
 

Abstract—This paper addresses the problem of 
multiplication with large operand sizes (N≥32).  We propose a 
new recursive recoding algorithm that shortens the critical 
path of the multiplier and reduces the hardware complexity of 
partial-product-generators as well. The new recoding 
algorithm provides an optimal space/time partitioning of the 
multiplier architecture for any size N of the operands. As a 
result, the critical path is drastically reduced to 3233 −/N  
with no area overhead in comparison to modified Booth 
algorithm that shows a critical path of N/2 in adder stages. For 
instance, only 7 adder stages are needed for a 64-bit two’s 
complement multiplier. Confronted to reference algorithms for 
N=64, important gain ratios of 1.62, 1.71, 2.64 are obtained in 
terms of multiply-time, energy consumption per multiply-
operation, and total gate count, respectively.  
 

Index Terms— High-Radix Multiplication, Low-Power 
Multiplication, Multibit Recoding Multiplication, Partial 
Product Generator (PPG), Register-Transfer-Level (RTL) 

I. BACKGROUND AND MOTIVATION 
N multiplication-intensive applications, as in digital signal 
processing or process control, multiply-time is a critical 

factor that limits the whole system performance. When these 
types of applications are embedded, energy consumption per 
multiply operation becomes an additional critical issue. 
Furthermore, in large-operand-size applications (N≥32), the 
need for a scalable architecture is essential to ensure a linear 
increase O(N) of multiply-time while multiplier size grows 
quadratically O(N2) with operand bit-length N.  
Consequently, high-speed, low-power, and highly-scalable 
architecture are the three major requirements for today’s 
general-purpose multipliers [1]. 

However, large operand size multipliers are very time 
consuming. To comply with time constraint of a given 
application, we need a multiplication algorithm that allows, 
to some extent, a parameterized reduction (N/r) of the 
multiply-time without sacrificing area. This is achieved if, 
and only if the total critical path can be properly shortened 
by reducing the number of partial products (PPs) and 
exploiting inherent parallelism. Theoretically, only the 
signed multibit recoding multiplication algorithm [2] is 
capable of such a drastic reduction (N/r) of the PP number, 
given that r+1 is the number of bits of the multiplier that are 
simultaneously treated (1<r≤N/2). Unfortunately, this 
algorithm requires the pre-computation of a number of odd-
multiples of the multiplicand (until (2r-1-1).X) that scales 
linearly with r. The large number of odd-multiples not only 
requires a considerable amount of multiplexers to perform 
the necessary complex recoding into partial product 
generators (PPG), but dramatically increases the routing 
density as well. Therefore, a reverse effect occurs that 
offsets speed and power benefits of the compression factor 
N/r. This is the main reason why the multibit recoding 
algorithm was abandoned. Moreover, in industry 

commercial designs do not exceed r=4 (radix-16). A hybrid 
radix-4/-8 is proposed in [3] for low-power multimedia 
applications. To increase the speed of the multiplier, most 
ancient processors employed radix-8, such as: Fchip [4], 
IBM S/390 [5], Alpha RISC [6], IA-32 [7] and AMDK7 [8]. 
While radix-16 is used only in the most recent Intel 
processors: 64 and IA-32 [9], and Itanium-Poulson [10].  

In research, the highest radix algorithms are proposed in 
the works of Seidel et al. [11] and Dimitrov et al. [12]. Both 
works   rely upon advanced arithmetic to determine minimal 
number-bases that are representatives of the digits resulting 
from larger multibit recoding. The objective is to eliminate 
information redundancy inside r+1 bit-length slices for a 
more compact PPG. This is achievable as long as no or just 
very few odd- multiples are required.  

Seidel introduced a secondary recoding of digits issued 
from an initial multibit recoding for 5≤r≤16. The recoding 
scheme is based on balanced complete residue system. 
Though it significantly reduces the number of partial 
products (N/r for 5≤r≤16), it requires some odd-multiples 
for r≥8. Dimitrov proposed a new recoding scheme based 
on double base number system for 6≤r≤11. The algorithm is 
limited to unsigned multiplication and requires larger 
number of odd-multiples. Both algorithms [11][12] require a 
PPG that includes a  number of adders to accumulate 
intermediary partial products corresponding to recoded 
elementary digits.  

In fact, odd-multiples are not the only problem for a 
compact PPG. Recoding large slices (r≥8) in a mono-bloc 
PPG such as in [11][12], requires the use of an RTL “case 
statement” with r+1 entries. In this case, 2r+1 combinations 
must be processed, which yields to a huge amount of 
multiplexer resources. Thus, mono-bloc PPG recoding is 
incompatible with high radix (r≥8) approach whose purpose 
is to reduce the multiply-time (N/r) of large operand size    
(N ≥32) multipliers. 

The objective of this paper is to overcome these two 
above-mentioned shortcomings. To achieve such a goal, the 
multibit recoding multiplication algorithm is revisited [2]. Its 
design space is extended by the introduction of a new 
recursive version that enabled to solve the hard problem of 
radix-2r two’s complement multiplication for any value of r. 
The solution consists essentially in dividing the high radix-2r 
mono-bloc PPGj (Fig. 1.a) into a number of lower              
sub-radix-2s odd-multiple free PPGji (Fig. 1.b), such as s is a 
divider of r . As direct benefits of the partitioning of Fig. 1.b:  

• there is no need to pre-compute odd-multiples of the 
multiplicand, which drastically reduces the required 
amount of hardware resources and routing;  

• since the size of PPGji entry is much smaller than the 
size of PPGj one (s≤r/2), the total multiplexing logic 
required by RTL “case statements” to recode the 
entries is greatly reduced; 
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         Fig. 1.  Generalized N×N bit radix-2r parallel multiplier.  
(a) Critical path in conventional [2][4][5][6][7][8] and recent [3][9][10] 

[11][12] radix-2r multipliers. O(X) is the necessary set of odd-multiples 
corresponding to radix-2r recoding. PPGj of [11][12] includes a number 
of adders to accumulate intermediary partial product.   

(b) Critical path in our proposed radix-2r multipliers. Main features are: no 
odd-multiples, much more compact PPGj, much shorter critical path. 
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2r is the main radix and 
2s is the sub-radix 
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• the possibility to simultaneously process larger bit 
slices (r≥16) radically shortens the critical path in 
terms of adder levels, especially for very large operand 
sizes (N≥64).  

Guided by accurate area heuristics, the final result of an 
optimization process, gradually undertaken in this paper, 
delivers for each value of N (N=8..8192) the appropriate 
radix-2r (r=8..512) and sub-radix-2s (s=4..32) that lead to 
the architecture with the shortest critical path ( 3233 −/N ) 
in adder stages. The couple (r,s) serves to partition the 
architecture so that maximum parallelism is exploited. As 
for area, our proposed architectures require as many 
hardware resources as modified Booth algorithm [13] with a 
critical path of N/2 [14][15][16][17]. For instance, a 64-bit 
two’s complement finely pipelined multiplier requires a 
latency of seven clock cycles only (critical path composed 
of a series of 7 adders). FPGA implementation on Virtex-6 
circuit of our 64-bit two’s complement radix-232 multiplier 
shows important gain ratios over Seidel [11] and Dimitrov 
[12] radix-28 algorithms. The respective gain ratios are 
enumerated as follows: 1.62, 1.71, 2.64 and 1.83, 1.71, 3.32 
are obtained in terms of multiply-time, energy consumption 
per multiply-operation, and total gate count, respectively. 

The paper is organized as follows. Section I outlines the 
main requirement specifications for a generalized radix-2r 
multiplication. Section II introduces the new recursive 
multibit recoding multiplication algorithm, illustrated by 
two high-radix (28 and 216) recoding examples in Section 
III. Section IV introduces some preliminary steps toward an 
optimal partitioning of the multiplier architecture, while the 
optimal partitioning is presented in Section V. Section VI 
compares and discusses the implementation results. Finally, 
Section VII provides some concluding remarks and 
suggestions for future work. 

II. THE NEW RECURSIVE MULTIBIT RECODING   
MULTIPLICATION ALGORITHM  

The equation (2.1.2) of the original multibit recoding 
algorithm presented in [2] does not offer hardware visibility. 
Let us rewrite it in a simpler hardware-friendly form, as 
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Where 01 =−y  and *Ν∈r . For simplicity purposes and 
without loss of generality, we assume that r is a divider of N . 

In equation (1), the two’s complement representation of 
the multiplier Y is split into N/r two’s complement slices 
( jQ ), each of r+1 bit length. Each pair of two contiguous 

slices has one overlapping bit.  In literature, equation (1) is 
referred to by radix-2r equation, to which corresponds a 
digit set ( )rD 2  such as ( ) { }11 2022 −−−=∈ rrr

j ,...,,...,DQ . 

   Thus, the signed multiplication between X and Y becomes: 
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=  (2). Where each partial product can be 

expressed as follows: ( ) ( )XmQX ferj
j ..... 212 −= , with 

( ) { }12312 1 −=∈ −rrOm ...,,,  such as ( ) 222 −= rrO . 

( )rO 2  represents the required set of odd-multiples of the 
multiplicand (m.X) for radix-2r. Hence, the partial-product 
generation-process consists first in selecting one odd- 
multiple (m.X) among the whole set of pre-computed odd- 
multiples, which is then submitted to a hardwired shift of f 
positions, and finally conditionally complemented (-1)e 
depending on the bit sign e of Qj term. Table I provides a 
picture on how the number of odd-multiples grows when the 
radix becomes higher. While lower m.X can be obtained 
using just one addition (3X=2X+1X), the calculation of 
higher ones may require a number of computation steps 
(11X= 8X+2X+1X). 

To bypass the hard problem of odd-multiples, we exploit 
the fact that the N+1 bit-length two’s complement multiplier 
Y on which equation (1) is applied, is composed of a series 
(N/r) of r+1 bit-length two’s complement slices ( jQ digits) 

on which equation (1) can be recursively applied again. 
Based on this observation, let us announce the two 
following theorems accompanied with their respective 
proofs inserted in Appendix. 

TABLE I 
MAIN FEATURES OF THE MULTIBIT RECODING MULTIPLICATION ALGORITH 
Radix Nbr. of Partial Products Odd Multiples (m.X) 

21 N 1X 
22 N/2 1X 
23 N/3 1X, 3X 
24 N/4 1X, 3X, 5X, 7X 
25 N/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X 

|O(2r+1)|=2×|O(2r)|. In radix-2r, the multiplier Y is divided into N/r slices, 
each of r+1 bit length. Each pair of two contiguous slices has one 
overlapping bit.  



 

Theorem 1. Any digit ( )r
j DQ 2∈  can be represented in a 

combination of digits ( )s
ji DP 2∈ , such as s is a divider of r.   

When theorem (1) is applied to equation (1), it gives: 
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Theorem 2. Any digit ( )r
j DQ 2∈  can be represented in a 

combination of digits Pji+Tjk such as ( )s
ji DP 2∈ and 

( )t
jk DT 2∈  with  s+t  a divider of r ,  and t < s. 

Likewise, when theorem (2) is applied to equation (1), we 
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Theorem (1) and (2) allow an exponential reduction   
(1/2ks and 1/2k(s+t), resp.) of the number of odd-multiples in 
equations (4) and (6) in comparison to equation (2), but at 
the expense of a linear increase (ks-1 and k(s+t)-1, resp.) in 
the number of additions. The advantage by far outweighs 
the cost, as practically shown in the next section.   

The translation of equation (4) into architecture is 
depicted by Fig. 1.b, where each PPGj (Qj) is built up using 
r/s identical PPGji (Pji). This is not the case for equation (6) 
which requires two different PPGji (Pji and Tji) . Theorem (1) 
and (2) can be merged together to produce PPGj made of a 
number of different PPGji (Pji ,Tji ,Uji ,Vji ,...). This is the 
general case that is thoroughly studied in next sections in 
order to determine the optimal multiplier.  

III. TWO HIGH RADIX (28 AND 216 ) ILLUSTRATIVE EXAMPLES  
Theorems (1) and (2) permit to build up any high radix-2r 

multiplication algorithm based on lower sub-radices, 
employing much less odd-multiples.  The objective 
hereafter is to generate high radix-2r multiplication without 
odd-multiples for a maximum reduction of multiplexer 
complexity inside PPGj. To achieve such a goal, a number 
of odd-multiple free low-radix algorithms are used, such as 
Booth algorithm  (radix-21) [18], modified Booth algorithm  

(radix-22) [13], Seidel et al. algorithms  (radix-25 and   
radix-28) [11][19]. Booth and modified Booth recoding 
(McSorley algorithm [13]) can be derived from equation (3) 
for (r,s)=(1,1) and (r,s)=(2,2), respectively. They are 
respectively summarized as follows: 
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    With ( ) }{ 2,1,0,1,222 −−=D   and   ( ) { }122 =O  
Seidel radix-25 recoding [11][19] is described as follows: 
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And Seidel radix-28 recoding is given by the following 

equation: [ ]( )
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{ }21012 ,,,,Qj −−∈  ; { }16,8,4,2,1,0,1,2,4,8,16, −−−−−∈jj TP  

and ( ) { }128 =O . Note that while equations (9) and (10) are 
odd-multiple free since all included digits are power of 2, 
they require a post-accumulation to deal with odd numbers 
(7, 11 and 121). Thus, a number of extra-adders are needed.   

Optimized higher radices are obtained as follows. 

A. Our new radix-28 recoding 
Based on theorem (2), each 8+1 bit slice is split into 5+1, 

2+1, and 1+1 overlapping slices using Seidel radix-25, 
McSorley radix-22, and Booth radix-21 algorithms, 
respectively. The new recoding is given by the following 

equation: ( ) ( )[ ]( )

∑
−

=

+++=
18

0

852 2227
/N

j

j
jjjj ..SRPQ.Y     (11) 

With { }21012 ,,,,Q j −−∈  ; { }4210124 ,,,,,,Pj −−−∈  ; 

{ }21012 ,,,,R j −−∈  ; { }101 ,,S j −∈  and ( ) { }128 =O  

B. Our new radix-216 recoding 
Likewise, using theorem (2), each 16+1 bit slice is split 

into 8+1, 5+1, 2+1, and 1+1 overlapping slices using Seidel 
radix-28 and radix-25, McSorley radix-22, and Booth radix-
21 algorithms, respectively. The new recoding is described 
by the following equation: 
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{ }21012 ,,,,U j −−∈  ; { }101 ,,V j −=  and ( ) { }1216 =O  

In our preceding work [20], we pursued this combination 
process farther and generated a series of higher radix (224, 
232, …) recoding schemes with ( ) { }12 =rO . However, what 
still remains unknown is to determine, for a given N value, 
the proper radix (2r) that leads to the optimal architecture.  



 

The translation of equations (11) and (12) into 
architectures is depicted in Fig. 2.a and 2.b, respectively. 

All Dimitrov algorithms developed in [12] are unsigned. 
For an equitable comparison, we had to develop a new 
two’s complement radix-28 recoding version with 
( ) { }753128 ,,,=O  based on Dimitrov unsigned radix-27 

recoding (mult_7b2d in [12]) with ( ) { }753127 ,,,=O . The 
new recoding is: ( )( )( )
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  With { } { } { }1,07,6,5,4,3,2,1,0,;7,5,3,1, ∈∈∈ eandhkPQ jj  

For the comparative study, our proposed algorithms     
(eq. 11 and 12) as well as Seidel and Dimitrov algorithms 
(eq. 10 and 13, resp.) are first analytically characterized and 
then physically implemented. 

C. Analytical characterization of area and speed 

Prior implementation, we need to develop a generalized 
theoretical model which predicts area and speed features of 
each recoding algorithm with respect to N and r values.  
1) Area 

Three basic components are necessary for the 
implementation of RTL multipliers:  

• multiplexers (Mux1) to recode the digit terms (Qj,Pj,…) 
included in the recoding expression; 

• shifters (Mux2) for partial product generation;  
• and adders for partial product summation.  

Whereas the exact number of adders can be known in 
advance, we need to develop heuristics for the two others. 
The total multiplexer complexity (Mux1) of a radix-2r 
multiplier depends on:  

• the number (N/r) of PPGj; 
• the number (i) of lower sub-radices (21, 22, 25, and 28) 

used to build up the higher radix-2r. To each sub-
radix-2s used (PPGji) corresponds an RTL “case 
statement” that recodes the digit terms (Qji,Pji,Tji,…) 
present in the equation; 

• the number of entries (es+1) in each “case statement” 
corresponding to each sub-radix-2s;  

• the number (ds) of digit terms (Qji,Pji,Tji,…) that 
figures in each “case statement”; 

• and on the number of necessary odd-multiples (|Os|) 
used to calculate the digit terms.  

Hence, we can announce that: ( )∑ +=
i

ss
se Od

r
NMux || ... 121  

For Dimitrov algorithm (eq. 13), this gives: r=8, i=1,       
es =8, ds =2, and |Os|=4. Thus, Mux1 = 512 N. 

The synthesis of the RTL “shift statement” infers 
multiplexers whose complexity depends on the number (psj) 
of different shift positions for all odd-multiples involved in 
the calculation of each digit term (j). Thus, we can write: 
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NMux || ..2 . For Dimitrov algorithm   

(eq. 13), this gives: r = 8,  i=1, j=2, ps1 =ps2 =8, and |Os1| = 
|Os2| = 4. Thus, Mux2=8N.  Hence, the total multiplexer 
complexity becomes: MuxT = Mux1+Mux2=520N. 

A N-bit radix-2r multiplier generates N/r PP. Thus, The 
total number of adders comprises:  

• ( ) 1/ −rN  adders to sum the N/r PP; 
• plus the necessary adders inside each PPGj  to 

accumulate the intermediate PP issuing from PPGji; 
• plus a number of adders included inside each PPGji 

depending on the recoding scheme used. 
 For example, in Seidel algorithm (eq. 10), the term 

jijiji TPQ ++11112  is calculated as follows: 

 ( ) ( ) jijijijijijiji TPPPQQQ +−+++− 2337 2222 , which 

requires 6 adders for post-accumulation operation [11][19]. 
Hence, the total number of necessary adders is:                  
AddT= ( ) ( ) ( ) 1878618 −=+− N//N/N .  
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                  Fig. 2.  Two’s complement 64×64 bit multiplier. 
(a) Radix-28 multiplier. Space partitioning according to equation (11) 
(b) Radix-216 multiplier. Space partitioning according to equation (12) 
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 DelT is the delay in adder levels of 
the total critical path. Del is the 
delay in adder levels inside PPGj

and ds is the delay due to 
multiplexer logic inside PPGji 



 

TABLE II 
MAIN FEATURE COMPARISON 

Our recoding algorithms Features 
Eq. (11) Eq. (12) 

McSorley 
[13] Eq. (8) 

Seidel [11] 
[19] Eq. (10) 

Dimitrov  
[12] Eq. (13)

Radix 28 216 22 28 28 

DelT 53
8

dN
++  

88
16

dN
++  

21
2

dN
+−  

85
8

dN
++  'dN

88
+  

MuxT N19  N106  N5  N194  N520  

AddT 1
8

5
−

N  1
8

6
−

N  1
2
−

N  1
8

7
−

N  1
4
−

N  

N is the operand size and 2r is the radix used. DelT is the total delay in terms 
of adder levels in the critical path of a linear reduction tree. ds is the delay 
due to multiplexer logic inside PPGji. ds depends on Mux factor 
(d1<d2<d5<d8<d'8). MuxT=(N/r)Mux, where Mux is an estimation of the 
multiplexer logic required by PPGj. AddT is the total number of adders 
required in the whole multiplier. 

TABLE III 
IMPLEMENTATION RESULTS OF A TWO’S COMPLEMENT 64-BIT PARALLEL 

MULTIPLIER ON XILINX XC6VSX475T-2FF1156 CIRCUIT 
Our recoding algorithms 

Results Eq. (11) Eq. (12) 
McSorley 

[13] Eq. (8) 
Seidel [11] 

[19] Eq. (10) 
Dimitrov 

[12] Eq. (13)
Area1

 3219 4659 2103 5251 6599 
Energy2 1.63 2.11 1.46 2.49 2.48 
Speed3 52.4 49.34 30.04 48.62 43.17 

Synthesis tool was forced to map RTL code to distributed slices of FPGA 
and avoid mapping to builtin 18x18 bit hardwired multipliers (DSP slices). 
1: Area occupation in number of Virtex-6 slices. 2: Energy consumption per 
multiplication operation (pJ). 3: Million multiplications per second 
(MMPS). 

2) Delay 
The total delay (DelT) along the critical path is the 

summation of PPGj delay and reduction tree delay. Based on 
the total number of adders (AddT), the critical path of the 
multiplier in terms of logic levels is: DelT= N/r-1+Del+ds, 
where Del is the delay due to adder stages inside PPGj and 
ds is the delay due to multiplexer logic inside PPGji. This 
latter depends on Mux factor of used PPGji (21, 22, 25, or 28). 
Therefore, d1 < d2 < d5 < d8.   Note that ds is fixed and Del 
depends on r and s values. For instance, according to 
equation (10), Seidel algorithm exhibits a critical path of: 
DelT= N/8-1+6+d8=N/8+5+d8. Table II provides the area 
occupation and delay for each recoding algorithm. 

D. Physical implementation  
All recoding schemes mentioned in Table II underwent 

several  verification  steps.  First all equations were 
validated with a random C-program. Then, they were 
implemented at RTL level in Verilog-2001 (IEEE 1364) as 
technology-independent reusable IP-cores [1], using exactly 
the same optimized coding style for an equitable 
comparison. They are compile-time reconfigurable 
according to N and r. Reader is referred to [11], [19], and 
[12] for recoding tables used in equations (9), (10), and 
(13), respectively. 

All RTL codes went through a severe cycle-accurate 
functional verification procedure using Modelsim SE-6.3f 
logic simulator. They were first challenged against a set of 
special and severe test cases, and then submitted to a 
random test for a very large number of vectors. After a 
successful functional verification, physical tests were 
performed. They were integrated into an FPGA evaluation 
board for an ultimate validation. Afterwards, all equations 
were synthesized and mapped to the same Virtex-6 FPGA 
circuit (xc6vsx475t-2ff1156) using Xilinx ISE 13.2 release 
version [21]. We used for comparison a two’s complement 
64×64 bit parallel multiplier. The implementation results are 
grouped in Table III. 

Although Dimitrov recoding exhibits the shortest critical 
path in adder stages (N/8), the impact of multiplexer logic 
(d'8) on the total performance is important (Table III). 
Besides, it is the most area consumer despite the fact that it 
employs the lowest number of adders (N/4-1). Adversely, 
Seidel algorithm is the most adder consumer (7N/8-1). To 
determine which factor, MuxT or AddT, exerts more 
influence on area occupation, let us compare their respective        
ratios for Seidel and Dimitrov algorithms: 
MuxT(Eq.13)/MuxT(Eq.10)=2.7   and  
AddT(Eq.10)/AddT(Eq.13)=3.5. 

Significant conclusion: the area occupation is dominated 
by MuxT factor, and becomes larger as MuxT number 
becomes higher (Table II and III). This correlation is 
advantageously used to minimize area occupation as will be 
shown in the next section. 

McSorley algorithm (eq. 8) is the least area consumer and 
the slowest recoding scheme for any value of N. The best 
area/speed compromise for N=64 is given by our recoding 
scheme based on equation (11). However, this latter will be 
outperformed by equation (12) for larger values of N (N>64) 
since a higher radix (216) is employed. 

While energy consumption is function of the switched 
capacitance, Table III shows a direct correlation between 
area occupation and energy consumption. Making MuxT 
indicator lower, will result in a less energy-consumer 
recoding algorithm.  

 Finally, based on theory and implementation results, we 
conclude that the best tradeoff related to our recoding 
schemes depends on N and r values. For larger N values 
(N>64), larger radices are necessary to reduce the critical 
path. But for larger radices (r>16) we need to duplicate 
some of the elementary PPGji (21,22,25,28) to build up the 
radix-2r PPGj. Therefore, at this level a relevant question 
arises: given N, what is the value of r and its corresponding 
elementary PPGji configuration (optimal partitioning of 
PPGj) that leads to the shortest critical path (DelTmin) with 
minimum hardware resources (MuxTmin)? The answer to this 
question is given in the next sections. 

IV. PRELIMINARY STUDY TO AN OPTIMAL PARTITIONNING 
We extend the recoding-space of our equations (11) and 

(12) to the general case as follows: each r+1 bit slice is 
recoded using a, b, c, d instances of radix 28, 25, 22, 21 
algorithms, respectively,  such that 8a+5b+2c+d=r. To this 
recoding scheme corresponds the following equation: 
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The translation of equation (14) into architecture is 

depicted in Fig. 1.b (top view only), where each PPGj is built 
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up using a mixture of four different PPGji depending on the 
quadruplet (a,b,c,d) as illustrated by Fig. 3. For instance, to 
equations (11) and (12) correspond (0,1,1,1) and (1,1,1,1), 
respectively. Note that because of the general nature of 
equation (14), the ds term of DelT is equal to max(d8,d5,d2,d1) 
of used PPGji. 

Given N and r, to determine the optimal partitioning of 
the whole multiplier (global optimum since PPGj are 
identical), we need to find first the quadruplet (a,b,c,d) that 
satisfies the condition 8a+5b+2c+d=r and leads to the PPGj 
with minimum hardware ressources (Muxmin) and the 
shortest critical path (Delmin). As it is not sure that such a 
solution exists, we are using composite metrics AiTj of area 
(A) and delay (T) for i and j varying from 0 to 5 [22]. A 
total of 11 metrics (A, A5T,  A4T,  A3T,  A2T,  AT,  AT2,  
AT3,  AT4,  AT5, T) are used. The A metric alone delivers 
the best area solution (Muxmin), while T metric provides the 
best delay solution (Delmin). In between(AiTj), more-or-less 
balanced solutions are obtained. The 
implementation of this solution 
requires the (Mux, Del) couple  
(Table IV) corresponding to each 
basic recoding algorithm (28,25,22,21). 
Because of an explosive number of 
possible combinations (N>>), the 
solution space is exhaustively 
explored using a deterministic         
C-program for r varying from 8 to 
1024. The obtained results are 
reported in Table V.  

As conclusion, optimal area solutions (Mux=Muxmin) are 
exclusively based on radix-22 algorithm (0,0,c,0), but they 
are excessively slow (Del>>Delmin). While optimal speed 
solutions (Del=Delmin) are entirely composed of radix-28 
algorithm (a,0,0,0), but they are exaggeratedly large 
(Mux>>Muxmin). Finally, balanced area/speed solutions are 
mainly based on radix-25 algorithm with at most one or two 
instances of radices 21 and 22 algorithms (0,b,c,d). However, 
even the “balanced” solution is not really balanced enough 
since the mean values of Del and Mux are 1.4×Delmin and 
5.2×Muxmin , respectively. The reason is due to the large 
disparity between Mux values of the basic radices        
(Table IV). To correct this disequilibrium, we replace 
respectively the two Seidel radix-28 and 25 expressions 
( j

iA and j
iB ) included in equation (14) by their 

mathematically equivalent counterparts as follows: 

∑
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22
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i CA  and jijijij

i CCDB 1
3

00 22 ++= . These new 

expressions are radix-28 and 25 , respectively. They produce 
respectively the same intermediary partial products at PPGji 
output as their Seidel counterparts.  In fact j

iA  is formed by 
a succession of four instances of McSorley algorithm, while 

j
iB is composed of one instance of Booth algorithm 

followed by two instances of McSorley algorithm. Del and 
Mux values of the new basic radices are grouped in Table 
VI. Results delivered by the deterministic C-program are 
reported in Table VII. All solutions are optimal since 
Del=Delmin and Mux=Muxmin. They 
are all based on radix-28 algorithm 
(a,0,0,0). In case r is not a multiple 
of 8, optimal solutions are also 
obtained, composed mainly of radix-
28 algorithm with at most one 
instance of radix-21, 22 or 25 
algorithms, depending on the 
remainder of r by 8 division.   

TABLE IV 
DELAY AND MULTIPLEXER

COMPLEXITY OF BASIC 
RADICES: STEP #1 

Algorithm Del Mux 
21 0 5 
22 0 10 
25 2 133 
28 6 1548 

Mux values are extracted 
from the heuristic 
developed in Section III. 
Ex: 1548=194 × 8. 

TABLE V 
OPTIMAL PPGj SOLUTION (a,b,c,d) LEADING TO THE OPTIMAL 

RADIX-2r MULTIPLIER ACCORDING TO COMPOSITE METRICS AiTj 

Instance Number r size  
(bits) 

Criteria 
a b c d 

Del Mux Delmin Muxmin 

8 A – T 0 0 4 0 3 40 3 40 
A – AT5 0 0 8 0 7 80 

16 T 0 3 0 1 5 404 5 80 

A – AT3 0 0 16 0 15 160 
32 AT4 – T 0 6 1 0 8 808 8 160 

A – AT2 0 0 32 0 31 320 
AT3 – AT5 0 12 2 0 15 1616 64 

T 8 0 0 0 13 12384 
13 320 

A – AT2 0 0 64 0 63 640 
AT3 – AT5 0 25 1 1 28 3340 128 

T 16 0 0 0 21 24768 
21 640 

A – AT 0 0 128 0 127 1280 
AT2 – AT5 0 51 0 1 53 6788 256 

T 32 0 0 0 37 49536 
37 1280 

A – AT 0 0 256 0 257 2560 
AT2 – AT5 0 102 1 0 104 13576 512 

T 64 0 0 0 69 99072 
69 2560 

A – AT 0 0 512 0 512 5120 
AT2 – AT5 0 204 2 0 207 27152 1024

T 128 0 0 0 133 198144 
133 5120 

A – T: all the metric span A, A5T, A4T, A3T, A2T, AT, AT2, AT3,
AT4,  AT5, T. To A and T metrics correspond respectively the
minimal values Muxmin and Delmin that serve as reference for the
optimization process.  

TABLE VI 
DELAY AND MULTIPLEXER
COMPLEXITY OF THE NEW 
BASIC RADICES: STEP #2 

Algorithm Del Mux 
21 0 5 
22 0 10 
25 2 25 
28 3 40 



 

TABLE VII 
OPTIMAL PPGJ SOLUTION (a,b,c,d) LEADING TO THE 

OPTIMAL  RADIX-2r MULTIPLIER ACCORDING TO 
COMPOSITE METRICS AITJ 

 Instance Number r size  
(bits) a b c d 

Del Mux Delmin Muxmin 

8 1 0 0 0 3 40 3 40 
16 2 0 0 0 4 80 4 80 
32 4 0 0 0 6 160 6 160 
64 8 0 0 0 10 320 10 320 
128 16 0 0 0 18 640 18 640 
256 32 0 0 0 34 1280 34 1280 
512 64 0 0 0 66 2560 66 2560 

1024 128 0 0 0 130 5120 130 5120 

The new results are so interesting that we are encouraged 
to pursue further the optimization process using higher basic 
sub-radices (s>8) to reduce the total delay (DelT) of the 
multiplier. Let us this time replace j

iA  and j
iB  as follows: 

∑
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22
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i CB .We eliminate radix-25 

since it can be derived from radix-21 and 22. The new Del 
and Mux values of basic radices are grouped in Table VIII.  

The C-program shows up even 
more interesting results since starting 
from r≥64 (Table IX), lower delays 
are obtained with the same 
multiplexer complexities as the ones 
reported in Table VII. Based on the 
obtained results, we pushed farther 
the optimization process using even 
higher basic sub-radices (s=16..32). 

All optimal solutions come either on the form (a,0,0,0) or 
(0,b,0,0). At this level we can draw a significant conclusion: 
since the optimal solution is always in the form (a,0,0,0) or 
(0,b,0,0) with a=2k and b=2k', there exists an integer s=2k'' 
such as either (s,0,0,0) or (0,s,0,0) is the optimal solution.  

Consequently, equation (14) is rewritten accordingly, as 

follows: rj
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k yyyC 12212 2 +− −+=  with }{ 21012 ,,,,C ji

k −−∈ . 
Based on heuristic developed in Section III, multiplexer 

complexity of equation (15) for the whole multiplier is 
always equal to MuxT=10×N/2=5N for any value of r and s. 
As for the multiplier delay (DelT), we need to determine the 
couple (r,s) that leads to the shortest critical path in terms of 
adder levels. This is what is achieved in the next section. 

V. THE OPTIMAL PARTITIONNING 
The total delay (DelT) of the whole multiplier related to 

equation (15) is: DelT= N/r-1+Del+d2 where Del is the PPGj 
delay equal to (r/s-1)+(s/2-1), and d2 is the multiplexer 
delay corresponding to the recoding logic of radix-22. Thus,   
DelT= N/r+r/s+s/2-3+d2.  

The optimal delay with regard to r is obtained for (r,s) 
couples satisfying ( ) 0/ =∂∂ rDelT , which gives N.sr = . 
When r is substituted by N.s  into DelT expression, we 
obtain: 232//2 dssNDelT +−+= .  Likewise, the optimal 
delay with regard to s is obtained for s value satisfying 
( ) 0/ =∂∂ sDelT . We obtain 3 2/2 Ns = . Hence, the optimal 

delay becomes: 2
3 32/3 dNDelT +−= .  

Finally, we conclude that the optimal N-bit multiplier, in 
comparison to equation (8) [13], relies on the new triple 
recursive equation (15) with (r,s)=( 3 22 N. , 3 22 /N ).   

Table X provides the s and r values that lead to the 
optimal partitioning with respect to the operand size N. The 
values s and r correspond to the number of multiplier bits 
that are treated simultaneously inside each PPGji and each 
PPGj, respectively. For N=64, the optimal partitioning is 
obtained with (r,s)=(32,8) as illustrated by Fig. 4. Whereas 
equations (15) and (8) require the same amount of hardware 
resources (MuxT , AddT)=(320,31), they exhibit different 
critical paths: 7 and 31 in terms of adder levels, 
respectively. 

VI. DISCUSSION OF THE IMPLEMENTATION RESULTS 
We proved via FPGA implementation (Table III) how 

much accurate are the area heuristics developed in Section 
III (Table II). Based on this, we have undertaken a gradual 
theoretical optimization process that yielded to equation 
(15). This latter is implemented on FPGA with N=64, and 
the results in terms of multiply-time, energy consumption 
per multiply-operation, and total gate count, are as follows: 
78.98 MMPS, 1.45pJ and 1987 slices, respectively. 
Compared to implementation results of Seidel and Dimitrov 
algorithms (Table III), gain ratios of 1.62, 1.71, 2.64 and 
1.83, 1.71, 3.32 are obtained, respectively. A 64-bit 
multiplier generated by Xilinx Coregen exhibits 75.86 
MMPS and consumes twelve 18×18 bit DSP-slice 
multipliers.  

The real reasons behind these important results are 
cleared up as follows. 

TABLE VIII 
DELAY AND MULTIPLEXER
COMPLEXITY OF THE NEW 
BASIC RADICES: STEP #3 

Algorithm Del Mux 
21 0 5 
22 0 10 
28 3 40 
216 7 80 

TABLE X 
THE OPTIMAL PARTITIONING VERSUS OPERAND SIZE N 
Our recoding 
Equation (15) 

McSorley[13] 
 Equation (8) 

Seidel[11][19] 
Equation (10) 

Dimitrov [12]
Equation (13)N   

(bits)
s r DelT DelT DelT DelT 

8 4 8 2 3 6 1 
16 4 8 3 7 7 2 
32 8 16 5 15 9 4 
64 8 32 7 31 13 8 

128 8 32 9 63 21 16 
256 16 64 13 127 37 32 
512 16 128 17 255 69 64 
1024 16 128 21 511 133 128 
2048 32 256 28 1023 261 256 
4096 32 512 35 2047 517 512 
8192 32 512 45 4095 1029 1024 

 s value corresponds to the number of bits that are treated 
simultaneously inside each PPGji , while r value indicates the number 
of bits that are processed simultaneously inside each PPGj. ds is not 
included in DelT since d2<d8<d'8. 

TABLE IX 
OPTIMAL PPGJ SOLUTION (a,b,c,d) LEADING TO THE 

OPTIMAL  RADIX-2r MULTIPLIER ACCORDING TO 
COMPOSITE METRICS AITJ 

 Instance Number r size  
(bits) a b c d 

Del Mux Delmin Muxmin 

8 0 1 0 0 3 40 3 40 
16 0 2 0 0 4 80 4 80 
32 0 4 0 0 6 160 6 160 
64 4 0 0 0 10 320 10 320 
128 8 0 0 0 14 640 14 640 
256 16 0 0 0 22 1280 22 1280 
512 32 0 0 0 38 2560 38 2560 

1024 64 0 0 0 70 5120 70 5120 
     : Optimal solution moved from (0,b,0,0) to (a,0,0,0)   
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64×64 bit radix-232 parallel multiplier based on
equation (15) with (r,s)=(32,8). 
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A. Area occupation 
For operand size N=64, equation (15)  is a composite 

radix-232 algorithm (Table X), where each PPGj processes 
simultaneously 32+1 inputs that are split on four sub-radix- 
28 PPGji made of four instances ( ji

kC ) of McSorley algorithm 
(Fig. 4). Seidel and Dimitrov algorithms are rather radix-28 
algorithms, based on mono-bloc PPGj.  

In fact, although radix-28 PPGji of equation (15) and 
radix-28 PPGj of Seidel and Dimitrov are based on different 
recoding schemes, they are mathematically equivalent since 
they produce the same partial product PPji/PPj. Based on 
theory (Table II) and implementation results (Table III), 
Dimitrov recoding is the most space consuming due to the 
use of odd-multiples of the multiplicand. On the other hand, 
Seidel  recoding does not require odd-multiples,  but  since 
9 inputs are treated simultaneously in a mono-bloc PPGj, a 
large amount of multiplexer resources is needed to recode 
the 29=512 input combinations. Finally, radix-28 PPGji of 
equation (15) is the least area consumer because it does not 
employ odd-multiples and requires a small amount of 
multiplexers as the total number of input combinations in 
each radix-28 PPGji is equal to 8+8+8+8=32. Note that the 
three recoding schemes are incorporating a number of 
adders in their PPGji/PPGj which is 3, 6, and 1 for equation 
(15), Seidel and Dimitrov algorithms, respectively. 

Significant conclusion: the area occupation is dominated 
by the Mux factor, and becomes larger as Mux number 
becomes higher.  

B. Delay 
Using higher radices (r>>) will certainly shortens the 

critical path. However, for high r values, mono-bloc PPGj 
recoding induces an important delay (ds) due to the high 
density of multiplexer logic that significantly degrades the 
whole performance of the multiplier. This is clearly 
illustrated by Dimitrov radix-28 recoding whose critical-path 
totalizes 8 adder levels but exhibits a lower multiply rate 
(43.17 MMPS) compared to Seidel recoding that have a 
critical-path composed of 13 adder levels but shows a more 
interesting rate (48.62 MMPS) due to lower multiplexer 
complexity (Table II and III). As for equation (15), since a 
composite PPGj is used, ds is equal to d2 ( ji

kC  delay) which is 
the smallest delay (d2 < d5 < d8). Besides, the critical path 
goes through the smallest number (7) of adder stages, 
exploiting maximum parallelism that can be provided by the 
triple-recursive equation (15). Thus, it is not surprising that 
equation (15) achieves the best performance (78.98 MHz), 
even when compared to Xilinx Coregen multiplier based on 
DSP-slices (75.86 MHz). A double-recursive (s=2) version 
of equation (15) served to design a scalable 16-bit setpoint 
Finite-Word-Length PID controller, employing five 
multiplication cores. The implementation results 
outperformed the published ones at all levels [23]. 

Significant conclusion: using composite recoding in 
conjunction with an optimal partitioning (r and s values) 
provides the shortest critical path. 

Equation (15) shows high aptitude for pipelining. Two 
finely and coarsely grained systolic architectures for 64-bit 
multiplier are depicted in Fig. 5.a and Fig. 5.b, respectively. 
Fig. 5.a architecture is more suitable for high throughput 
applications, with 7 clock-cycle latency.  



 

VII. CONCLUSION AND FUTUR WORK 
Upon the basis of the new multibit recoding 

multiplication algorithm, we developed optimal parallel 
multipliers with shortest critical paths and minimum 
hardware resources for any value of operand size N. We 
demonstrated by theory and FPGA implementation the 
superiority of our high-radix algorithms over their existing 
counterparts. Because exploiting the maximum parallelism 
inherent in multiply operation, our look-up-table based 
multiplier (eq. 15) is even speed-competitive with Xilinx’s 
hardwired multiplier employing DSP-Slices (18×18 bit full-
custom multipliers).  

More importantly, we demonstrated also that the current 
trend relying upon minimal number-bases for the 
development of high radix-2r recoding (r≥8) with mono-
bloc PPG requires an excessive amount of multiplexer 
resources, which offsets speed and power benefits of the 
compressor factor N/r. On the other hand, we proved that 
composite PPG based on the new recursive multibit 
recoding algorithm is the best realistic alternative. 

The topology of our proposed recoding schemes shows 
high capabilities for pipelining which can be finely or 
coarsely grained to satisfy both high throughput and low 
latency applications. A radix-232 64-bit parallel multiplier 
was finely pipelined, resulting in a systolic architecture with 
seven clock-cycle latency.  

While the theoretical concept was validated using FPGA 
as a preliminary step, an ASIC implementation based on a 
standard-cell library is necessary for an ultimate validation 
of the whole optimization work. This issue will be explored 
in the near future, and we intend to report our results in a 
forthcoming paper.  
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APPENDIX 

Proof of theorem 1: Initially, the multiplier Y is an N bit string. But to comply with the requirement 

of the multibit recoding algorithm [2], we need to add a zero bit (y-1) to the less significant side of Y. 

Thus, the total size becomes N+1.   
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In the multibit recoding algorithm, the multiplier Y is split into N/r two’s complement slices ( jQ ), 
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In fact the Qj term is no more than a two’s complement representation of  r+1  bit string which can 

be split in its turn into r/s two’s complement overlapping slices (Pji), each of s+1 bit length. Thus Y 
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        A synoptic scheme is depicted in Fig. 1 to illustrate the use of theorem 1 in the partitioning of 

a 16-bit Y operand.  

 

 

 

 

 

Proof of theorem 2: Likewise, Y can also be rewritten as follows: 
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A synoptic scheme is depicted in Fig. 2 to illustrate the use of theorem 2 in the partitioning of a 16-

bit Y operand.  

 

 

y-1 y0  y1  y2    y3  y4  y5 y6  y7   y8  y9  y10  y11  y12 y13  y14 y15  

P00 

P01 

P10 

P11 

Q0 

Q1 

Y

Figure 1. Partitioning of a 16-bit Y operand with 
r=8 and s=4 

Y
16+1 bits

Qj 
8+1 bits

Pji 
4+1 bits

y-1  y0  y1  y2   y3  y4  y5  y6  y7  y8  y9  y10  y11  y12 y13  y14 y15  

P00 

T00 

P10

T10

Q0 

Q1 

Y

Figure 2. Partitioning of a 16-bit Y operand   
with r=8, s=6 and t=2 

Y 
16+1 bits

Qj 
8+1 bits

Pji 
6+1 bits 2+1 bits

Tji 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




