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Abstract— Boundary controlled-port Hamiltonian systems
have proven to be of great use for the analysis and control
of a large class of systems described by partial differential
equations. The use of semi-group theory, combined with the
underlying physics of Hamiltonian systems permits to prove
existence, well-possessedness and stability of solutions using
constructive techniques. On other hand, the differential geomet-
ric representation of these systems has lead to finite dimension
approximation methods that conserves physical properties such
as the interconnection structure and the energy. These results
are applied to the modelling and control of a class of nan-
otweezers used for DNA-manipulation. The Nanotweezer may
be modelled as a flexible beam interconnected with a finite
dimensional dynamical system representing the manipulated
object. A boundary controlled-port Hamiltonian model for
the ensemble and an exponentially stabilizing controller are
proposed. A geometric approximation scheme is used to reduce
the infinite dimensional system and numerical simulations of
the closed-loop system presented.

!! !!!

Introduction
Biocharacterizations on DNA

Control of tweezers
Conclusions

Single molecule techniques
Silicon nanotweezers for DNA experiments

Design of the silicon nanotweezers

[Yamahata2008]

lafitte@iis.u-tokyo.ac.jp PhD defense (Nicolas LAFITTE) 11 / 57

Fig. 1. Silicon nanotweezers

I. INTRODUCTION

Recent technological progresses have made possible the
manipulation of single biological molecules by using several
devices or methods such as: magnetic tweezers [1], [2],
optical tweezers [3], AFM cantilevers [4] and microfibers
[5], [6]. The single molecule manipulation is of great interest
in order to elucidate their basic characteristics and is of
particular interest in the case of DNA molecules [7]. Some
promising tools for the manipulation of DNA molecules are
silicon nanotweezers, (Figure 1).

The principle of silicon nanotweezers is to trap DNA
bundle between the two arm tips by using dielectrophore-
sis and to characterize the DNA mechanical properties by
using electrostatic actuation. Such actuator has been used
for the monitoring of enzymatic reactions on DNA. It has
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been shown that nanotweezers are so sensitive to the DNA
stiffness variation that it becomes flexible. As a consequence,
current microfabrication processes tend to reduce the thick-
ness of the beams in order to improve the sensitivity of the
actuator. This naturally leads to control problems that may
be formulated in the frame of Boundary Control Systems
[8]. The work proposed in this paper has been done in the
perspective of very compliant actuators.

In this paper we propose to use the framework of port
Hamiltonian system for the modelling, control and simula-
tion of a class of nanotweezers. Indeed, this framework is
particularly adapted for the case of interconnected systems
with some interesting perspectives for the generalization to
the manipulation in liquid phase (multiphysic modelling).
Furthermore recent results on the stabilization of boundary
control systems by using dynamic boundary port Hamilto-
nian controllers have been given in [9], [10]. These results are
recalled and applied to the system under study. The results
are validated by numerical simulations of a discretized model
of the closed-loop system. The model approximation is
performed by using a geometric discretization method [11],
which preserves the geometric structure and energetic prop-
erties of the boundary controlled-port Hamiltonian model.
The paper is organized as follows. In Section II the port
Hamiltonian model of the nanotweezer is presented. The
model consist of the interconnection of a flexible beam, mod-
elled as a Timoshenko beam, and a DNA-bundle, modelled
as a mass-spring-damper system. In Section III the stability
analysis of the ensemble twezeer - DNA bundle - controller
is analysed using the framework of boundary controlled
systems. Section IV presents the geometric reduction of
the closed-loop system and some numerical simulations of
the displacement of the DNA-bundle. Finally some closing
remarks are given in Section V

II. PORT HAMILTONIAN MODELLING OF NANOTWEEZERS

A simplified model of a nanotweezer used for DNA
manipulation [12] is presented in Figure 2. The trapped DNA
bundle is approximated by a mass spring system attached
at the tip of the tweezer. The arm is actuated by using
electrostatic forces generated by a comb drive actuator. In
this paper we do not represent the shuttle and suspension
system and consider that we can directly control the force
and the torque at the point a. We also assume that it is only
possible to measure the transversal and angular velocities
at the point a. The total system, may be divided into three
subsystems (Figure 3) the flexible arm, the DNA-bundle at
the tip of the gripper and the port Hamiltonian controller. The
flexible arm is modelled as a Timoshenko beam (infinite di-
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Fig. 2. DNA manipulation through port Hamiltonian control!
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Fig. 3. Interconnexion and control strategy

mensional system) while the DNA-bundle may be modelled
as a finite dimensional mechanical system. The subsystems
are interconnected through their boundary power conjugated
port variables. In Figure 3 the interconnection boundary port
variables as well as the causality (depicted with arrows) are
given .

A. The Timoshenko beam

The Timoshenko beam has been widely studied as a
distributed parameter port Hamiltonian system [13] and as
BCS [14] and the exponential stability of the system has
been proved for static boundary feedback [15], [16]. The
BCS is defined as

∂

∂t


x1
x2
x3
x4

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

P1

∂

∂z


Kx1
1
ρx2
EIx3
1
Iρ
x4



+


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


︸ ︷︷ ︸

P0


Kx1
1
ρx2
EIx3
1
Iρ
x4

 (1)

where the following state (energy) variables have been
defined: x1 = ∂w

∂z (z, t) − φ(z, t) the shear displacement,
x2 = ρ(z)∂w∂t (z, t) the transverse momentum distribution,

x3 = ∂φ
∂z (z, t) the angular displacement, and x4 = Iρ

∂φ
∂t (z, t)

the angular momentum distribution, for z ∈ (a, b), t ≥ 0,
where w(t, z) is the transverse displacement of the beam
and φ(t, z) is the rotation angle of a filament of the beam.
The coefficients ρ(z), Iρ(z), E(z), I(z) and K(z) are the
mass per unit length, the rotary moment of inertia of a
cross section, Youngs modulus of elasticity, the moment of
inertia of a cross section, and the shear modulus respec-
tively. The matrices P1 and P0 defines the skew-symmetric
differential operator of order 1 acting on the state space
X = L2(a, b,R4), J = P1

∂
∂z +P0. The energy of the beam

is expressed in terms of the energy variables,

E =
1

2

∫ b

a

(
Kx21 +

1

ρ
x22 + EIx23 +

1

Iρ
x24

)
dz

=
1

2

∫ b

a

x(z)>(Lx)(z)dz = 1

2
‖x‖2L

The boundary port variables are obtained by using integration
by parts and factorization in order to define an extended
Dirac structure including the boundary [14]. They also can
be directly parametrized from P1 [14], [15] leading to:

[
f∂,Lx
e∂,Lx

]
=



(ρ−1x2)(b)− (ρ−1x2)(a)
(Kx1)(b)− (Kx1)(a)

(I−1ρ x4)(b)− (I−1ρ x4)(a)
(EIx3)(b)− (EIx3)(a)
(ρ−1x2)(b) + (ρ−1x2)(a)
(Kx1)(b) + (Kx1)(a)

(I−1ρ x4)(b) + (I−1ρ x4)(a)
(EIx3)(b) + (EIx3)(a)


.

The control objective is to control the translational and
angular position of the DNA-bundle. The physical ports are
given by the translational force acting at the base of the beam
(input), and the translational velocity at the base of the beam
(output). All physical ports are hence located on the point
a of the beam and directly associated with the dynamic of
the suspension mechanism and/or base of the beam. In order
to achieve that the input and output variables of the flexible
arm coincide with the physical ones we define the following
input and outputs for the beam:

u =
[
v(b) ω(b) F (a) T (a)

]
,

y =
[
F (b) T (b) −v(a) −ω(a)

]
,

(2)

which is achieved by defining

u =W

[
f∂,Lx
e∂,Lx

]
, y = W̃

[
f∂,Lx
e∂,Lx

]
,

where

W =


1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1
0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0

 ,

W̃ =


0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1

 .



It can by shown that with this choice of input and output the
system (1) defines a an abstract boundary control system.
Furthermore Ax = P1(∂/∂z)(Lx) + P0Lx with domain

D(A) =
{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lx(t)e∂,Lx(t)

]
∈ kerW

}
generates a contraction semigroup on X and the energy
balance equation is defined as:

dE

dt
= uT y

B. DNA-bundle
The DNA-bundle may be modelled as ideal mass-spring-

damper systems, and thus admits a port Hamiltonian system
representation. Let us denote with the sub-index b the system
representing the DNA-bundle. Then we may write

v̇b = (Jb −Rb)
dEb
dvb

+ gbub

yb = g>b
dEb
dvb

,

where vb = [qb1 , qb2 , pb1 , pb2 ]
>, qb1 , qb2 are the generalized

coordinates, with qb1 the distance from the equilibrium
configuration and qb2 the rotation angle, pb1 , pb2 are the
transversal and rotational generalized momenta respectively,
Jb = −J>b , Rb = R>b > 0 ∈ R4 × R4, the interconnection
and damping matrices respectively, defined as

Jb =

[
0 I
−I 0

]
, Rb =

[
0 0
0 Cb

]
,

with Cb =
[
cb1 0
0 cb2

]
∈ R2 × R2, where cb1 , cb2 ∈ R are the

scalar damping coefficients corresponding to the transversal
and rotational translation respectively. The Hamiltonian of
the system is given by the kinetic and elastic energy:

Eb =
1

2

(
kb1q

2
b1 + kb2q

2
b2

)
+

1

2

(
p2b1
mb

+
p2b2
mIb

)
where kb1 , kb2 are the translational and rotational spring
coefficients respectively and mb,mIb are the mass and
moment of inertia respectively. The total force acting on
the DNA bundle, is completed with the contribution of the
transversal and angular force at point b, of the beam. Hence
the input map is gb ∈ R4×R2, gb =

[
0 I

]>
and the inputs

ub = [ub1 , ub2 ]
> ∈ R2 may be identified with the boundary

variables of the beam at the point b

ub =

[
ub1
ub2

]
=

[ ∂E
∂x2

(b)
∂E
∂x4

(b)

]
=

[
F (b)
T (b)

]
.

The outputs correspond to the transversal and angular veloc-
ity of the mass at the point b, and as it has seen it corresponds
to the inputs at the point b, for the flexible arm. The finite
dimensional PHS of the DNA-bundle is given by

v̇b =

[
0 I
−I −Cb

]
dEb
dv

+

[
0 0
I 0

]
ub

yb =
[
0 I

] dEb
dv

and corresponds to a strictly passive system with quadratic
dissipation rate s = dEb

dvb

>
Cb

dEb
dvb

.

III. STABILITY ANALYSIS AND CONTROL DESIGN

In this section we just recall some stability results of
dynamic boundary control systems. In [15] it is shown that
a power conserving interconnection , i.e.,

u = r − yc,
y = uc,

(3)

with r ∈ Rn the new input of the system, of a impedance
energy preserving BCS, i.e., that satisfies 1

2
d
dt‖x(t)‖

2
L =

u(t)y(t), and a linear strictly positive real (SPR) finite
dimensional system defines again a BCS on an extended
space. This property is detailed in Theorem 1.

Theorem 1. [15] Let the state of the open-loop BCS satisfy
1
2
d
dt‖x(t)‖

2
L = u(t)y(t). Consider a LTI strictly passive

finite dimensional system with storage function Ec(t) =
1
2 〈v(t), Qcv(t)〉Rm , Qc = Q>c > 0 ∈ Rm × Rm. Then the
feedback interconnection of the BCS and the finite dimen-
sional system is again a BCS on the extended state space
x̃ ∈ X̃ = X×V with inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L+
〈v1, Qcv2〉V . Furthermore, the operator Ae defined by

Aex̃ =

[
JL 0
BcC Ac

] [
x
v

]
with

D(Ae) ={[
x
v

]
∈
[
X
V

] ∣∣∣Lx ∈ HN (a, b;Rn),

f∂,Lxe∂,Lx
v

 ∈ ker W̃D

}
,

where
W̃D =

[
(W +DcW̃ Cc)

]
generates a contraction semigroup on X̃ .

In [15] it is shown that asymptotic stability of closed loop
system can be proved as long as the finite dimensional system
is a positive system. It has also been proved that in the case
of static feedback exponential stability can be achieved if the
feedback is strictly positive [16]. These results have recently
been extended and in [9], [10] it has been shown that these
results can be generalized to strictly passive controllers.

Theorem 2. [9], [10] Consider the BCS defined by Theorem
1 with r(t) = 0, for all t ≥ 0. If the linear finite dimensional
control system is strictly passive, then the BCS system is
exponentially stable.

Now, for the ensemble nanotweezer - DNA bundle -
controller, the control strategy consists in applying a constant
force F ∗a to drive the system to the desired equilibrium
configuration q∗b . The control is completed with a transversal
and angular velocity feedback loop in the point a in order to
stabilize the system around some equilibrium q∗b . The prob-
lem is similar to the one solved in [10], [13] using energy
shaping methods, but we will exploit the port Hamiltonian
structure of the global system to define a BCS and use
Theorem 2 to guarantee exponential stability.



It remains to consider a controller at the point a. To this
end a simple static velocity feedback loop is considered

ya1 = −k1v(a), ya2 = −k2ω(a).

where k1, k2 > 0 are the control gains. This feedback
introduces dissipation at the point a and is the most simples
case of interconnection of dissipative system. Hence the
dissipation of the complete extended system is given by s =
dEa
dva

>
Ca

dEa
dva
−k1 ∂E∂x1

2
(a)−k2 ∂E∂x3

2
(a) implying specifically

that we can increase the damping of the system.

IV. SPATIAL REDUCTION AND SIMULATION

Sections II and III present abstract formulations for the
construction of the mathematical model of the system and the
synthesis of the controller. In this section we exploit the port
Hamiltonian structure of the abstract control system to reduce
it to an explicit finite dimensional port Hamiltonian system,
which can be simulated using standard numerical algorithms.
To this end the mixed-finite element discretization method
proposed in [11] is used. The method is based in approximat-
ing flows and efforts with differential forms related to their
physical (geometrical) natural. In the case of the Timoshenko
beam, defined on a one-dimensional spatial domain, we
distinguish between zero forms (functions), corresponding to
the efforts (force and torque) and one-forms, corresponding
to the flows (translational and angular velocities). The reader
is referred to [11], [17]–[20] for detailed revisions of the
method, and to [21] for its application to the flexible beam.

A. Power preserving discretization

The infinitesimal energy variables (flow variables) are
denoted by fxi , i = 1, . . . , 4, and corresponds to the partial
derivative with respect to time of the state variables. Their
approximation on an infinitesimal section Lab of an one
dimensional spatial domain L is given by

fxi(t, z) = fxiabω
xi
ab(z) (4)

where the one-forms ωxiab satisfy∫
Lab

ωxiab = 1.

The co-energy variables (infinitesimal efforts) are denoted
by exi and corresponds to the variational derivative of the
Hamiltonian (energy). Their approximation on Lab is given
by

exi(t, z) = exia ω
xi
a (z) + exib ω

xi
b (z), (5)

where the zero-forms ωxia , ωxib , satisfy

ωa(a)
xi = 1, ωa(b)

xi = 0, ωb(a)
xi = 0, ωb(b)

xi = 1.

The dynamic equations of the flexible structure may then be
approximated by replacing (4) and (5) in (1) as follows

fx1

ab ω
x1

ab = ex2
a dω

x1
a + ex2

b dω
x2

b − e
x4
a ω

x4
a dz − e

x4

b ω
x4

b dz

fx2

ab ω
x2

ab = ex1
a dω

x1
a + ex1

b dω
x1

b

fx3

ab ω
x3

ab = ex4
a dω

x4
a + ex4

b ω
x4

b

fx4

ab ω
x4

ab = ex3
a dω

x3
a + ex3

b dω
x3

b + ex1
a ω

x1
a dz + ex1

b ω
x1

b dz

where d denotes the exterior derivative of differential forms
[22]. From the previous relation the following compatibility
conditions between one and zero forms are deduced

−ωxiab = dωxia ωxiab = dωxib∫
Lab

ωx4
a dz ω

x1

ab = ωx4
a dz

∫
Lab

ωx4

b dz ω
x1

ab = ωx4

b dz∫
Lab

ωx1
a dz ω

x4

ab = ωx1
a dz

∫
Lab

ωx1

b dz ω
x4

ab = ωx1

b dz

(6)

Using the compatibility conditions an algebraic relation
between the approximated flows and efforts is obtained

fx1

ab = ex2

b − e
x2
a −

∫
Lab

ωx4
a dz e

x4
a −

∫
Lab

ωx4

b dz e
x4

b

fx2

ab = ex1

b − e
x1
a

fx3

ab = ex4

b − e
x4
a

fx4

ab = ex1

b − e
x1
a +

∫
Lab

ωx1
a dz e

x1
a +

∫
Lab

ωx1

b dz e
x1

b

(7)

Since the goal is to achieve a finite dimensional port
Hamiltonian system it is necessary to guarantee that the
approximated system in energy preserving. To this end
the net power of the infinitesimal section is calculated
Pnet
ab =

∑4
i=1

∫
Lab f

xiexi + fBeB , where fBeB is the
energy flowing through the boundaries of the system. To
identify the port-variables of the discretized interconnection
structure Pnet

ab is expressed in terms of the approximated
flows and efforts, and using the compatibility conditions we
obtain (6)

Pnet
ab =

4∑
i=1

fxiab e
xi
a b+ fBeB , (8)

where

ex1

ab = α′ex1
a + αex1

b , ex2

ab = αex2
a + α′ex2

b ,

ex3

ab = α′ex3
a + αex3

b , ex4

ab = αex4
a + αex4

b ,
(9)

correspond to the generalized efforts, with α ∈ [0, 1], α =∫
Lab ω

x1

b (z)ωx1

ab (z), α
′ = 1−α and where fBeB = ex1

b e
x3

b +
ex2

b e
x4

b −ex1
a e

x3

b −ex2
a e

x4
a . The generalized efforts (9) are the

conjugated efforts of the approximated flow variables, and
permit to express the net power (8) as the scalar pairing

Pnet
ab = 〈eab|fab〉 =

4∑
i=1

fxiab e
xi
ab + fBeB ,

where fab = [fx1

ab , f
x2

ab , f
x3

ab , f
x4

ab , f
B ] and eab =

[ex1

ab , e
x2

ab , e
x3

ab , e
x4

ab , e
B ]. Hence from (7) and (9) the following



implicit system is obtained

0 0 0 0 0 0 0 0
0 0 0 0 −α α′ 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −α α′

−1 0 0 0 1 1 β −β′
0 −1 0 0 0 0 1 1
0 0 −1 0 0 0 1 1
0 0 0 −1 0 0 0 0


︸ ︷︷ ︸

Fab



fx1

ab

fx2

ab

fx3

ab

fx4

ab

−ex2
a

ex2

b

−ex4
a

ex4

b


+



−1 0 0 0 α′ α 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 α′ α
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 β β′ −1 1


︸ ︷︷ ︸

Eab



ex1

ab

ex2

ab

ex3

ab

ex4

ab

ex1
a

ex1

b

ex3
a

ex3

b


= 0

(10)

where β ∈ [0, b−a], β =
∫
Lab ω

x2
a and β′ = (b−a)−β. The

implicit system (10) actually defines a Dirac structure [23],
thus implying that the discretized interconnection structure
of the infinitesimal section of the Timoshenko beam is power
preserving. For simulation and control design purposes it
may be convenient to have an explicit representation of
(10). This is easily achieved by properly assigning the
input and the outputs at the boundaries. In particular, the
choice of inputs and outputs (2) leads to the following port
Hamiltonian system

ẋab1
ẋab2
ẋab3
ẋab4

 =


0 − 1

α 0 −β
α

1
α 0 0 0
0 0 0 − 1

α
β
α 0 1

α 0



∂Eab
∂xab1
∂Eab
∂xab2
∂Eab
∂xab3
∂Eab
∂xab4

+


0 0 1

α 0
− 1
α 0 0 0
0 0 0 1

α
0 − 1

α 0 0



uab1
uab2
uab3
uab4

 ,

yab1
yab2
yab3
yab4

 =


0 − 1

α 0 0
0 0 0 − 1

α
1
α 0 0 0
0 0 1

α 0



∂Eab
∂xab1
∂Eab
∂xab2
∂Eab
∂xab3
∂Eab
∂xab4


where ẋabi , Eab, uabi and yabi correspond respectively, to the
discretized state variables, Hamiltonian function, input and
output port variables on the infinitesimal section Lab. In this
case the zero forms have been chosen such that α = 1 (α′ =
0) and β = b− a (β′ = 0).

To obtain the complete model of the beam, the infinitesi-
mal sections are interconnected in a power preserving man-
ner. The efforts of the section j that represent outputs in b
are interconnected with the efforts of j + 1 that represent

Fig. 4. Open-loop response, k1 = k2 = 0.

Fig. 5. Closed-loop response, k1 = k2 = 1.

the inputs in a, and the same for the physical flows. In
this case the interconnection of the infinitesimal sections are
performed as uab1 (j + 1) = yab3 (j), uab2 (j + 1) = yab4 (j),
uab3 (j) = −yab1 (j + 1) and uab4 (j) = yab3 (j + 1).

B. Simulations

Figures 4 and 5 show the transversal position of the
DNA-bundle when a step input of force at time t = 0 is
applied at the base of the nanotwezeer. All the numerical
parameters of the Timoshenko beam and the DNA-bundle
have been selected equal to one (= 1) in the simulations,
the Timoshenko beam has been divided in 10 infinitesimal
subsections, L = 1, and b− a = 0.1. From Figure 4 (open-
loop response) it may be observed that the system is always
exponentially stable since the DNA-bundle acts as strictly
passive controller (Theorem 2). However, the static feedback
at the point a introduces additional damping to the system
and, as expected, the closed-loop system reaches the desired
equilibrium considerably faster as may be observed in Figure
5.



V. FINAL REMARKS

The port Hamiltonian framework has been used to model,
control, reduce and simulate a class of nanotweezers used
for DNA-manipulation. The ensemble nanotweezer - DNA
bundle - controller has been formulated as an abstract control
system, namely a boundary controlled port Hamiltonian
system and using semi-group theory it has then been shown
that the closed-loop system is exponentially stable. The
infinite dimensional system has then been approximated as
a finite dimensional port Hamiltonian system by using a
power preserving discretization scheme that preserves the
geometric structure and the energy of the system. Using the
approximated model numerical simulations have been carried
out to illustrate the results.

The main contribution of this work is to show how the port
Hamiltonian framework may be used for practical modelling
and control of complex physical systems, in particular a class
of nanotweezers for DNA manipulation. We started with an
abstract formulation and ended with numerical simulation
conserving in every step the physical properties of the
system. Future work will deal with the practical implemen-
tation of the control scheme using the experimental set-up
presented in Figure 1, and with more complex submodels for
the DNA-bundle and the controller.

REFERENCES

[1] F. Amblard, B. Yurke, A. Pargellis, and S. Leibler, “A magnetic ma-
nipulator for studying local rheology and micromechanical properties
of biological systems,” Review of Scientific Instruments, vol. 67, no. 3,
pp. 818–827, 1996.

[2] C. Gosse and V. Croquette, “Magnetic tweezers: micromanipulation
and force measurement at the molecular level,” Biophysical Journal,
vol. 82, no. 6, pp. 3314–3329, 2002.

[3] R. Simmons, J. Finer, S. Chu, and J. Spudich, “Quantitative measure-
ments of force and displacement using an optical trap,” Biophysical
Journal, vol. 70, no. 4, pp. 1813–1822, 1996.

[4] E. Florin, V. Moy, and H. Gaub, “Adhesion forces between individual
ligand-receptor pairs,” Science, vol. 264, no. 5157, p. 415, 1994.

[5] A. Ishijima, T. Doi, K. Sakurada, and T. Yanagida, “Sub-piconewton
force fluctuations of actomyosin in vitro,” Nature, 1991.

[6] P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. Viovy, D. Chatenay, and
F. Caron, “Dna: an extensible molecule,” Science, vol. 271, no. 5250,
p. 792, 1996.

[7] C. Bustamante, Z. Bryant, and S. Smith, “Ten years of tension: single-
molecule dna mechanics,” Nature, vol. 421, no. 6921, pp. 423–427,
2003.

[8] R. Curtain and H. Zwart, An introduction to infinite-dimensional linear
systems theory, ser. Texts in applied mathematics. New York, USA:
Springer-Verlag, 1995.

[9] H. Ramirez and Y. L. Gorrec, “Exponential stability of a class of pdes
with dynamic boundary control,” in Submitted to the American Control
Conference, Washington, DC, June 17 - 19 2013.

[10] A. Macchelli, “Boundary energy shaping of linear distributed port-
Hamiltonian systems,” in Proceedings of the 4th IFAC workshop
on Lagrangian and Hamiltonian methods for non-linear control,
Bertinoro, Italy, August 2012.

[11] G. Golo, V. Talasila, A. van der Schaft, and B. Maschke, “Hamiltonian
discretization of boundary control systems,” Automatica, vol. 40, no. 5,
pp. 757 – 771, 2004.

[12] M. Boudaoud, Y. Haddab, and Y. Le Gorrec, “Modeling and optimal
force control of a nonlinear electrostatic microgripper,” Mechatronics,
IEEE/ASME Transactions on, vol. PP, no. 99, pp. 1 –10, 2012.

[13] A. Macchelli and C. Melchiorri, “Modeling and control of the Tim-
oshenko beam. the distributed port Hamiltonian approach,” SIAM
Journal on Control and Optimization, vol. 43, no. 2, pp. 743–767,
2004.

[14] Y. Le Gorrec, H. Zwart, and B. Maschke, “Dirac structures and
boundary control systems associated with skew-symmetric differential
operators,” SIAM Journal on Control and Optimization, vol. 44, no. 5,
pp. 1864–1892, 2005.

[15] J. A. Villegas, “A port-Hamiltonian approach to distributed parameter
systems,” Ph.D. dissertation, Universiteit Twente, 2007.

[16] J. Villegas, H. Zwart, Y. Le Gorrec, and B. Maschke, “Exponential
stability of a class of boundary control systems,” IEEE Transactions
on Automatic Control, vol. 54, pp. 142–147, 2009.
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