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Abstract: In this paper it is shown that an input strictly passive linear finite dimensional
port-Hamiltonian controller exponentially stabilizes a large class of boundary control systems.
This follows since the finite dimensional controller dissipates the energy flowing through the
boundaries of the infinite dimensional system. The assumptions on the controller is that it
is input strictly passive and that it is exponentially stable. The result is illustrated on the
model of a DNA-manipulation process, that is used to show that the interconnection of the
DNA-bundle+the controller (finite dimensional part of the system) and a micro-gripper (infinite
dimensional part) is exponentially stable.
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1. INTRODUCTION

The study of stability and stabilization of infinite di-
mensional systems is a complicated task since extending
results from the finite dimensional system theory is not
straightforward and in many cases not possible. Concepts
as dissipativity (Brogliato et al., 2007) have to be re-
vised and well known results stated in the case of finite
dimensional systems, as stability of interconnected dis-
sipative systems, are no longer necessarily true in the
infinite dimensional case. Boundary control systems (BCS)
(Curtain and Zwart, 1995) are a class of abstract systems
which model partial differential equations (PDEs) with the
control and the observation at the boundary of the spatial
domain. A large class of physical systems may be modelled
as BCS, and very powerful results on well-posedness and
stability have been reported for BCS formulated using
the framework of infinite dimensional port-Hamiltonian
system (Le Gorrec et al., 2005; Villegas, 2007; Villegas
et al., 2009; Jacob and Zwart, 2012). More specifically in
Villegas et al. (2009) it has been shown that a clever choice
of the boundary conditions (by using a static feedback)
renders the BCS exponentially stable, and in Villegas
(2007); Ramirez and Le Gorrec (2013b) it has been shown
that for a class of BCS arising from the modelling of
physical systems, a power preserving interconnection with
a finite dimensional passive linear system results in an
asymptotically stable BCS on an extended state space. In
this paper we show that the interconnection of a BCS with
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a linear finite dimensional controller renders the closed-
loop system exponentially stable provided that the finite
dimensional system is input strictly passive and exponen-
tially stable. This result permits to elegantly, and quite
easily, prove the exponential stability for a large class of
linear controllers, in particular those arising from energy
shaping methods using Casimir functions (Macchelli and
Melchiorri, 2004; Macchelli, 2012). The paper is organized
as follows. In Section 2 we give the preliminaries on BCS.
In section 3 we define the dynamic boundary controller and
we derive a series of lemmas associated to the structure of
the controller. In Section 4 we derive the main result of
the paper, which is the exponential stability result of the
BCS. Section 5 and Section 6 present the physical example
of a DNA-manipulation process and the stabilizing control
strategy. Section 7 presents some final remarks.

2. BOUNDARY CONTROLLED
PORT-HAMILTONIAN SYSTEMS

The systems under study are described by the following
PDE:

∂x

∂t
= P1

∂

∂z
(L(z)x(t, z)) + (P0 −G0)L(z)x(t, z), (1)

where z ∈ (a, b), P1 ∈ Mn(R) (Mn(R) denotes the space
of real n×n matrices) is a non-singular symmetric matrix,
P0 = −P>0 ∈ Mn(R), G0 ≥ 0 ∈ Mn(R) and x takes
values in Rn. Furthermore, L(·) ∈ L2(a, b;Mn(R)) is
a bounded and continuously differentiable matrix-valued
function satisfying for all z ∈ (a, b), L(z) = L(z)> and
L(z) > mI, with m independent from z. For simplicity



L(z)x(t, z) will be denoted by (Lx)(t, z). The state space is
defined as X = L2(a, b;Rn) with inner product 〈x1, x2〉L =
〈x1,Lx2〉 and norm ‖x‖2L = 〈x, x〉L. Hence X is a Hilbert
space. Note that the natural norm on X and the L2 norm
are equivalent. The reason for selecting this space is that
‖·‖2L is usually related to the energy function of the system.

Definition 1. (Le Gorrec et al., 2005; Villegas et al., 2009)
Let Lx ∈ H1(a, b;Rn). Then the boundary port variables
associated with system (1) are the vectors e∂,Lx, f∂,Lx ∈
Rn, defined by[
f∂,Lx
e∂,Lx

]
=

1√
2

[
P1 −P1

I I

] [
(Lx)(b)
(Lx)(a)

]
= R

[
(Lx)(b)
(Lx)(a)

]
. (2)

Note that the port variables are linear combinations of the
boundary variables. Let us define the matrix Σ ∈M2n(R)
as follows

Σ =
[
0 I
I 0

]
. (3)

Theorem 2. (Villegas et al., 2009) Let W be a n × 2n
real matrix. If W has full rank and satisfies WΣW> ≥ 0,
where Σ is defined in (3), then the system (1), with input

u(t) = W

[
f∂,Lx(t)
e∂,Lx(t)

]
is a boundary control system on X.

Furthermore, the operator Ax = P1(∂/∂z)(Lx) + (P0 −
G0)Lx with domain

D(A) =

{
Lx ∈ H1(a, b;Rn)

∣∣∣ [f∂,Lxe∂,Lx

]
∈ kerW

}
generates a contraction semigroup on X. Let W̃ be a full
rank matrix of size n × 2n with

[
W
W̃

]
invertible and let

PW,W̃ be given by

PW,W̃ =

([
W

W̃

]
Σ

[
W

W̃

]>)−1

=

[
WΣW> WΣW̃>

W̃ΣW> W̃ΣW̃>

]−1

.

Define the output of the system as the linear mapping

C : L−1H1(a, b;Rn) → Rn, y = Cx(t) := W̃

[
f∂,Lx(t)
e∂,Lx(t)

]
.

Then for u ∈ C2(0,∞;Rk), Lx(0) ∈ H1(a, b;Rn), and

u(0) = W
[
f∂,Lx(0)

e∂,Lx(0)

]
the following balance equation is

satisfied:

1

2

d

dt
‖x(t)‖2L =

1

2

[
u(t)
y(t)

]>
PW,W̃

[
u(t)
y(t)

]
− 〈G0Lx(t),Lx(t)〉

≤
1

2

[
u(t)
y(t)

]>
PW,W̃

[
u(t)
y(t)

]
.

(4)

The matrix PW,W̃ is defined only when
[
W
W̃

]
is invertible.

Notice that in the absence of some internal dissipation
(G0 = 0) the system only exchanges energy with the
environment through the boundaries since the input and
output act on the boundary of the spatial domain. Finally
we remark that the balance equation (4) may be rewritten
as:

1

2

d

dt
‖x(t)‖2L ≤

[
(Lx)(t, b)
(Lx)(t, a)

]> [
P1 0
0 −P1

] [
(Lx)(t, b)
(Lx)(t, a)

]
(5)

Remark 3. As it has been pointed out in Villegas (2007),

if the matrices W and W̃ are selected such that PW,W̃ =

[ 0 I
I 0 ] = Σ, then the BCS fulfils 1

2
d
dt‖x(t)‖2L ≤ u>(t)y(t).

In Villegas (2007) it is shown that a power conserving
interconnection (van der Schaft, 2000), i.e.,

u = r − yc, y = uc, (6)

with r ∈ Rn the new input of the system, of a impedance
energy preserving BCS, i.e., that satisfies 1

2
d
dt‖x(t)‖2L =

u(t)>y(t), and a linear strictly positive real (SPR) finite
dimensional system defines again a BCS on an extended
space. In Ramirez and Le Gorrec (2013b) it has been
shown that it is possible to relax this condition on the
controller, since a power conserving interconnection of a
BCS with a linear strictly passive controller defines a BCS
on an extended space. Consider the linear system

v̇ = Acv +Bcuc, yc = Ccv +Dcuc, (7)

with state space v ∈ V = Rm, set of input values
uc ∈ Uc = Rn and set of output values yc ∈ Y = Rn.
The set Uc of admissible inputs consists of all Uc-valued
piecewise continuous functions defined on R. Ac, Bc, Cc
and Dc are constant real matrices of dimension m × m,
m× n, n×m and n× n, respectively.

Theorem 4. (Villegas, 2007; Ramirez and Le Gorrec,
2013b) Let the state of the open-loop BCS satisfy
1
2
d
dt‖x(t)‖2L = u(t)>y(t). Consider a LTI strictly passive

finite dimensional system with storage function Ec(t) =
1
2 〈v(t), Qcv(t)〉, Qc ∈ Mm(R), Qc = Q>c > 0. Then
the feedback interconnection of the BCS and the finite
dimensional system is again a BCS on the extended state
space x̃ ∈ X̃ = X × V with inner product 〈x̃1, x̃2〉X̃ =
〈x1, x2〉L + 〈v1, Qcv2〉. Furthermore, the operator Ae de-

fined by Aex̃ =

[
JL 0
BcC Ac

] [
x
v

]
with D(Ae) =

{[
x
v

]
∈[

X
V

] ∣∣∣Lx ∈ HN (a, b;Rn),

[
f∂,Lx
e∂,Lx
v

]
∈ ker W̃D

}
, where

W̃D =
[
(W +DcW̃ Cc)

]
generates a contraction semi-

group on X̃.

Remark 5. In Villegas (2007) the controller is also as-
sumed to be SPR in order to prove the asymptotic stability
of the extended system. Indeed, if the controller has a
feed through term, then the KYP Lemma for linear SPR
system Brogliato et al. (2007) is used to prove that the
closed-loop system converges to the maximal invariant
subset equal to {0} and asymptotic stability follows from
LaSalle’s invariance principle. In this paper we show that
not only asymptotic stability is assured, but also exponen-
tial stability.

Remark 6. For Theorem 4 to be fulfilled the matrices W
and W̃ should be selected such that PW,W̃ = [ 0 I

I 0 ].

Notice that the power preserving interconnection (6) actu-
ally defines a feedback loop, where the finite dimensional
system acts as the controller.

3. DYNAMIC BOUNDARY CONTROL

The main result of this paper is proving that a strictly pas-
sive linear finite dimensional system exponentially stabi-
lizes boundary controlled port Hamiltonian systems. This
is a powerful result due to three reasons: 1) Exponential
stability of infinite (and even finite) dimensional systems
is a very strong condition difficult to prove. 2) A dy-
namic controller not only permits to stabilize the infinite
dimensional system but also permits to change the closed-
loop equilibrium (using for instance Casimir methods). 3)



In many applications the infinite dimensional system is
coupled at the boundary with a finite dimensional system.
In this case the finite dimensional system correspond to
the ”controller” and the stability of the coupled system
may be analysed using our approach.

Definition 7. The considered finite dimensional controller
is given by the state space representation:

v̇ = (Jc −Rc)Qcv +Bcuc, yc = B>c Qcv + Scuc, (8)

where we assume that Qc = Q>c > 0, Jc = −J>c ,
Rc = R>c ≥ 0, Sc = S>c > 0 and Bc are real constant
matrices of proper dimensions. Furthermore, the controller
is assumed to be exponentially stable, i.e., Ac := (Jc −
Rc)Qc is Hurwitz 1 .

Under the assumption made above, it is easy to see that
with the Hamiltonian Ec(t) = 1

2v(t)>Qcv(t) the system
(8) is a strictly input passive port-Hamiltonian system,
i.e. there exists a σ > 0 such that

Ėc(t) ≤ uc(t)>yc(t)− σ‖uc(t)‖2.

We shall frequently use the following inequalities for v, w ∈
Rn and α > 0

−α2‖v‖2 − 1

α2
‖w‖2 ≤ v>w + w>v (9)

≤ α2‖v‖2 +
1

α2
‖w‖2. (10)

This holds since ‖αv ± 1
αw‖

2 ≥ 0. The following lemmas
follow from Definition 7.

Lemma 8. There exist strictly positive constants κ2, κ3

and κ4 such that for all τ > 0 the energy of (8) satisfies:

Ec(τ) ≤ κ1(τ)Ec(0) + κ3

∫ τ

0

‖uc(t)‖2dt (11)

where κ1(τ) = κ4e
−κ2τ .

Proof. Since Ac = (Jc − Rc)Qc is exponentially stable
there exists κ2 > 0 such thatAc+2κ2I is still exponentially
stable. Hence there exists a P1 = P>1 > 0 satisfying

(Ac + 2κ2I)>P1 + P1(A+ 2κ2I) ≤ 0 (12)

which implies that A>c P1 + P1Ac ≤ −4κ2P1. Taking the
time derivative of v>P1v along trajectories we have

d

dt
(v>P1v)

= (Acv +Bcuc)
>P1v + v>P1(Acv +Bcuc)

≤ −4κ2v
>P1v + u>c B

>
c P1v + v>P1Bcuc

≤ −2κ2v
>P1v + κ3‖uc‖2

(13)

for some κ3 > 0, where we used (10) with α2 = 2κ2. This
implies that

d

dt

(
eκ2tv>(t)P1v(t)

)
≤ κ3e

κ2t‖uc(t)‖2. (14)

Integrating this relation over t ∈ [0, τ ] and rearranging
terms, we obtain v(τ)>P1v(τ) ≤ e−κ2τv(0)>P1v(0) +∫ τ

0
κ3e

κ2(t−τ)‖uc(t)‖2dt. Since there exists positive con-

stants q1, q2 such that for all v ∈ Rn q1v
>P1v ≤ 1

2v
>Qcv ≤

q2v
>P1v, inequality (11) follows.

1 This is equivalent to the pair (Jc, Rc) being controllable

Lemma 9. There exists positive constants ξ1, ξ2 and τ0
such for all τ > τ0 the energy of (8) satisfies∫ τ

0

Ec(t)dt ≤ ξ1
∫ τ

0

v>(t)QcRcQcv(t)dt+ξ2

∫ τ

0

‖uc(t)‖2dt

Proof. Since Ac = (Jc − Rc)Qc is exponentially stable
there exists a P2 = P>2 ≥ 0 such that A>c P2 + P2Ac =
− 1

2Qc. Taking the time derivative of v>P2v we have

d

dt

(
v>P2v

)
= (Acv +Bcuc)

>P2v + v>P2(Acv +Bcuc)

= −1

2
v>Qcv + u>c B

>
c P2v + v>P2Bcuc.

(15)

Now, using equation (10) we find

d

dt

(
v>Pv

)
≤ (α2 − 1)

1

2
v>Qcv +

β3

α2
u>c uc, (16)

for some β3 > 0 and α ∈ ] 0, 1 [ . Now, integrating (16) we
obtain(

v>Pv
)

(τ)−
(
v>P2v

)
(0) ≤

(α2 − 1)

∫ τ

0

Ec(t)dt+
β3

α2

∫ τ

0

‖uc(t)‖2dt. (17)

Since P2 and Qc are symmetric and positive we may bound
them by P2 ≤ 1

2β5Qc, with β5 > 0 sufficiently large, to
obtain∫ τ

0

Ec(t)dt ≤ β1Ec(0) + β2

∫ τ

0

‖uc(t)‖2dt. (18)

with β1 = β5

(1−α2) > 0 and β2 = 1
(1−α2)

β3

α2 > 0.

On other hand we have that the time derivative of the
energy of (8) is given by

1

2

d

dt
(v>Qcv) =

− v>QcRcQcv +
1

2

(
u>c B

>
c Qcv + v>QcBcuc

)
. (19)

Using (9) in (19) we obtain we obtain for any η > 0

1

2

d

dt
(v>Qcv) ≥

− v>QcRcQcv −
1

2

(
η2‖Q

1
2
c Bcuc‖2 +

1

η2
‖Q

1
2
c v‖2

)
.

Integrating and grouping terms

Ec(0) ≤ Ec(τ)+∫ τ

0

v(t)>QcRcQcv(t) +
η2

2
‖Q

1
2
c Bcuc(t)‖2 +

1

η2
Ec(t)dt.

Now, applying Lemma 8 and using (18) we obtain

Ec(0) ≤ κ1(τ)Ec(0) + κ3

∫ τ

0

‖uc(t)‖2dt

+

∫ τ

0

v>QcRcQcv +
η2

2
‖Q

1
2
c Bc‖2‖uc(t)‖2dt

+
1

η2

(
β1Ec(0) + β2

∫ τ

0

‖uc(t)‖2dt
)
.

Choosing τ0 and η sufficiently large, such that κ1(τ0) +
β1

η2 < 1, see Lemma 8, we obtain for τ > τ0

Ec(0) ≤ γ1

∫ τ

0

v(t)>QcRcQcv(t)dt+ γ2

∫ τ

0

‖uc(t)‖2dt, (20)



with constants γ1 = 1/
(

1−
(
κ1(τ0) + β1

η2

))
and γ2 =(

κ3 + η2

2 ‖Q
1
2
c Bc‖2 + β2

η2

)
γ1. Now, combining (18) and

(20) we obtain∫ τ

0

Ec(t)dt ≤ ξ1
∫ τ

0

v>QcRcQcvdt+ ξ2

∫ τ

0

‖uc(t)‖2dt

(21)
with ξ1 = β1γ1 and ξ2 = β1γ2 + β2, which proves the
Lemma.

Lemma 10. For every δ1 > 0 there exists a δ2 > 0 such
that for all τ > 0 the energy of (8) satisfies the relation∫ τ

0

δ1Ec(t) +‖yc(t)‖2dt ≤ δ2
∫ τ

0

Ec(t) +‖uc(t)‖2dt. (22)

Proof. The relation follows by noting that the left term
of (22) may be written and bounded as∫ τ

0

[
v
uc

]> [
(
δ1

2
Qc +QcBcB

>
c Qc) QcBcSc

ScB
>
c Qc S2

c

] [
v
uc

]
dt

≤ δ2
∫ τ

0

[
v
uc

]> [1

2
Qc 0

0 I

] [
v
uc

]
dt

for some δ2 > 0.

4. EXPONENTIAL STABILITY

To show that the BCS defined in Theorem 4 is exponen-
tially stable, we follow (Villegas et al., 2005; Villegas et al.,
2009). In the rest of the paper, we will set G0 = 0 for
simplicity. Note, however, that all results are valid for
G0 6= 0. Moreover, as in the case of finite dimensional
systems, the presence of natural dissipation adds in general
robustness to the control. As a part of the boundary port
variables of the infinite dimensional system can be set
to zero and may be not used for the interconnection we
will assume that the infinite dimensional system satisfies
a dissipative relation.

Assumption 11. The BCS of Theorem 2 satisfies

‖u(t)‖2 + ‖y(t)‖2 ≥ ε‖Lx(t, b)‖2 (23)

for some ε > 0.

To prove the main theorem we first present the following
lemma which gives a bound on the total energy of the
interconnected system.

Lemma 12. Consider a BCS as described in Theorem 4
with r(t) = 0, for all t ≥ 0. Then, the energy of the

system Ẽ(t) = 1
2‖x(t)‖2L+ 1

2v(t)TQcv(t) satisfies for τ large
enough

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, b)‖2dt+ 2c(τ)
c1

∫ τ

0

Ec(t)dt,

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, a)‖2dt+ 2c(τ)
c1

∫ τ

0

Ec(t)dt,

(24)

where c is a positive constant that only depends on τ and
c1 a positive constant.

Proof. In Villegas et al. (2009), it has been proved that
there exist positive γ and τ1 such that for τ > τ1 > 2γ(b−
a) the function F (z) =

∫ τ−γ(b−z)
γ(b−z) x>(t, z)L(z)x(t, z)dt

fulfils F (b) ≥ F (z)e−κ(b−a) for z ∈ [a, b] where κ is a

positive constant. On other hand, due to the contraction
property of the semigroup Ẽ(t2) ≤ Ẽ(t1) for t2 ≥ t1 it is
deduced that∫ τ−γ(b−z)

γ(b−z)
Ẽ(t)dt ≥ Ẽ(τ − γ(b− a))

∫ τ−γ(b−z)

γ(b−z)
dt

≥ (τ − 2γ(b− a))Ẽ(τ − γ(b− a)).

Hence we obtain

2(τ − 2γ(b− a))Ẽ(τ)

≤ 2(τ − 2γ(b− a))Ẽ(τ − γ(b− a))

≤
∫ b

a

(∫ τ−γ(b−z)

γ(b−z)
x>(Lx)dt

)
dz + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤
∫ b

a

F (z)dz + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤ (b− a)F (b)eκ(b−a) + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤ c1

∫ τ

0

‖(Lx)(b)‖2dt+ 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

where c1 = (b − a)‖L−1(b)‖eκ(b−a). Hence we obtain

that for τ > τ1, Ẽ(τ) ≤ c(τ)
∫ τ

0
‖(Lx)(t, b)‖2dt +

2c(τ)
c1

∫ τ−γ(b−a)

γ(b−a)
Ec(t)dt, with c(τ) = c1

2(τ−2γ(b−a)) . The

second inequality is obtained similarly with F (z) =∫ τ−γ(a−z)
γ(a−z) x>Lxdt.

Theorem 13. Consider the BCS defined by Theorem 4
with r(t) = 0, for all t ≥ 0. The finite dimensional
boundary controller of Definition 7 exponentially stabilizes
the BCS, provided Assumption 11 is satisfied.

Proof. Let σ > 0 be such that Sc ≥ σI. The time
derivative of the total energy satisfies

˙̃E = −v>QcRcQcv − u>c Scuc
≤ −v>QcRcQcv − σu>c uc, since Sc ≥ σI
= −v>QcRcQcv − σε1u>c uc − σε2u>c uc
= −v>QcRcQcv − σε1‖uc‖2 − σε2‖y‖2

= −v>QcRcQcv − σε1‖uc‖2 − σε2
(
‖y‖2 + ‖u‖2

)
+

σε2‖u‖2

with ε1 + ε2 = 1 and where we have used that uc = −y.
Using Assumption 11 we have

˙̃E ≤ −v>QcRcQcv
− σε1‖uc‖2 − σε2ε‖Lx(t, b)‖2 + σε2‖yc‖2.

Integrating this equation on t ∈ [0, τ ] we have

Ẽ(τ)− Ẽ(0) ≤ −
∫ τ

0

v>(t)QcRcQcv(t)dt

+

∫ τ

0

− σε1‖uc(t)‖2 − σε2ε‖Lx(t, b)‖2 + σε2‖yc(t)‖2dt.

Next choose τ sufficiently large such that Lemmas 9 and
12 hold. Using the latter lemma we have

Ẽ(τ)− Ẽ(0) ≤ −
∫ τ

0

v>QcRcQcv + σε1‖uc‖2dt

+
σε2ε

c(τ)

(
2c(τ)

c1

∫ τ

0

Ec(t)dt− Ẽ(τ)

)
+ σε2

∫ τ

0

‖yc‖2dt.



Grouping terms we have that

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤

−
∫ τ

0

v(t)>QcRcQcv(t)dt− σε1
∫ τ

0

‖uc(t)‖2dt

+σε2

(∫ τ

0

2ε

c1
Ec(t) + ‖yc(t)‖2dt

)
.

Using Lemma 10 with δ1 = 2ε
c1

we have

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤ −

∫ τ

0

v(t)>QcRcQcv(t)dt

+ σε2δ2

∫ τ

0

Ec(t)dt+ σ(ε2δ2 − ε1)

∫ τ

0

‖uc(t)‖2dt. (25)

Now, using Lemma 9 we obtain

Ẽ(τ)

(
1 +

σε2ε

c(τ)

)
− Ẽ(0) ≤

(σε2δ2ξ1 − 1)

∫ τ

0

v(t)>QcRcQcv(t)dt+

σ(ε2δ2(1 + ξ2)− ε1)

∫ τ

0

‖uc(t)‖2dt.

Since ε2 may be chosen to be arbitrarily small, i.e, ε2 � 1
and since ε1 = 1− ε2, we finally have that Ẽ(τ) ≤ c2Ẽ(0)
with c2 = 1(

1+
σε2ε

c(τ)

) < 1 which proves the theorem.

5. DNA-MANIPULATION PROCESS

In this section we focus on the stability analysis of
a controlled nanotweezer used for DNA manipulation
(Boudaoud et al., 2012). The tweezers is presented in
Figure 1.
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Fig. 1. DNA manipulation with PH control

The trapped DNA bundle has been approximated in
Ramirez and Le Gorrec (2013a) by a mass-spring-damper
system attached at the tip of the tweezer. Here we consider
a more accurate model made up by two spring-damper
systems interconnected to a moving load. The arm is
actuated on one side (by applying a force and a torque
at the point a) by using electrostatic forces generated by
a comb drive actuator, the beam being clamped to the
moving shuttle. We also assume that it is only possible
to measure the transversal and angular velocities at the
point a. The total system, may be divided into three
subsystems: the flexible arm, the DNA-bundle at the
tip of the gripper and the port Hamiltonian controller.
The flexible arm is modelled as a Timoshenko beam
(infinite dimensional system) while the DNA-bundle is

modelled as a finite dimensional mechanical system. The
subsystems are interconnected through their boundary
power conjugated port variables. .

5.1 The Timoshenko beam

The Timoshenko beam has been widely studied as a
distributed parameter port Hamiltonian system (Macchelli
and Melchiorri, 2004) and as BCS (Le Gorrec et al., 2005).
The exponential stability of the system has been proved for
static boundary feedback (Villegas, 2007; Villegas et al.,
2009). The BCS is defined as

∂

∂t

x1x2
x3
x4

 =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

P1

∂

∂z


Kx1
1

ρ
x2

EIx3
1

Iρ
x4

+

0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


︸ ︷︷ ︸

P0


Kx1
1

ρ
x2

EIx3
1

Iρ
x4

 (26)

where the following state (energy) variables have been
defined: x1 = ∂w

∂z (z, t) − φ(z, t) the shear displacement,

x2 = ρ(z)∂w∂t (z, t) the transverse momentum distribu-

tion, x3 = ∂φ
∂z (z, t) the angular displacement, and x4 =

Iρ
∂φ
∂t (z, t) the angular momentum distribution, for z ∈

(a, b), t ≥ 0, where w(t, z) is the transverse displacement
of the beam and φ(t, z) is the rotation angle of a filament
of the beam. The coefficients ρ(z), Iρ(z), E(z), I(z) and
K(z) are the mass per unit length, the rotary moment of
inertia of a cross section, Young’s modulus of elasticity, the
moment of inertia of a cross section, and the shear modulus
respectively. The matrices P1 and P0 defines the skew-
symmetric differential operator of order 1 acting on the
state space X = L2(a, b,R4), J = P1

∂
∂z + P0. The energy

of the beam is expressed in terms of the energy variables,

E = 1
2

∫ b
a

(
Kx2

1 + 1
ρx

2
2 + EIx2

3 + 1
Iρ
x2

4

)
dz = 1

2‖x‖
2
L. The

boundary port variables are obtained by using integration
by parts and factorization in order to define an extended
Dirac structure including the boundary (Le Gorrec et al.,
2005). They also can be directly parametrized from P1 (Le
Gorrec et al., 2005; Villegas, 2007) leading to:

[
f∂,Lx
e∂,Lx

]
=


(ρ
−1
x2)(b)− (ρ

−1
x2)(a)

(Kx1)(b)− (Kx1)(a)

(I
−1
ρ x4)(b)− (I

−1
ρ x4)(a)

(EIx3)(b)− (EIx3)(a)

(ρ
−1
x2)(b) + (ρ

−1
x2)(a)

(Kx1)(b) + (Kx1)(a)

(I
−1
ρ x4)(b) + (I

−1
ρ x4)(a)

(EIx3)(b) + (EIx3)(a)

 .
The control objective is to control the translational and
angular position of the DNA-bundle. The physical ports
are given by the translational force acting at the base of
the beam (input), and the translational velocity at the base
of the beam (output). All physical ports are hence located
on the point a of the beam and directly associated with
the dynamic of the suspension mechanism and/or base of
the beam. In order to achieve that the input and output
variables of the flexible arm coincide with the physical ones
we define the following input and outputs for the beam:

u = [v(b) ω(b) F (a) T (a)] , y = [F (b) T (b) −v(a) −ω(a)] ,

which is achieved by defining u = W
[
f∂,Lx
e∂,Lx

]
, y =

W̃
[
f∂,Lx
e∂,Lx

]
where



W =

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1

0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 1 0

 , W̃ =

0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0

1 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 −1

 .
It can by shown that with this choice of input and output
the system (26) defines a an abstract boundary control
system. Furthermore Ax = P1(∂/∂z)(Lx) + P0Lx with

domain D(A) =
{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lxe∂,Lx

]
∈ kerW

}
generates a contraction semigroup on X and the energy
balance equation is defined as: dE

dt = uT y

Remark 14. In our application case the Timoshenko beam
is fully actuated and sets of input/output are defined

by: [ uy ] = 1√
2

[
W

W̃

] [
P1 −P1

I I

] [ Lx(b)
Lx(a)

]
where [WT W̃T ]

T

and P1 are full rank. Then there exists an ε such that
‖u‖2 + ‖y‖2 ≥ ε‖Lx(b)‖2, and the BCS defined by the
Timoshenko beam satisfies Assumption 11.

5.2 DNA-bundle model

The DNA-bundle is represented by the simple spring-
damper + load + spring-damper system of Figure 2 and
thus admits a port Hamiltonian system representation. In
Figure 2, k1, k2, f1, f2 represent the positive constants of
the springs and the viscous dampers respectively, M is
the mass of the load, xc1, xc2 the relative positions. Let
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Fig. 2. DNA model

us denote with the sub-index b the system representing
the DNA-bundle. Then we can write by using vb = (xc2 −
xc1, xc2,Mẋc2)T , ub = [F (b) T (b)]

T
and yb = [v(b) ω(b)]

T
:

v̇b = (Jb −Rb)
dEb
dvb

+ gbub, yb = gTb
dEb
dvb

+ Sbub

with Eb the energy of the system (sum of the kinetic and
potential energies): Eb(xc2 − xc1, xc2,Mẋc2) = k1

2 (xc2 −
xc1)2 + k2

2 x
2
c2 + 1

2M (Mẋc2)2 and Jb =
[

0 0 0
0 0 1
0 −1 0

]
, Rb =[

k1
f1

0 0

0 0 0
0 0 f2

]
, gTb =

[
1
f1

0 1

0 0 0

]
, Sb =

[
1
f1

0

0 1
fθ

]
, where fθ is the

rotational damping constant at the interconnection point.
Note that this system is exponentially stable.

6. THE CONTROLLER

The controller is set at the base of the flexible arm, and
is free to design. Hence the controller should be selected
such that the conditions in Theorem 13 are satisfied. To
this end we chose the “a-part” of the controller as

v̇a = (Ja −Ra)
dEa
dva

+ gaua, ya = g>a
dEa
dva

+ Saua,

where va = [qa1 , qa2 , pa1 , pa2 ]>, qa1 , qa2 are the gener-
alized coordinates, Ja, Ra, Sa ∈ M4(R), Ja =

[
0 I
−I 0

]
,

Ra =
[
Ra1 0

0 Ra2

]
, Sa =

[
Sa1 0
0 Sa2

]
, ga = [ 0

I ] with Rai =

[
rai1 0

0 rai2

]
∈ M2(R), rai1 , rai2 > 0 ∈ R , Sai =[

Sai1 0
0 sai2

]
∈ M2(R), sai1 , sai2 > 0 ∈ R, i = 1, 2. The

Hamiltonian of the system is given by the virtual en-

ergy: Ea = 1
2

(
ka1q

2
a1 + ka2q

2
a2

)
+ 1

2

(
p2a1
ma

+
p2a2
mIa

)
where

ka1 , ka2 , ma,mIa are (positive) tuning parameters. The
inputs ua = [ua1 , ua2 ]> ∈ R2 may be identified with the
boundary variables of the beam at the point a, ua =
[−v(a),−ω(a)]>. The outputs correspond to input force
and torque of the beam at point a, ya = [F (a), T (a)]>.
The finite dimensional PHS hence corresponds to an input
strictly passive, exponentially stable system. The complete
finite dimensional PHS may hence be written by combin-
ing the PHS representing the suspension mechanism and
DNA-bundle,

v̇ =

[
Jb −Rb 0

0 Ja −Ra

]
dEc
dv

+

[
gb
ga

]
uc

yc =
[
g>b g>a

] dEc
dv

+

[
Sa 0
0 Sb

]
uc

The finite dimensional PHS is a strictly passive and
exponentially stable system with state v = [va, vb]

>,
Hamiltonian (storage) function Ec = Ea + Eb, input
uc = [ua, ub]

>, supply rate w = ucyc and quadratic

dissipation rate s = dEa
dva

>
Ra

dEa
dva

+ dEb
dvb

>
Rb

dEb
dvb

+u>a Saua+

u>b Sbub. Hence the microgripper i.e., the interconnection
of the flexible arm, DNA-bundle and controller is an
exponentially stable system by Theorem 13.

7. CONCLUSION

It has been shown that a large class of boundary control
systems are exponentially stable if they are interconnected
in a power preserving manner with an exponentially stable
input strictly passive linear finite dimensional system. The
result follows since the finite dimensional system dissipates
the energy flowing through the boundaries of the infinite
dimensional system. The assumptions made on the infinite
dimensional systems are that it is port-Hamiltonian and
that the norm of energy flowing through one boundary
is always less than sum of the norms of the input and
the output. This condition has to be checked in the
case of an interconnection with a subset of the boundary
port variables, the other ones being set to zero. The
assumptions on the finite dimensional system is that it is
exponentially stable and input strictly passive. The result
has been illustrated on the physical example of a DNA-
manipulation process. In this example the DNA-bundle is
modelled as a mechanical finite dimensional system and
the micro-gripper as an mechanical infinite dimensional
system (Timoshenko beam). The complete process consists
in the interconnection of these two systems and it is
shown using Theorem 13 that the system is exponentially
stable. Future work will deal with the relaxation of the
input strictly passive condition of the finite dimensional
controller.
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