software for the imple-
mentation of the controller and for data
acquisition,

• and a high voltage (HV: ±200V ) amplifier
used to amplify the input voltage from the
computer-DSpace material.
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Fig. 4. The experimental setup: piezocantilevers controlled
through computer DSpace material.
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4.2. Modeling of the two piezocantilevers

The linear relation between the deflection at
the tip of the piezocantilever and the applied input
voltage U is:

δ = G(s)U (30)

To identify the two models G1(s) and G2(s)
corresponding to the two piezocantilevers, a step
response is used. A second order was chosen
for the model of each piezocantilever because
of its sufficiency to account the first resonance
which is sufficient for the expected applications.
The identification of the two models G1(s) and
G2(s) was afterwards performed using output error
method and the matlab software. We obtain:

G1(s) =
8.08× 10−8s2 + 1.809× 10−4s+ 1

8.753× 10−8s2 + 5.234× 10−6s+ 1.283

G2(s) =
6.992× 10−8s2 + 1.807× 10−4s+ 1

9.844× 10−8s2 + 5.37× 10−6s+ 1.448
(31)

4.3. Derivation of the interval model

Let us rewrite each model Gi(s) (i = 1, 2) as
follows:

Gi(s) =
b2is

2 + b1is+ 1

a2is2 + a1is+ a0i
(32)

The interval model [G](s, [a], [b]) which repre-
sents a family of piezocantilever models is derived
using the two point models Gi(s). Considering
each parameter of G1(s) and its counterpart in
G2(s) as an endpoint of the interval parameter in
[G](s, [a], [b]), we have:

[G](s, [a], [b]) =
[b2]s2 + [b1]s+ 1

[a2]s2 + [a1]s+ [a0]
(33)

such as:

[b2] = [min(b21, b22),max(b21, b22)]
[b1] = [min(b11, b12),max(b11, b12)]
[a2] = [min(a21, a22),max(a21, a22)]
[a1] = [min(a11, a12),max(a11, a12)]
[a0] = [min(a01, a02),max(a01, a02)]

After computation, we obtain:

[b2] = [6.992, 8.08]× 10−8

[b1] = [1.807, 1.809]× 10−4

[a2] = [8.753, 9.844]× 10−8

[a1] = [5.234, 5.37]× 10−6

[a0] = [1.283, 1.448]

To increase the stability margin of the closed-
loop system, we propose to extend the widths of
the interval parameters of the model (33). This
extension is a compromise. In fact, if the widths
of these interval parameters are too large, it is
difficult to find a controller that respects both the
stability and performances of the closed-loop. After
some trials of controller design, we choose to expand
the width of each interval parameter of (33) by
10%. It represents a good compromise between the
extension of the width and the possibility to find a
robust controller. Finally, the extended parameters
of the interval model which will be used to compute
the controller are:

[b2] = [6.937, 8.134]× 10−8

[b1] = [1.8067, 1.809]× 10−4

[a2] = [8.698, 9.898]× 10−8

[a1] = [5.227, 5.376]× 10−6

[a0] = [1.274, 1.456]

(34)

4.4. Performances specifications

Microassembly and micromanipulation tasks
generally require a submicrometric accuracy and
high repeatability. Furthermore, the behavior of
actuators used in these tasks is often desired to
be without overshoot to ensure better quality tasks
and to avoid destroying the manipulated micro-
object or conversely to avoid the destruction of the
actuators themselves. For all that, we consider the
following specifications:

• behavior without or with small overshoot,
• settling time tr5% < 30ms,
• static error allowed |ε| ≤ 1%.

4.5. Computation of the closed-loop
transfer

From the model [G](s, [a], [b]) in (33) and from
the RST controller in (20) to be designed, we derive
the closed-loop [Hcl](s, [a], [b], [θ]):

[Hcl] (s, [a], [b], [θ]) =
([t1]s+ 1)([b2]s2 + [b1]s+ 1)

([s1]s+ [s0])([a2]s2 + [a1]s+ 1) + ([r1]s+ [r0])([b2]s2 + [b1]s+ 1)
(35)
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9

After developing (35), the closed-loop can be
written as follows:

[Hcl](s, [p], [q]) =
[q3]s3 + [q2]s2 + [q1]s+ 1

[p3]s3 + [p2]s2 + [p1]s+ [p0]
(36)

where the boxes [q], [p] depend on the boxes
[a] and [b] of the interval model and on the
interval parameters [θ] = [[t1], [r0], [r1], [s1], [s0]] of
the controller as described below:

[q3] = [t1][b2]

[q2] = [t1][b1] + [b2]

[q1] = [t1] + [b1]

[p3] = [s1][a2] + [r1][b2]

[p2] = [s1][a1] + [s0][a2] + [r1][b1] + [r0][b2]

[q1] = [s1][a0] + [s0][a1] + [r0][b1] + [r1]

[p0] = [s0][a0] + [r0]

(37)

4.6. Computation of the interval reference
model

The specifications in Section 4.4 can be
transcribed into an interval reference model.
According to the remark in Section 3.2, this
reference model must have the same structure than
the closed-loop (36). So, the reference model must
have characterized by an order n = m = 2. We have:

[H](s) =
(1 + [τ ]

κ s)
3

1
[Ke]

.(1 + [τ ]s)(1 + [τ ]
κ s)

2
(38)

Such as [τ ] = [0, 10ms], [Ke] = [0.99, 1.01] and
κ = 10.

After developping (38), we obtain:

[H](s) =
[x3]s3 + [x2]s2 + [x1]s+ 1

[w3]s3 + [w2]s2 + [w1]s+ [w0]
(39)

Where the boxes [x] and [w] are function of the
box [[Ke], [τ ], [κ]] as follows:

[x3] =
τ3

κ3

[x2] =
3τ2

κ2

[x1] =
3τ

κ

[w3] =
τ3

κ2Ke

[w2] =
(1 + 2κ)τ2

κ2Ke

[w1] =
(κ+ 2)τ

κKe

[w0] =
1

Ke

(40)

4.7. Derivation of the controller

The derivation of the controller consists to
find the set (or subset) of the interval parameters
[θ] = [[t1], [r0], [r1], [s1], [s0]] for which specifications
hold, i.e. find [Θ] such as:

Θ :=

{
θ ∈ [θ]

∣∣∣∣ [qj ]([θ]) ⊆ [xj ],∀j = 1, ..., 3
[pi]([θ]) ⊆ [wi],∀i = 0, ..., 3

}
(41)

where [[pi], [qj ]] and [[wi], [xj ]] (for i = 0...3 and
j = 1...3) are defined in (37) and (40) respectively.

Remark IV.1 The number of unknown parame-
ters (see (20)) are 5 while the number of inclusions
(41) is 7. Therefore, there are more inclusions
than unknown variables. In such situation, the set
solution Θ is given by the intersection of the set
solution of each inclusion in (41), i.e.:

Θ =
7⋂
i=1

(set sol)i

such as: (set sol)i is the set solution of the ith

inclusion.

SIVIA algorithm is applied to solve the
problem (41) and to characterize the set solution
Θ. However, the computation time increases
exponentially with the number of the parameters
making difficult to solve such problem with
multiple parameters. Since our objective is not to
compute all possible controllers RST that ensure
specifications but to find a set (or subset) of
controllers RST satisfying desired behaviors of the
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closed-loop (see Section 4.4), we choose to solve the
problem (41) not through SIVIA alone but also
through some hand-tuning prior this algorithm.
The procedure consists to manually settle some
parameters (as given scalars or as given intervals)
and then to seek for the remaining parameters
thanks to SIVIA.

The three first inclusions [qj ] ⊆ [xj ] for j = 1...3
depend only on the parameter [t1], so they can be
solved independently. These inclusions are linear
and with one parameter which can be solved using
SIVIA algorithm. After Application of SIVIA, we
obtain the following solution:

[t1] = [0, 2.81× 10−3] (42)

Now, it remains to solve the second part of
the inclusions (41), i.e. the inclusions [pi] ⊆ [wi]
for i = 0, ..., 3. In order to cancel the static error,
i.e. [p0] = p0 = 1, the parameters [s0] and [r0] are
manually adjusted as follows:{

[s0] = s0 = 0

[r0] = r0 = 1
(43)

which also confirms that the last inclusion
[p0] ⊆ [w0] is respected.

Finally, we have to solve the following problem
with two parameters [s1] and [r1]:

[s1][a2] + [r1][b2] ⊆ τ3

κ2Ke

[s1][a1] + [r1][b1] + [b2] ⊆ 1 + 2κ

κ2
τ2

Ke

[s1][a0] + [b1] + [r1] ⊆ κ+ 2

κ

τ

Ke

(44)

To characterize the set solution Ss1r1 of
the parameters [s1] and [r1], we apply SIVIA
algorithm for the second time to the inclusions
(44). We choose an initial box [s10]× [r10] = [0.01×
10−3, 10× 10−3]× [0.01× 10−3, 10× 10−3] and an
accuracy of ε = 0.1× 10−3. The obtained subpaving
is given in Fig. 5.

The area in blue corresponds to the inner
subpaving Ss1r1 i.e. the set solution [s1]× [r1] of
the inclusions (44). The area in white correponds to
the outer subpaving Ss1r1 , it contains the boxes for
which no decision on the test of inclusion in (44) can
be taken. Ss1r1 can be minimized by increasing the
computation accuracy. The boxes in red correspond

to the parameters [s1] and [r1] for which the
inclusions (44) do not hold. A controller with
the parameters t1 ∈ [0, 2.8× 10−3], s0 = 0, r0 = 1
and any choice of s1, r1 in the blue colored area
Ss1r1 applied to the interval model (uncertain
model)[G](s, [a], [b]) with parameters given in (34)
will satisfy the required performances specified in
Section 4.4.

Note that the set Ss1r1 does not represent
the set of all possible controllers that satisfy
the required performances but a subset of these
controllers. Therefore, any change on the values of
the parameters [s0] and [r0] leads to a change on
the subset Ss1r1 .

s1

r 1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Ss r1  1

Ss r1 1

non-solution set

x10-3

x10-3

Fig. 5. Resulting subpaving [s1]× [r1]

The searched inner subpaving Θ is defined as
follows:

Θ :=

{
θ ∈ [θ]|t1 ∈ [0, 2.8× 10−3],

r1 = 1, s0 = 0, {s1, r1} ∈ S−
s1r1

}
(45)

For the implementation, we choose the
following polynomials for the RST controller:

R(s) = 0.5× 10−3s+ 1

S(s) = 5× 10−3s

T (s) = 1× 10−5s+ 1

(46)

In fact, there is no method to choose the
optimal controller that will ensure the best
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behaviours of the closed-loop among these solutions
Ss1r1 . However, it is guaranteed that any choice
inside them will ensure the specified performances.

V. Controller implementation and
experimental results

5.1. Controller implementation

This part consists to apply the RST controller
(46) to control the deflection of the piezocantilevers.
For that, the closed-loop scheme in Fig. 1 is
transformed into the scheme presented in Fig. 6 in
order to have a causal controller:

U
 

+- [G](s,[a],[b])
S(s)cy y
R(s)

ε
T(s)
R(s) dy

Fig. 6. Loop control with RST.

5.2. Experimental result

Fig. 7 presents the experimental results when
a step reference input yc = 20µm is applied. As
shown on Fig. 7, the computed controller has played
its role. Indeed the experimental behavior of the
closed-loop (tested on the two piezocantilevers)
is without overshoot, with settling times tr1 =
19.5ms ≤ 30ms, tr2 = 21.5ms ≤ 30ms respectively
for the piezocantilevers 1 and 2 and the static errors
remain bounded by the specified interval.

VI. Closed-loop stability analysis

In this section, we present a robust stability
result of the closed-loop with the designed RST
controller (Fig. 6). The stability analysis is done

analytically and graphically. As the transfer T (s)
R(s) is

stable, the robust stability analysis of the closed-

loop y(s)
yc(s)

can be reduced to the robust stability

analysis of the transfer y(s)
yd(s)

(Fig. 6).

The stability analysis of an interval system
is based on the roots of the corresponding
characteristic polynomial. This polynomial is the
denominator of the interval closed-loop system. The
interval closed-loop system is stable if and only if

0 10 20 30 40 50
t[ms]

60

0

5

10

15

20

25
δ[µm]

-5

experimental results
on the two piezocantilevers
(     and     )

Fig. 7. Step responses envelope compared with the experimen-
tal results.

all the roots of the characteristic polynomial are in
the left part C− of the complex plane.

The characteristic polynomial of the transfert
from the input signal yd to the output y is defined
as follows :

[P ](s) = [p3]s3 + [p2]s2 + [p1]s+ 1 (47)

Such as: [p3] = [a2]s1 + [b2]r1, [p2] = [b2] +
[a1]s1 + r1[b1], [p1] = [b1] + r1 + [a0]s1.

where r1 = 0.5× 10−3 and s1 = 5× 10−3 are
the parameters of the implemented polynomials
R(s) and S(s) (46).

According to the Routh’s criterion, all the
roots of the interval polynomial [P ](s) are in the
left part C− if and only if the following conditions
are satisfied:

[p3] > 0
[p2] > 0

[p1] > 0

[p2][p1]− [p3] > 0

(48)

After computation, we obtain:

[p3] = [4.696, 5.355]× 10−10 > 0
[p2] = [1.597, 1.7418]× 10−7 > 0

[p1] = [7.054, 7.962]× 10−3 > 0

[p2][p1]− [p3] = [5.951, 8.981]× 10−10 > 0

(49)
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As all the terms in (49) are strictly positive, the
implemented controller ensure the robust stability
for the interval system [G](s, [a], [b]).

Now let us analyze the δ-stability of the closed-
loop. The δ-stability is an interesting information
to evaluate a stability margin of a system. For
that, instead of using the Laplace variable s, the
variable s− δ (with δ > 0) is used. So, the interval
polynomial [P ](s) is δ-stable if and only if all its
roots are in the part Γδ of the complex plane and
located on the left of the vertical line Re(s) = −δ. In
this analysis, we compute the maximal δ for which
the implemented RST controller still ensures the δ-
stability for the interval system [G](s, [a], [b]). We
can rewrite [P ](s− δ) as follows:

[P ](s− δ) = α3s
3 + α2s

2 + α1s+ α0 (50)

where:
α3 = [p3], α2 = [p2]− 3δ[p3], α1 = [p1]−

2δ[p2]− 3δ2[p3] and α0 = 1− δ[p1] + δ2[p2] +
3δ3[p3].

The polynomial [P ](s− δ) is stable if and only
if:

[α3] > 0
[α2] > 0

[α1] > 0

[α2][α1]− [α3][α0] > 0

(51)

The resolution of this nonlinear inequalities
problem leads to the admissible values of δ that
satisfy the inequalities (51). After computation, we
obtain the interval parameter δ:

δ = [0, 30.493] (52)

To resume, we can conclude that the
implemented RST controller ensures the δ-stability
for the interval system whatever δ less than 30.493.

Finally, we analyze the Black-Nichols diagram
of the open-loop system [L](s) in order to assess the
stability margins (phase and gain). The open-loop
[L](s) is defined by:

[L](s) =
R(s)

S(s)
[G](s, [a], [b]) (53)

Fig. 8 presents the Black-Nichols diagram
of the open-loop system [L](s) and that of
the controlled system [G](s, [a], [b]). The Black-
Nichols diagram of the interval system [L](s) (resp.

[G](s, [a], [b])) encloses the Black-Nichols diagram
of all the transfer functions contained in [L](s)
(resp. in [G](s, [a], [b])). From the figure, we can
see first that the performances of the closed loop
are improved relative to those of the system it-self.
Indeed, the gain of [L] tends towards∞ when w → 0
while that of [G] is finite. This means that the static
gain of the closed-loop tends towards zero, which
is not the case for the non-controlled system [G].
This figure indicates also that the phase and the
gain margins were improved when implementing
the RST controller. They can be computed from the
Black-Nichols diagram. For the controlled system,
these margins are Mϕ ≈ 95 (at a pulsation about
150Hz) and MG =∞ respectively.
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Fig. 8. Black-Nichols diagrams of the open-loop system [L](s)
and the interval system [G](s, [a], [b]).

VII. Conclusion

In this paper, a method to design robust
controllers for systems with uncertain parameters
has been proposed. While the uncertain parameters
are described by intervals, the controller structure
is given a priori (a fixed-order RST controller).
The main advantages of the proposed approach are
the natural way to model the uncertainties and
the derivation of a low order controller. Starting
from specified performances, the calculation of
the controller parameters is formulated as a
set-inversion problem that can be solved using
an existing algorithm. Experimental tests of the
proposed method were carried out on piezoelectric
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actuators. The experimental results showed its
efficiency. Finally, a stability analysis of the closed-
loop was carried out and confirmed the robustness
of the computed controller.
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