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Abstract— We show that a finite dimensional strictly passive
linear controller exponentially stabilizes a large class of partial
differential equations which are actuated through its boundaries
on a one dimensional spatial domain. This is achieved by
extending existing results on exponential stability of boundary
control system with static boundary control to the case with
dynamic boundary control. The approach is illustrated on a
physical example.

I. INTRODUCTION

Boundary control systems (BCS) [1] are a class of abstract
systems which models partial differential equations (PDEs)
with the control and the observations at the boundary of
its spatial domain. A large class of physical systems may
be modelled as BCS, and very powerful results on well-
posedness and stability have been reported for the ones
formulated using the framework of infinite dimensional port-
Hamiltonian system [2]–[5]. More specifically in [4] it has
been shown that a clever choice of the boundary conditions
(static feedback) render the BCS exponentially stable, and
in [3] it has been shown that for a class of BCS arising
from the modelling of physical systems, a power preserving
interconnection with a finite dimensional strictly positive real
(SPR) [6] linear system (dynamic boundary control) results
in an asymptotically stable BCS on an extended space. In
this paper we extend the exponential stability result to BCS
with linear dynamic boundary control. We show that if the
linear finite dimensional controller is strictly passive, then
the closed-loop BCS is exponentially stable on an extended
space. This result permits to elegantly, and quite easily, prove
the exponential stability for a large class of linear controllers,
in particular those arising from energy shaping methods
using Casimir functions [7], [8].

The paper is organized as follows. In Section II and III
we give the preliminaries on BCS and dynamic boundary
control. In Section IV we derive the main result of the paper.
Section V presents a physical example and in Section VI we
give some final remarks.

II. BOUNDARY CONTROL SYSTEMS

In the following we will briefly recall the main definitions
of the BCS of interest. The reader is referred to [2], [4] and
in particular to [3], [5] for further details on BCS and to
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[1] for a complete exposition of infinite dimensional linear
system theory.

We will follow the same notation as in [4], thus Mn(H)
denotes the space of square n×n matrices whose entries lie
in the vector space H. By 〈·, ·〉R we denote de inner product
on R or Rn, and 〈·, ·〉L2

, or simply 〈·, ·〉 denotes the standard
inner product on L2(a, b,Rn). The Sobolev space of order k
is denoted by Hk(a, b,Rn). We say that a symmetric matrix
is positive definite, in short M > 0, if all its eigenvalues
are positive, and positive semi-definite, in short M ≥ 0 if
its eigenvalues are non-negative. A self-adjoint operator L
is coercive on an inner product space X if there exists an ε
such that L ≥ εI . The systems under study are described by
the following PDE

∂x

∂t
= P1

∂

∂z
(L(z)x)(t, z)) + P0L(z)x(t, z), (1)

z ∈ (a, b), satisfying the following assumption.

Assumption 1. P1 ∈ Mn(R) is a non-singular symmetric
matrix, P0 = −P>0 ∈ Mn(R), and x takes values in
Rn. Furthermore, L(·) ∈ Mn(L2(a, b)) is a bounded and
continuously differentiable matrix-valued function satisfying
for all z ∈ (a, b), L(z) = L(z)> and L(z) > mI , with m
independent from z.

For simplicity L(z)x(t, z) will be denoted by (Lx)(t, z).
The state space is defined as X = L2(a, b;Rn) with
inner product 〈x1, x2〉L = 〈x1,Lx2〉 and norm ‖x1‖2L =
〈x1, x1〉L. Hence X is a Hilbert space. Note that the natural
norm on X and the L2 norm are equivalent. The reason for
selecting this space os that ‖ · ‖2 is usually proportional to
the energy function of the system.

Definition 2. [2] Let Lx ∈ H1(a, b;Rn). Then the boundary
port variables associated with system (1) are the vectors
e∂,Lx, f∂,Lx ∈ Rn, defined by[

f∂,Lx
e∂,Lx

]
=

1√
2

[
P1 −P1

I I

] [
(Lx)(b)
(Lx)(a)

]
.

Note that the port variables are linear combinations of the
boundary variables. Let us define the matrix Σ ∈ M2n(R)
as follows

Σ =

[
0 I
I 0

]
. (2)

Theorem 3. [2] Let W be a n× 2n real matrix. If W has
full rank and satisfies WΣW> ≥ 0, where Σ is defined in
(2), then the system (1), satisfying Assumption 1, with input

u(t) = W

[
f∂,Lx(t)
e∂,Lx(t)

]



is a boundary control system on X . Furthermore, the oper-
ator Ax = P1(∂/∂z)(Lx) + P0Lx with domain

D(A) =
{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lx(t)e∂,Lx(t)

]
∈ kerW

}
generates a contraction semigroup on X .

Let W̃ be a full rank matrix of size n × 2n with
[
W
W̃

]
invertible and let PW,W̃ be given by

PW,W̃ =

([
W

W̃

]
Σ

[
W

W̃

]>)−1
=

[
WΣW> WΣW̃>

W̃ΣW> W̃ΣW̃>

]−1
.

Define the output of the system as the linear mapping C :
L−1H1(a, b;Rn)→ Rn,

y = Cx(t) := W̃

[
f∂,Lx(t)
e∂,Lx(t)

]
.

Then for u ∈ C2(0,∞;Rk), Lx(0) ∈ H1(a, b;Rn), and
u(0) = W

[
f∂,Lx(0)

e∂,Lx(0)

]
the following balance equation is

satisfied:

1

2

d

dt
‖x(t)‖2L =

1

2

[
u(t)> y(t)>

]
PW,W̃

[
u(t)
y(t)

]
. (3)

Remark 4. The matrix PW,W̃ is defined if and only if
[
W
W̃

]
invertible. The input and output of the system are acting
on the boundary of the spatial domain, hence the system
can only exchange energy with its environment through the
boundaries. Finally let us do the remark that the balance
equation (3) usually equals the energy of the system and
that it may be rewritten as

1

2

d

dt
‖x(t)‖2L =

1

2

[
〈(Lx)(t, b), P1(Lx)(t, b)〉R

− 〈(Lx)(t, a), P1(Lx)(t, a)〉R
]
. (4)

In [4] sufficient conditions for the exponential stability
of the BCS of Theorem 3 have been given. The following
Lemma is key to prove the exponential stability.

Lemma 5. [4], [5] Consider a BCS as described in Theorem
3 with u(t) = 0, for all t ≥ 0. Then the energy of the system
E(t) = (1/2)‖x(t)‖2L satisfies for τ large enough

E(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, b)‖2Rdt, and

E(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, a)‖2Rdt,

where c is a positive constant that only depends on τ .

Using Lemma 5 it is possible to show (see [4] or [5])
that the BCS is exponentially stable if the energy of the
system satisfies (dE/dt) ≤ −k‖(Lx)(t, b)‖2R or (dE/dt) ≤
−k‖(Lx)(t, a)‖2R for some positive constant k. This condi-
tion is satisfied if the boundary conditions of the system are
selected such that the (2, 2)-block of the matrix PW,W̃ is
negative definite.

III. DYNAMIC BOUNDARY CONTROL

Dynamic control boundary implies that the BCS system
is controlled through it boundaries with a dynamic control
system. This implies that the boundary conditions of the
infinite dimensional system are changing dynamically. In
order to use some existing results from [3] we assume the
following.

Assumption 6. The dynamic controller is linear, finite di-
mensional and strictly passive.

Let us briefly recall the concepts of dissipative, passive
and positive real system for finite dimensional systems. The
reader is referred to [6], [9], [10] for further details. Consider
a linear system

v̇ = Acv +Bcuc

yc = Ccv +Dcuc
(5)

with state space v ∈ V = Rm, set of input values uc ∈
Uc = Rn and set of output values yc ∈ Y = Rn. The set
Uc of admissible inputs consists of all Uc-valued piecewise
continuous functions defined on R. Ac, Bc, Cc and Dc are
constant real matrices of dimension m×m, m×n, n×m and
n×n respectively. Assume without loss of generality that the
vector field Acv has at least one equilibrium: A·0 = 0. Let w
be a real valued function defined on U×Y , called the supply
rate. We assume that for any uc ∈ U and for any v(0) ∈ V ,
the output yc(t) of (5) is such that w(t) = w(uc(t), yc(t))
satisfies ∫ τ

0

|w(t)|dt <∞ for all τ ≥ 0. (6)

Definition 7. [10] A system of the form (5) with supply rate
w is said to be dissipative if there exists a C0 non-negative
function Ec : V → R, called the storage function, such that
for all uc ∈ Uc, v(0) ∈ V , t ≥ 0

Ec(τ)− Ec(0) ≤
∫ τ

0

w(t)dt

The above inequality is called the dissipation inequality.
A particularly important special class of dissipative systems
are the ones with supply rate given by the inner product.

w = 〈yc, uc〉 = u>c yc.

Definition 8. [10] A system of the form (5) is said to be
passive if it is dissipative with supply rate w = 〈uc, yc〉, and
the storage Ec satisfies Ec(v = 0) = 0.

Hence, (5) is passive if there exists a C0 non-negative
function Ec : V → R, which satisfies Ec(0) = 0, such that

Ec(τ)− Ec(0) ≤
∫ τ

0

u>c (t)yc(t)dt.

Definition 9. [10] A passive system (5) with storage function
Ec is said to be strictly passive if there exists a positive
definite function, called the dissipation rate, s : V → R
such that for all uc ∈ U , v(0) ∈ V , t ≥ 0

Ec(τ)− Ec(0) =

∫ τ

0

u>c (t)yc(t)dt−
∫ t

0

s(v(t))dt. (7)



Passive systems encompass a very large class of systems,
in particular port Hamiltonian systems with dissipation [6],
[11], [12]. Passive systems are also positive real systems [10].
The latter can be defined as follows.

Definition 10. [10] A system (5) is said to be positive real
if for all uc ∈ U , t ≥ 0

0 ≤
∫ τ

0

u>c (t)yc(t)dt (8)

whenever v(0) = 0.

In [3] it is shown that a power conserving interconnection
[12], i.e.,

u = r − yc,
y = uc,

(9)

with r ∈ Rn the new input of the system, of a impedance
energy preserving BCS, i.e., that satisfies 1

2
d
dt‖x(t)‖2L =

u(t)y(t), and a linear strictly positive real (SPR) finite
dimensional system defines again a BCS on an extended
space. SPR is a more restrictive condition than strict passivity
[6]. It is possible to relax this condition on the controller and
show that the power conserving interconnection with a linear
strictly passive controller defines a BCS.

Theorem 11. [3] Let the state of the open-loop BCS satisfy
1
2
d
dt‖x(t)‖2L = u(t)y(t). Consider a LTI strictly passive

finite dimensional system with storage function Ec(t) =
1
2 〈v(t), Qcv(t)〉Rm , Qc = Q>c > 0 ∈ Rm × Rm. Then the
feedback interconnection of the BCS and the finite dimen-
sional system is again a BCS on the extended state space
x̃ ∈ X̃ = X×V with inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L+
〈v1, Qcv2〉V . Furthermore, the operator Ae defined by

Aex̃ =

[
JL 0
BcC Ac

] [
x
v

]
with

D(Ae) ={[
x
v

]
∈
[
X
V

] ∣∣∣Lx ∈ HN (a, b;Rn),

f∂,Lxe∂,Lx
v

 ∈ ker W̃D

}
,

where
W̃D =

[
(W +DcW̃ Cc)

]
generates a contraction semigroup on X̃ .

Proof: The proof is very similar to the one presented
in [3, Theorem 5.8, pp:120]. Here we only comment on
the steps of the proof and why it still holds when using
a strictly passive controller instead of strictly positive real
controller. The proof is performed by applying the Lumer-
Phillips Theorem [5, Theorem 6.1.7, pp:69], which is divided
in two parts: showing that Ae is a dissipative operator (i.e.
Re〈Ax̃, x̃〉 ≤ 0) and that ran(I −Ae) = X̃ = X × V . If the
controller is dissipative it is straightforward to show that Ae
is dissipative using the Kalman-Yakubovich-Popov (KYP)
Lemma [6], [9]. The second part of the proof, ran(I−Ae) =

X̃ , follows if the matrix (I−Ac) is non-singular. This is true
if all the eigenvalues of the matrix Ac are in the left half of
the complex plane, which is achieved if the controller has
some strict dissipation term. Booth parts of the proof hold
for SPR and strictly passive systems. �

Remark 12. In [3] the controller is also assumed SPR to
prove the asymptotic stability of the extended system. Indeed,
if the controller has a feed through term then the KYP
Lemma for linear SPR system [6] is used to prove that the
closed-loop system converges to a maximal invariant subset
equal to {0} and asymptotic stability follows from LaSalle’s
invariance principle. This is actually not necessary in the
present case since LaSalle’s invariance Theorem is not used
to prove the exponential stability (see Section IV).

Remark 13. For Theorem 11 to be fulfilled the matrices W
and W̃ should be selected such that

PW,W̃ =

[
0 I
I 0

]
.

Notice that the power preserving interconnection (9) ac-
tually defines a feedback loop, where the finite dimensional
system acts as the controller.

IV. EXPONENTIAL STABILITY

In this section it is shown that the BCS defined in Theorem
11 is exponentially stable if the finite dimensional controller
is strictly passive. For this purpose we use the same idea as
in [4] and extend Lemma 5 to the present case.

Lemma 14. Consider a BCS as described in Theorem 11
with r(t) = 0, for all t ≥ 0. Then the energy of the
system Ẽ(t) = 1

2‖x(t)‖2L+ 1
2v(t)TQcv(t) satisfies for τ large

enough

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, b)‖2Rdt+ Emaxc , and

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)(t, a)‖2Rdt+ Emaxc ,

(10)

where c is a positive constant that only depends on τ and
Emaxc is the maximum value of Ec for t ≥ 0.

Proof: In [4] it has been proved that the function

F (z) =

∫ τ−γ(b−z)

γ(b−z)
x>(t, z)L(z)x(t, z)dt

fulfils F (b) ≥ F (z)e−κ(b−a) for z ∈ [a, b] where κ is
a positive constant. On other hand due to the contraction
property of the semigroup Ẽ(t2) ≤ Ẽ(t1) for t2 ≥ t1 it is
deduced that∫ τ−γ(b−z)

γ(b−z)
Ẽ(t)dt ≥ Ẽ(τ − γ(b− a))

∫ τ−γ(b−z)

γ(b−z)
dt

= (τ − 2γ(b− a))Ẽ(τ − γ(b− a)).



Hence we obtain
2(τ − 2γ(b− a))Ẽ(τ)

≤ 2(τ − 2γ(b− a))Ẽ(τ − γ(b− a))

≤
∫ b

a

(∫ τ−γ(b−z)

γ(b−z)
x>(Lx)dt

)
dz + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤
∫ b

a

Fdz + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤ (b− a)F (b)eκ(b−a) + 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

≤ c1
∫ τ

0

‖(Lx)‖2Rdt+ 2

∫ τ−γ(b−z)

γ(b−z)
Ecdt

where c1 = (b − a)‖L−1(b)‖eκ(b−a). On other hand it is
always true that∫ τ−γ(b−z)

γ(b−z)
Ecdt ≤ (τ − 2γ(b− a))Emax

′

c

where Emax
′

c is the maximum value of Ec(t) for γ(b−z) ≤
t ≤ τ − γ(b − z). Denote by Emaxc the maximum value of
Ec(t) for all t ≥ 0, then it is true that Emax

′

c ≤ Emaxc and
we obtain that for τ � 0

Ẽ(τ) ≤ c(τ)

∫ τ

0

‖(Lx)‖2Rdt+ Emaxc , (11)

with c(τ) = c1
2(τ−2γ(b−a)) . The second limit is obtained

similarly by using the function

F (z) =

∫ τ−γ(a−z)

γ(a−z)
x>(t, z)L(z)x(t, z)dt

to develop the proof. �

Theorem 15. Consider the BCS defined by Theorem 11 with
r(t) = 0, for all t ≥ 0. If the linear finite dimensional
control system is strictly passive, then the BCS system is
exponentially stable.

Proof: By Theorem 11 the energy of the infinite
dimensional system fulfils (dE/dt) = u>(t)y(t), or in
integral form

E(τ) =

∫ τ

0

u>(t)y(t)dt+ E(0).

The energy of the closed loop system is given by the sum of
the energies of the infinite and finite dimensional subsystems
and since the finite dimensional system is strictly passive it
satisfies (7) and thus

Ẽ(τ) = E(τ) + Ec(τ)

=

∫ τ

0

u>(t)y(t)dt+

∫ τ

0

u>c (t)yc(t)−
∫ τ

0

s(t)dt

+ E(0) + Ec(0).

The subsystems are interconnected in a power conserving
way, i.e., u>y + u>c yc = 0, hence the total energy is given
by

Ẽ(τ) = −
∫ τ

0

s(t)dt+ Ẽ(0). (12)

with Ẽ(0) = E(0) + Ec(0). From (4) we have that

|u>y| =

∣∣∣∣∣
[

(Lx)(t, b)
(Lx)(t, a)

]>
M

[
(Lx)(t, b)
(Lx)(t, a)

]∣∣∣∣∣
≥ ε1

∥∥∥∥[(Lx)(t, b)
(Lx)(t, a)

]∥∥∥∥2 ≥ ε1‖(Lx)(t, b)‖2,

(≥ ε1‖(Lx)(t, a)‖2, )

(13)

for some ε1 > 0 since M =
[
P1 0
0 −P1

]
is symmetric and

full rank [13]. From (6), (7), (8) and the definition of the
dissipation rate we can always find a sufficiently small ε2 > 0
such that

∫ τ
0
s(t)dt ≥ ε2

∫ τ
0
|u>c yc|dt. Recalling once again

that u>y + u>c yc = 0 and combining with (13) and (10) we
have∫ τ

0

s(t)dt ≥ ε
∫ τ

0

‖(Lx)(t, b)‖2dt ≥ ε

c(τ)
(Ẽ(τ)− Emaxc )

with ε = ε1ε2. Inserting this expression in (12) we deduce
that

Ẽ(τ) ≤ ε

c(τ)
(Emaxc − Ẽ(τ)) + Ẽ(0).

Notice that due to the contraction property of the semigroup
Emaxc < Ẽ(0) (equality would imply E(0) = 0 which in
turn implies that the system is already at a stable equilib-
rium), so it is possible to write Emaxc ≤ ε3Ẽ(0), for some
ε3 < 1. Hence we finally have

Ẽ(τ) ≤ cẼ(0),

with c =
((

ε3ε
c(τ) + 1

)/(
ε

c(τ) + 1
))

< 1. From this the
semigroup generated by Ae (see Theorem 11) satisfies
‖T (τ)‖ < 1, from which exponential stability follows. �

The effect of the finite dimensional strictly passive con-
troller is the injection of damping to the global system. In [4]
it has already been addressed that the exponential stability
of the BCS is related to the injection of damping through
the boundaries. It is interesting to do the remark that the
BCS described by Theorem 11 is always exponentially stable
provided that the finite dimensional subsystem is strictly
passive.

V. EXAMPLE: CONTROL OF A MICROGRIPPER

A simplified model of a micro-gripper used for DNA
manipulation [14] is presented to illustrate the previous result
(cf Figure 1).
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Fig. 1. DNA manipulation through port Hamiltonian control



The trapped DNA bundle is approximated by a mass spring
system attached at the tip of the tweezer. The arm is actuated
by using electrostatic forces generated by a comb drive
actuator attached to a suspension system. We assume that it is
only possible to measure the transversal velocity at the point
a and act by controlling the transversal force. We also assume
that the beam is clamped with respect to angular movement
at the point a. The control strategy consists in applying
a constant force F ∗a to drive the system to the desired
equilibrium configuration v∗. The control is completed with
the transversal velocity feedback loop in order to stabilize the
system around the equilibrium v∗. The problem is similar to
the one solved in [7], [8] using energy shaping methods, but
we will exploit the port Hamiltonian structure of the global
system to define a BCS and use Theorem 15 to guarantee
exponential stability. The total system, may be divided into
three subsystems: The suspension mechanism at the base of
the gripper, the flexible arm and the DNA-bundle at the tip
of the gripper. The flexible arm is modelled as a Timoshenko
beam (infinite dimensional system) while the suspension
mechanism and the DNA-bundle may be modelled as finite
dimensional mechanical systems.

A. The Timoshenko beam

The Timoshenko beam has been widely studied as a
distributed parameter port Hamiltonian system [7] and as
BCS [2] and the exponential stability of the system has been
proved for static boundary feedback [3], [4]. The BCS is
defined as

∂

∂t


x1
x2
x3
x4

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

P1

∂

∂z


Kx1
1
ρx2
EIx3
1
Iρ
x4



+


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


︸ ︷︷ ︸

P0


Kx1
1
ρx2
EIx3
1
Iρ
x4



where the following state (energy) variables have been
defined: x1 = ∂w

∂z (z, t) − φ(z, t) the shear displacement,
x2 = ρ(z)∂w∂t (z, t) the transverse momentum distribution,
x3 = ∂φ

∂z (z, t) the angular displacement, and x4 = Iρ
∂φ
∂t (z, t)

the angular momentum distribution, for z ∈ (a, b), t ≥ 0,
where w(t, z) is the transverse displacement of the beam
and φ(t, z) is the rotation angle of a filament of the beam.
The coefficients ρ(z), Iρ(z), E(z), I(z) and K(z) are the
mass per unit length, the rotary moment of inertia of a
cross section, Youngs modulus of elasticity, the moment of
inertia of a cross section, and the shear modulus respec-
tively. The matrices P1 and P0 defines the skew-symmetric
differential operator of order 1 acting on the state space
X = L2(a, b,R4), J = P1

∂
∂z +P0. The energy of the beam

is expressed in terms of the energy variables,

E =
1

2

∫ b

a

(
Kx21 +

1

ρ
x22 + EIx23 +

1

Iρ
x24

)
dz

=
1

2

∫ b

a

x(z)>(Lx)(z)dz =
1

2
‖x‖2L

The boundary port variables are given by [2], [3]

[
f∂,Lx
e∂,Lx

]
=



(ρ−1x2)(b)− (ρ−1x2)(a)
(Kx1)(b)− (Kx1)(a)

(I−1ρ x4)(b)− (I−1ρ x4)(a)
(EIx3)(b)− (EIx3)(a)
(ρ−1x2)(b) + (ρ−1x2)(a)

(Kx1)(b) + (Kx1)(a)
(I−1ρ x4)(b) + (I−1ρ x4)(a)
(EIx3)(b) + (EIx3)(a)


.

The control objective is to control the translational and
angular velocity of the DNA-bundle. However the physical
ports are given by the translational force acting at the base of
the beam (input), and the translational velocity at the base
of the beam (output). All physical ports are hence located
on the point a of the beam and directly associated with the
dynamic of the suspension mechanism and/or base of the
beam. In order to achieve that the input and output variables
of the flexible arm coincide with the physical ones we define
the following input and outputs for the beam:

u =
[
v(b) ω(b) −v(a) −ω(a)

]
,

y =
[
F (b) T (b) F (a) T (a)

]
,

which is achieved by defining

W =


1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1
1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1

 ,

W̃ =


0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0

 .
Notice that with this choice of input and output the BCS
fulfils Theorem 11 since PW,W̃ = [ 0 II 0 ].

B. Suspension mechanism and DNA-bundle

The suspension mechanism and the DNA-bundle may be
modelled as ideal mass-spring-damper systems, and thus
both admit similar PHS representations. Let us denote by
the sub-index i = a the system representing the suspension
mechanism and by the sub-index i = b the system repre-
senting the DNA-bundle. Then we may write the following
PHS

v̇i = (Ji −Ri)
dEi
dvi

+ giui

yi = g>i
dEi
dvi

, i = a, b

where vi = [qi1 , qi2 , pi1 , pi2 ]>, qi1 , qi2 are the generalized
coordinates, with qi1 the distance from the equilibrium



configuration and qi2 the rotation angle, pi1 , pi2 are the
transversal and rotational generalized momenta respectively,
Ji = −J>i , Ri = R>i > 0 ∈ R4 × R4, the interconnection
and damping matrices respectively, defined as

Ji =

[
0 I
−I 0

]
, Ri =

[
0 0
0 Ci

]
,

with Ci =
[
ci1 0
0 ci2

]
∈ R2 × R2, where ci1 , ci2 ∈ R are the

scalar damping coefficients corresponding to the transversal
and rotational translation respectively. The Hamiltonian of
the system is given by the kinetic and elastic energy:

Ei =
1

2

(
ki1q

2
i1 + ki2q

2
i2

)
+

1

2

(
p2i1
mi

+
p2a2
mIi

)
where ki1 , ki2 are the translational and rotational spring coef-
ficients respectively and mi,mIi are the mass and moment of
inertia respectively. The total force acting on the suspension
mechanism, respectively the DNA bundle, is completed with
the contribution of the transversal and angular force on the
point a, respectively point b, of the beam. Hence the input
maps are gi ∈ R4 × R2, gi =

[
0 I

]>
and the inputs

ui = [ui1 , ui2 ]> ∈ R2 may be identified with the boundary
variables of the beam at the point a, respectively b

ui =

[
ui1
ui2

]
=

[ ∂E
∂x2

(i)
∂E
∂x4

(i)

]
=

[
F (i)
T (i)

]
.

The outputs correspond to the transversal and angular veloc-
ity of the mass at the point a, respectively the point b, and
as it has seen they correspond to the inputs at the point a,
respectively point b, for the flexible arm.

The complete finite dimensional PHS may hence be
written by combining the PHS representing the suspension
mechanism and DNA-bundle,

v̇ =


0 I
−I −Cb

0

0
0 I
−I −Ca

 dEcdv +


0 0
I 0
0 0
0 I

uc
yc =

[
0 I 0 0
0 0 0 I

]
dEc
dv

The finite dimensional PHS is a strictly passive system with
state v = [va, vb]

>, Hamiltonian (storage) function Ec =
Ea + Eb, input uc = [ua, ub]

>, supply rate w = ucyc and
quadratic dissipation rate s = dEa

dva

>
Ca

dEa
dva

+ dEb
dvb

>
Cb

dEb
dvb

.
Hence the microgripper i.e., the interconnection of the
flexible arm, suspension mechanism and DNA-bundle is a
exponentially stable system by Theorem 15.

Let us in addition assume that we include a static feedback
loop for the translational velocity of the suspension mecha-
nism. This is equivalent to the injection of damping at the
point a, which implies that the matrix Ca is changed:

C ′a =

[
(ca1 + α) 0

0 ca2

]
where α is the gain of the feedback loop. Hence the static
feedback loop shapes the dissipation rate s = dEa

dva

>
C ′a

dEa
dva

+

dEb
dvb

>
Cb

dEb
dvb

implying specifically that we can increase the
damping of the system.

In [7], [8] a port-Hamiltonian controller that exploits the
Casimir functions of the system to guarantee asymptotic
stability is proposed. By Theorem 15 the controller expo-
nentially stabilizes the system if it includes some dissipation
term.

VI. CONCLUSION

Theorem 15 shows that a large class of boundary control
system are exponentially stable if they are interconnected
in a power preserving manner with a strictly passive finite
dimensional linear controller. This result adapts the expo-
nential stability proof of [4] for static control of BCS for the
case of dynamic boundary control of BCS. The approach
has been illustrated on the physical example of a partially
actuated micro-gripper for DNA manipulation. Here the BCS
is given by the model of a Timoshenko beam and the finite
dimensional controller is given by the finite dimensional
subsystems: the suspension mechanism and the DNA bundle.

Future work will deal with the experimental implementa-
tion of the present example.
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