

Abstract—This paper addresses the problem of
multiplication with large operand sizes (N≥32). We propose a
new recursive recoding algorithm that shortens the critical
path of the multiplier and reduces the hardware complexity of
partial-product-generators as well. The new recoding
algorithm provides an optimal space/time partitioning of the
multiplier architecture for any size N of the operands. As a
result, the critical path is drastically reduced to 3233 −/N
with no area overhead in comparison to modified Booth
algorithm that shows a critical path of N/2 in adder stages. For
instance, only 7 adder stages are needed for a 64-bit two’s
complement multiplier. Confronted to reference algorithms for
N=64, important gain ratios of 1.62, 1.71, 2.64 are obtained in
terms of multiply-time, energy consumption per multiply-
operation, and total gate count, respectively.

Index Terms— High-Radix Multiplication, Low-Power
Multiplication, Multibit Recoding Multiplication, Partial
Product Generator (PPG), Register-Transfer-Level (RTL)

I. BACKGROUND AND MOTIVATION
N multiplication-intensive applications, as in digital signal
processing or process control, multiply-time is a critical

factor that limits the whole system performance. When these
types of applications are embedded, energy consumption per
multiply operation becomes an additional critical issue.
Furthermore, in large-operand-size applications (N≥32), the
need for a scalable architecture is essential to ensure a linear
increase O(N) of multiply-time while multiplier size grows
quadratically O(N2) with operand bit-length N.
Consequently, high-speed, low-power, and highly-scalable
architecture are the three major requirements for today’s
general-purpose multipliers [1].

However, large operand size multipliers are very time
consuming. To comply with time constraint of a given
application, we need a multiplication algorithm that allows,
to some extent, a parameterized reduction (N/r) of the
multiply-time without sacrificing area. This is achieved if,
and only if the total critical path can be properly shortened
by reducing the number of partial products (PPs) and
exploiting inherent parallelism. Theoretically, only the
signed multibit recoding multiplication algorithm [2] is
capable of such a drastic reduction (N/r) of the PP number,
given that r+1 is the number of bits of the multiplier that are
simultaneously treated (1<r≤N/2). Unfortunately, this
algorithm requires the pre-computation of a number of odd-
multiples of the multiplicand (until (2r-1-1).X) that scales
linearly with r. The large number of odd-multiples not only
requires a considerable amount of multiplexers to perform
the necessary complex recoding into partial product
generators (PPG), but dramatically increases the routing
density as well. Therefore, a reverse effect occurs that
offsets speed and power benefits of the compression factor
N/r. This is the main reason why the multibit recoding
algorithm was abandoned. Moreover, in industry

commercial designs do not exceed r=4 (radix-16). A hybrid
radix-4/-8 is proposed in [3] for low-power multimedia
applications. To increase the speed of the multiplier, most
ancient processors employed radix-8, such as: Fchip [4],
IBM S/390 [5], Alpha RISC [6], IA-32 [7] and AMDK7 [8].
While radix-16 is used only in the most recent Intel
processors: 64 and IA-32 [9], and Itanium-Poulson [10].

In research, the highest radix algorithms are proposed in
the works of Seidel et al. [11] and Dimitrov et al. [12]. Both
works rely upon advanced arithmetic to determine minimal
number-bases that are representatives of the digits resulting
from larger multibit recoding. The objective is to eliminate
information redundancy inside r+1 bit-length slices for a
more compact PPG. This is achievable as long as no or just
very few odd- multiples are required.

Seidel introduced a secondary recoding of digits issued
from an initial multibit recoding for 5≤r≤16. The recoding
scheme is based on balanced complete residue system.
Though it significantly reduces the number of partial
products (N/r for 5≤r≤16), it requires some odd-multiples
for r≥8. Dimitrov proposed a new recoding scheme based
on double base number system for 6≤r≤11. The algorithm is
limited to unsigned multiplication and requires larger
number of odd-multiples. Both algorithms [11][12] require a
PPG that includes a number of adders to accumulate
intermediary partial products corresponding to recoded
elementary digits.

In fact, odd-multiples are not the only problem for a
compact PPG. Recoding large slices (r≥8) in a mono-bloc
PPG such as in [11][12], requires the use of an RTL “case
statement” with r+1 entries. In this case, 2r+1 combinations
must be processed, which yields to a huge amount of
multiplexer resources. Thus, mono-bloc PPG recoding is
incompatible with high radix (r≥8) approach whose purpose
is to reduce the multiply-time (N/r) of large operand size
(N ≥32) multipliers.

The objective of this paper is to overcome these two
above-mentioned shortcomings. To achieve such a goal, the
multibit recoding multiplication algorithm is revisited [2]. Its
design space is extended by the introduction of a new
recursive version that enabled to solve the hard problem of
radix-2r two’s complement multiplication for any value of r.
The solution consists essentially in dividing the high radix-2r
mono-bloc PPGj (Fig. 1.a) into a number of lower
sub-radix-2s odd-multiple free PPGji (Fig. 1.b), such as s is a
divider of r . As direct benefits of the partitioning of Fig. 1.b:

• there is no need to pre-compute odd-multiples of the
multiplicand, which drastically reduces the required
amount of hardware resources and routing;

• since the size of PPGji entry is much smaller than the
size of PPGj one (s≤r/2), the total multiplexing logic
required by RTL “case statements” to recode the
entries is greatly reduced;

A New High Radix-2r (r≥8) Multibit Recoding Algorithm
for Large Operand Size (N ≥32) Multipliers

 A.K. Oudjida1, N. Chaillet2, M.L. Berrandjia1, and A. Liacha1

I

(1) Centre de Développement des Technologies Avancées, Algiers, Algeria
(2) Institut FEMTO-ST, Besançon, France

 Fig. 1. Generalized N×N bit radix-2r parallel multiplier.
(a) Critical path in conventional [2][4][5][6][7][8] and recent [3][9][10]

[11][12] radix-2r multipliers. O(X) is the necessary set of odd-multiples
corresponding to radix-2r recoding. PPGj of [11][12] includes a number
of adders to accumulate intermediary partial product.

(b) Critical path in our proposed radix-2r multipliers. Main features are: no
odd-multiples, much more compact PPGj, much shorter critical path.

(b)
2r is the main radix and
2s is the sub-radix
PP: Partial Product

Critical path (DelT)

. . .

P2N-1 , 0

P2N-1 , 0

⎭
⎬
⎫

⎩
⎨
⎧ −−= XrXXXO)112(...,5,3)(

X
N

(a)

 PPG0

 PPG1

Y-1 , r-1

r+1

r+1

YN-r-1 , N-1

r+1

+

+ PPG(N/r)-1

.

.

.

PP0

PP1

PP(N/r)-1

()XO

...

PP1

YN-r-1 , N-1

∑

. . .

PPG00

. . .
PPG01

 PPG0 (r/s)-1

 PPG0

. . .

PPG10

. . .
PPG11

 PPG1 (r/s)-1

 PPG1

∑ . . .

PPG(N/r)-1 0

. . .
PPG(N/r)-1 1

PPG(N/r)-1 (r/s)-1

PPG(N/r)-1

∑ . . .

Y-1 , r-1

r+1

Yr-1 , 2r-1

r+1

r+1 PP(N/r)-1

PP0

+

+

N

Yr-1 , 2r-1

X

• the possibility to simultaneously process larger bit
slices (r≥16) radically shortens the critical path in
terms of adder levels, especially for very large operand
sizes (N≥64).

Guided by accurate area heuristics, the final result of an
optimization process, gradually undertaken in this paper,
delivers for each value of N (N=8..8192) the appropriate
radix-2r (r=8..512) and sub-radix-2s (s=4..32) that lead to
the architecture with the shortest critical path (3233 −/N)
in adder stages. The couple (r,s) serves to partition the
architecture so that maximum parallelism is exploited. As
for area, our proposed architectures require as many
hardware resources as modified Booth algorithm [13] with a
critical path of N/2 [14][15][16][17]. For instance, a 64-bit
two’s complement finely pipelined multiplier requires a
latency of seven clock cycles only (critical path composed
of a series of 7 adders). FPGA implementation on Virtex-6
circuit of our 64-bit two’s complement radix-232 multiplier
shows important gain ratios over Seidel [11] and Dimitrov
[12] radix-28 algorithms. The respective gain ratios are
enumerated as follows: 1.62, 1.71, 2.64 and 1.83, 1.71, 3.32
are obtained in terms of multiply-time, energy consumption
per multiply-operation, and total gate count, respectively.

The paper is organized as follows. Section I outlines the
main requirement specifications for a generalized radix-2r
multiplication. Section II introduces the new recursive
multibit recoding multiplication algorithm, illustrated by
two high-radix (28 and 216) recoding examples in Section
III. Section IV introduces some preliminary steps toward an
optimal partitioning of the multiplier architecture, while the
optimal partitioning is presented in Section V. Section VI
compares and discusses the implementation results. Finally,
Section VII provides some concluding remarks and
suggestions for future work.

II. THE NEW RECURSIVE MULTIBIT RECODING
MULTIPLICATION ALGORITHM

The equation (2.1.2) of the original multibit recoding
algorithm presented in [2] does not offer hardware visibility.
Let us rewrite it in a simpler hardware-friendly form, as

follows: (∑
−

=
++− ⋅⋅⋅++++=

1

0
2

2
1

10
1 222

r
N

j
rjrjrjrj yyyyY

) ∑
−

=
−+

−
−+

− =−+
1

0
1

1
2

2 2222
r
N

j

rj
j

rj
rrj

r
rrj

r Qyy (1)

Where 01 =−y and *Ν∈r . For simplicity purposes and
without loss of generality, we assume that r is a divider of N .

In equation (1), the two’s complement representation of
the multiplier Y is split into N/r two’s complement slices
(jQ), each of r+1 bit length. Each pair of two contiguous

slices has one overlapping bit. In literature, equation (1) is
referred to by radix-2r equation, to which corresponds a
digit set ()rD 2 such as () { }11 2022 −−−=∈ rrr

j ,...,,...,DQ .

 Thus, the signed multiplication between X and Y becomes:

rj
r
N

j
jQXYX 2...

1

0
∑
−

=

= (2). Where each partial product can be

expressed as follows: () ()XmQX ferj
j 212 −= , with

() { }12312 1 −=∈ −rrOm ...,,, such as () 222 −= rrO .

()rO 2 represents the required set of odd-multiples of the
multiplicand (m.X) for radix-2r. Hence, the partial-product
generation-process consists first in selecting one odd-
multiple (m.X) among the whole set of pre-computed odd-
multiples, which is then submitted to a hardwired shift of f
positions, and finally conditionally complemented (-1)e
depending on the bit sign e of Qj term. Table I provides a
picture on how the number of odd-multiples grows when the
radix becomes higher. While lower m.X can be obtained
using just one addition (3X=2X+1X), the calculation of
higher ones may require a number of computation steps
(11X= 8X+2X+1X).

To bypass the hard problem of odd-multiples, we exploit
the fact that the N+1 bit-length two’s complement multiplier
Y on which equation (1) is applied, is composed of a series
(N/r) of r+1 bit-length two’s complement slices (jQ digits)

on which equation (1) can be recursively applied again.
Based on this observation, let us announce the two
following theorems accompanied with their respective
proofs inserted in Appendix.

TABLE I
MAIN FEATURES OF THE MULTIBIT RECODING MULTIPLICATION ALGORITH
Radix Nbr. of Partial Products Odd Multiples (m.X)

21 N 1X
22 N/2 1X
23 N/3 1X, 3X
24 N/4 1X, 3X, 5X, 7X
25 N/5 1X, 3X, 5X, 7X, 9X, 11X, 13X, 15X

|O(2r+1)|=2×|O(2r)|. In radix-2r, the multiplier Y is divided into N/r slices,
each of r+1 bit length. Each pair of two contiguous slices has one
overlapping bit.

Theorem 1. Any digit ()r
j DQ 2∈ can be represented in a

combination of digits ()s
ji DP 2∈ , such as s is a divider of r.

When theorem (1) is applied to equation (1), it gives:

rj
r
N

j

s
r

i

si
jiPY 22

1

0

1

0
∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= (3) ; where

() { }11 2022 −−−=∈ sss
ji ,...,,...,DP with

() { }12312 1 −= −ssO ,...,, such as ()
()

ks
s

r

O

O
2

2

2
= and

rj
r
N

j

s
r

i

si
jiP.XY.X 22

1

0

1

0
∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= (4)

Theorem 2. Any digit ()r
j DQ 2∈ can be represented in a

combination of digits Pji+Tjk such as ()s
ji DP 2∈ and

()t
jk DT 2∈ with s+t a divider of r , and t < s.

Likewise, when theorem (2) is applied to equation (1), we

obtain: [] () rj
r
N

j

ts
r

i

itss
jiji TPY 222

1

0

1

0
∑ ∑
−

=

−
+

=

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+= (5). Where

() { }11 2,...,0,...,22 −−−=∈ sss
ji DP with

() { }12312 1 −= −ssO ...,,, and
 () { }11 2,...,0,...,22 −−−=∈ ttt

ji DT with

() { }12312 1 −= −ttO ...,,, such as ()
()

()tsk
ts

r

O

O
+

+
= 2

2

2

and [] () rj
r
n

j

ts
r

i

itss
jiji TXPXYX 222

1

0

1

0
∑ ∑
−

=

−
+

=

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+= ... (6)

Theorem (1) and (2) allow an exponential reduction
(1/2ks and 1/2k(s+t), resp.) of the number of odd-multiples in
equations (4) and (6) in comparison to equation (2), but at
the expense of a linear increase (ks-1 and k(s+t)-1, resp.) in
the number of additions. The advantage by far outweighs
the cost, as practically shown in the next section.

The translation of equation (4) into architecture is
depicted by Fig. 1.b, where each PPGj (Qj) is built up using
r/s identical PPGji (Pji). This is not the case for equation (6)
which requires two different PPGji (Pji and Tji) . Theorem (1)
and (2) can be merged together to produce PPGj made of a
number of different PPGji (Pji ,Tji ,Uji ,Vji ,...). This is the
general case that is thoroughly studied in next sections in
order to determine the optimal multiplier.

III. TWO HIGH RADIX (28 AND 216) ILLUSTRATIVE EXAMPLES
Theorems (1) and (2) permit to build up any high radix-2r

multiplication algorithm based on lower sub-radices,
employing much less odd-multiples. The objective
hereafter is to generate high radix-2r multiplication without
odd-multiples for a maximum reduction of multiplexer
complexity inside PPGj. To achieve such a goal, a number
of odd-multiple free low-radix algorithms are used, such as
Booth algorithm (radix-21) [18], modified Booth algorithm

(radix-22) [13], Seidel et al. algorithms (radix-25 and
radix-28) [11][19]. Booth and modified Booth recoding
(McSorley algorithm [13]) can be derived from equation (3)
for (r,s)=(1,1) and (r,s)=(2,2), respectively. They are
respectively summarized as follows:

() ∑∑
−

=

−

=
− =−=

1

0

1

0
1 22

N

j

j
j

j
N

j
jj QyyY (7)

With () { }10121 ,,D −= and () { }121 =O

 ()
() ()

∑∑
−

=

−

=
+− =−+=

12

0

22
12

0
12212 222

/N

j

j
j

j
/N

j
jjj QyyyY (8)

 With () }{ 2,1,0,1,222 −−=D and () { }122 =O
Seidel radix-25 recoding [11][19] is described as follows:

[]
()

j
/N

j
jj PQ.Y 5

15

0
27∑

−

=

+= (9) with { } ;,,,,Q j 21012 −−∈

 { }4210124 ,,,,,,Pj −−−∈ and () { }125 =O .

And Seidel radix-28 recoding is given by the following

equation: []()
j

/N

j
jjj TP.Q.Y 8

18

0

2 21111∑
−

=

++= (10) with

{ }21012 ,,,,Qj −−∈ ; { }16,8,4,2,1,0,1,2,4,8,16, −−−−−∈jj TP

and () { }128 =O . Note that while equations (9) and (10) are
odd-multiple free since all included digits are power of 2,
they require a post-accumulation to deal with odd numbers
(7, 11 and 121). Thus, a number of extra-adders are needed.

Optimized higher radices are obtained as follows.

A. Our new radix-28 recoding
Based on theorem (2), each 8+1 bit slice is split into 5+1,

2+1, and 1+1 overlapping slices using Seidel radix-25,
McSorley radix-22, and Booth radix-21 algorithms,
respectively. The new recoding is given by the following

equation: () ()[]()

∑
−

=

+++=
18

0

852 2227
/N

j

j
jjjj ..SRPQ.Y (11)

With { }21012 ,,,,Q j −−∈ ; { }4210124 ,,,,,,Pj −−−∈ ;

{ }21012 ,,,,R j −−∈ ; { }101 ,,S j −∈ and () { }128 =O

B. Our new radix-216 recoding
Likewise, using theorem (2), each 16+1 bit slice is split

into 8+1, 5+1, 2+1, and 1+1 overlapping slices using Seidel
radix-28 and radix-25, McSorley radix-22, and Booth radix-
21 algorithms, respectively. The new recoding is described
by the following equation:

() ()[∑
−

=

+++++=
1

16

0

82 271111

N

j
jjjjj .SR.TP.Q.Y

 ()] j
jj VU 16132 222 ..+ (12) with { }21012 ,,,,Q j −−∈ ;

{ }1684210124816 ,,,,,,,,,,T,P jj −−−−−∈ ;

{ }21012 ,,,,R j −−∈ ; { }4210124 ,,,,,,S j −−−∈ ;

{ }21012 ,,,,U j −−∈ ; { }101 ,,V j −= and () { }1216 =O

In our preceding work [20], we pursued this combination
process farther and generated a series of higher radix (224,
232, …) recoding schemes with () { }12 =rO . However, what
still remains unknown is to determine, for a given N value,
the proper radix (2r) that leads to the optimal architecture.

The translation of equations (11) and (12) into
architectures is depicted in Fig. 2.a and 2.b, respectively.

All Dimitrov algorithms developed in [12] are unsigned.
For an equitable comparison, we had to develop a new
two’s complement radix-28 recoding version with
() { }753128 ,,,=O based on Dimitrov unsigned radix-27

recoding (mult_7b2d in [12]) with () { }753127 ,,,=O . The
new recoding is: ()()()

() ij
n

j
j

he
j

k PQY 878
18

0
21212 +

−

=

−−+= ∑
/

..
 (13)

 With { } { } { }1,07,6,5,4,3,2,1,0,;7,5,3,1, ∈∈∈ eandhkPQ jj

For the comparative study, our proposed algorithms
(eq. 11 and 12) as well as Seidel and Dimitrov algorithms
(eq. 10 and 13, resp.) are first analytically characterized and
then physically implemented.

C. Analytical characterization of area and speed

Prior implementation, we need to develop a generalized
theoretical model which predicts area and speed features of
each recoding algorithm with respect to N and r values.
1) Area

Three basic components are necessary for the
implementation of RTL multipliers:

• multiplexers (Mux1) to recode the digit terms (Qj,Pj,…)
included in the recoding expression;

• shifters (Mux2) for partial product generation;
• and adders for partial product summation.

Whereas the exact number of adders can be known in
advance, we need to develop heuristics for the two others.
The total multiplexer complexity (Mux1) of a radix-2r
multiplier depends on:

• the number (N/r) of PPGj;
• the number (i) of lower sub-radices (21, 22, 25, and 28)

used to build up the higher radix-2r. To each sub-
radix-2s used (PPGji) corresponds an RTL “case
statement” that recodes the digit terms (Qji,Pji,Tji,…)
present in the equation;

• the number of entries (es+1) in each “case statement”
corresponding to each sub-radix-2s;

• the number (ds) of digit terms (Qji,Pji,Tji,…) that
figures in each “case statement”;

• and on the number of necessary odd-multiples (|Os|)
used to calculate the digit terms.

Hence, we can announce that: ()∑ +=
i

ss
se Od

r
NMux || ... 121

For Dimitrov algorithm (eq. 13), this gives: r=8, i=1,
es =8, ds =2, and |Os|=4. Thus, Mux1 = 512 N.

The synthesis of the RTL “shift statement” infers
multiplexers whose complexity depends on the number (psj)
of different shift positions for all odd-multiples involved in
the calculation of each digit term (j). Thus, we can write:

()∑∑=
i j

sjsj Op
r
NMux || ..2 . For Dimitrov algorithm

(eq. 13), this gives: r = 8, i=1, j=2, ps1 =ps2 =8, and |Os1| =
|Os2| = 4. Thus, Mux2=8N. Hence, the total multiplexer
complexity becomes: MuxT = Mux1+Mux2=520N.

A N-bit radix-2r multiplier generates N/r PP. Thus, The
total number of adders comprises:

• () 1/ −rN adders to sum the N/r PP;
• plus the necessary adders inside each PPGj to

accumulate the intermediate PP issuing from PPGji;
• plus a number of adders included inside each PPGji

depending on the recoding scheme used.
 For example, in Seidel algorithm (eq. 10), the term

jijiji TPQ ++11112 is calculated as follows:

 () () jijijijijijiji TPPPQQQ +−+++− 2337 2222 , which

requires 6 adders for post-accumulation operation [11][19].
Hence, the total number of necessary adders is:
AddT= () () () 1878618 −=+− N//N/N .

PP0

+

Y23 , 28

Y28 , 30

Y30 , 31

Y15 , 23

Y39 , 44

Y44 , 46

Y46 , 47

Y31 , 39

Y55 , 60

Y60 , 62

Y62 , 63

Y47 , 55

64

P127 - 0

PP1

PP2

PP3

X

(b)

Y7 , 12

Y12 , 14

Y14 , 15

Y-1 , 7

U0

V0

R0 S0 +

PPG0
Q0 P0

T0

U1

+ V1

R1 S1 +

PPG1
Q1 P1

T1

+

U2

+ V2

R2 S2 +

PPG2
Q2 P2

T2

+

U3

+ V3

R3 S3 +

PPG3
Q3 P3

T3

+

+

+

+

+

 Fig. 2. Two’s complement 64×64 bit multiplier.
(a) Radix-28 multiplier. Space partitioning according to equation (11)
(b) Radix-216 multiplier. Space partitioning according to equation (12)

Critical path (DelT = N/r-1+Del+ds)

(a)

X 64

Y-1 , 4

Y4 , 6

Y6 , 7

Y7 , 12

Y12 , 14

Y14 , 15

Y15 , 20

Y20 , 22

Y22 , 23

Y23 , 28

Y28 , 30

Y30 , 31

Y31 , 36

Y36 , 38

Y38 , 39

Y39 , 44

Y44 , 46

Y46 , 47

Y47 , 52

Y52 , 54

Y54 , 55

Y55 , 60

Y60 , 62

Y62 , 63

+

PP7

PP0

PP1

PP2

PP3

PP4

PP5

PP6

P127 - 0

R0

S0

Q0 P0

PPG0

R1

S1

Q1 P1

PPG1

R2

S2

Q2 P2

PPG2

R3

S3

Q3 P3

PPG3

R4

S4

Q4 P4

PPG4

R5

S5

Q5 P5

PPG5

R6

S6

Q6 P6

PPG6

R7

S7

Q7 P7

PPG7

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
PPGji including a fixed
number of adders

 DelT is the delay in adder levels of
the total critical path. Del is the
delay in adder levels inside PPGj

and ds is the delay due to
multiplexer logic inside PPGji

TABLE II
MAIN FEATURE COMPARISON

Our recoding algorithms Features
Eq. (11) Eq. (12)

McSorley
[13] Eq. (8)

Seidel [11]
[19] Eq. (10)

Dimitrov
[12] Eq. (13)

Radix 28 216 22 28 28

DelT 53
8

dN
++

88
16

dN
++

21
2

dN
+−

85
8

dN
++ 'dN

88
+

MuxT N19 N106 N5 N194 N520

AddT 1
8

5
−

N 1
8

6
−

N 1
2
−

N 1
8

7
−

N 1
4
−

N

N is the operand size and 2r is the radix used. DelT is the total delay in terms
of adder levels in the critical path of a linear reduction tree. ds is the delay
due to multiplexer logic inside PPGji. ds depends on Mux factor
(d1<d2<d5<d8<d'8). MuxT=(N/r)Mux, where Mux is an estimation of the
multiplexer logic required by PPGj. AddT is the total number of adders
required in the whole multiplier.

TABLE III
IMPLEMENTATION RESULTS OF A TWO’S COMPLEMENT 64-BIT PARALLEL

MULTIPLIER ON XILINX XC6VSX475T-2FF1156 CIRCUIT
Our recoding algorithms

Results Eq. (11) Eq. (12)
McSorley

[13] Eq. (8)
Seidel [11]

[19] Eq. (10)
Dimitrov

[12] Eq. (13)
Area1

 3219 4659 2103 5251 6599
Energy2 1.63 2.11 1.46 2.49 2.48
Speed3 52.4 49.34 30.04 48.62 43.17

Synthesis tool was forced to map RTL code to distributed slices of FPGA
and avoid mapping to builtin 18x18 bit hardwired multipliers (DSP slices).
1: Area occupation in number of Virtex-6 slices. 2: Energy consumption per
multiplication operation (pJ). 3: Million multiplications per second
(MMPS).

2) Delay
The total delay (DelT) along the critical path is the

summation of PPGj delay and reduction tree delay. Based on
the total number of adders (AddT), the critical path of the
multiplier in terms of logic levels is: DelT= N/r-1+Del+ds,
where Del is the delay due to adder stages inside PPGj and
ds is the delay due to multiplexer logic inside PPGji. This
latter depends on Mux factor of used PPGji (21, 22, 25, or 28).
Therefore, d1 < d2 < d5 < d8. Note that ds is fixed and Del
depends on r and s values. For instance, according to
equation (10), Seidel algorithm exhibits a critical path of:
DelT= N/8-1+6+d8=N/8+5+d8. Table II provides the area
occupation and delay for each recoding algorithm.

D. Physical implementation
All recoding schemes mentioned in Table II underwent

several verification steps. First all equations were
validated with a random C-program. Then, they were
implemented at RTL level in Verilog-2001 (IEEE 1364) as
technology-independent reusable IP-cores [1], using exactly
the same optimized coding style for an equitable
comparison. They are compile-time reconfigurable
according to N and r. Reader is referred to [11], [19], and
[12] for recoding tables used in equations (9), (10), and
(13), respectively.

All RTL codes went through a severe cycle-accurate
functional verification procedure using Modelsim SE-6.3f
logic simulator. They were first challenged against a set of
special and severe test cases, and then submitted to a
random test for a very large number of vectors. After a
successful functional verification, physical tests were
performed. They were integrated into an FPGA evaluation
board for an ultimate validation. Afterwards, all equations
were synthesized and mapped to the same Virtex-6 FPGA
circuit (xc6vsx475t-2ff1156) using Xilinx ISE 13.2 release
version [21]. We used for comparison a two’s complement
64×64 bit parallel multiplier. The implementation results are
grouped in Table III.

Although Dimitrov recoding exhibits the shortest critical
path in adder stages (N/8), the impact of multiplexer logic
(d'8) on the total performance is important (Table III).
Besides, it is the most area consumer despite the fact that it
employs the lowest number of adders (N/4-1). Adversely,
Seidel algorithm is the most adder consumer (7N/8-1). To
determine which factor, MuxT or AddT, exerts more
influence on area occupation, let us compare their respective
ratios for Seidel and Dimitrov algorithms:
MuxT(Eq.13)/MuxT(Eq.10)=2.7 and
AddT(Eq.10)/AddT(Eq.13)=3.5.

Significant conclusion: the area occupation is dominated
by MuxT factor, and becomes larger as MuxT number
becomes higher (Table II and III). This correlation is
advantageously used to minimize area occupation as will be
shown in the next section.

McSorley algorithm (eq. 8) is the least area consumer and
the slowest recoding scheme for any value of N. The best
area/speed compromise for N=64 is given by our recoding
scheme based on equation (11). However, this latter will be
outperformed by equation (12) for larger values of N (N>64)
since a higher radix (216) is employed.

While energy consumption is function of the switched
capacitance, Table III shows a direct correlation between
area occupation and energy consumption. Making MuxT
indicator lower, will result in a less energy-consumer
recoding algorithm.

 Finally, based on theory and implementation results, we
conclude that the best tradeoff related to our recoding
schemes depends on N and r values. For larger N values
(N>64), larger radices are necessary to reduce the critical
path. But for larger radices (r>16) we need to duplicate
some of the elementary PPGji (21,22,25,28) to build up the
radix-2r PPGj. Therefore, at this level a relevant question
arises: given N, what is the value of r and its corresponding
elementary PPGji configuration (optimal partitioning of
PPGj) that leads to the shortest critical path (DelTmin) with
minimum hardware resources (MuxTmin)? The answer to this
question is given in the next sections.

IV. PRELIMINARY STUDY TO AN OPTIMAL PARTITIONNING
We extend the recoding-space of our equations (11) and

(12) to the general case as follows: each r+1 bit slice is
recoded using a, b, c, d instances of radix 28, 25, 22, 21
algorithms, respectively, such that 8a+5b+2c+d=r. To this
recoding scheme corresponds the following equation:

∑ ∑ ∑ ∑
−

=

−

=

−

=

−

=

+++

⎢
⎢
⎣

⎡
+++=

1

0

1

0

1

0

1

0

582858 2.2.2.
r
N

j

a

i

b

i

c

i

baij
i

aij
i

ij
i CBAY

 rj
d

i

cbaij
iD 2.2.

1

0

258

⎥
⎥
⎦

⎤
∑
−

=

+++ (14) where

j
i

j
i

j
i

j
i TP.Q.A ++= 11112 with { }21012 ,,,,Q j

i −−∈ and

{ }1684210124816 ,,,,,,,,,,T,P j
i

j
i −−−−−∈ ;

j
i

j
i

j
i SRB += .7 with { }21012 ,,,,−−∈j

iR and

{ }4210124 ,,,,,, −−−∈j
iS ;

j
i

j
i

j
i

j
i yyyC 12212 2 +− −+= with }{ 21012 ,,,,C j

i −−∈ ;

finally j
i

j
i

j
i yyD −= −1 with { }101 ,,D j

i −∈ .
The translation of equation (14) into architecture is

depicted in Fig. 1.b (top view only), where each PPGj is built

 PPGj

. . .

jD0
jD1

j
dD 1−

. . .

 jcC 1−

 jB0

 jB1
. . .

 j
bB 1−

 jA0

 jA1

. . .

 j
aA 1−

d

c

b

a

2
bi

ts

3
bi

ts

6
bi

ts

9
bi

ts

+

. . .

+

+

+

. . .

+

+

+
. . .

+

+

+

+

. . .

 jC0

 jC1

PPj
 Fig. 3. Critical path (Del+di) inside a generalized PPGj

r +
1

 b
its

up using a mixture of four different PPGji depending on the
quadruplet (a,b,c,d) as illustrated by Fig. 3. For instance, to
equations (11) and (12) correspond (0,1,1,1) and (1,1,1,1),
respectively. Note that because of the general nature of
equation (14), the ds term of DelT is equal to max(d8,d5,d2,d1)
of used PPGji.

Given N and r, to determine the optimal partitioning of
the whole multiplier (global optimum since PPGj are
identical), we need to find first the quadruplet (a,b,c,d) that
satisfies the condition 8a+5b+2c+d=r and leads to the PPGj
with minimum hardware ressources (Muxmin) and the
shortest critical path (Delmin). As it is not sure that such a
solution exists, we are using composite metrics AiTj of area
(A) and delay (T) for i and j varying from 0 to 5 [22]. A
total of 11 metrics (A, A5T, A4T, A3T, A2T, AT, AT2,
AT3, AT4, AT5, T) are used. The A metric alone delivers
the best area solution (Muxmin), while T metric provides the
best delay solution (Delmin). In between(AiTj), more-or-less
balanced solutions are obtained. The
implementation of this solution
requires the (Mux, Del) couple
(Table IV) corresponding to each
basic recoding algorithm (28,25,22,21).
Because of an explosive number of
possible combinations (N>>), the
solution space is exhaustively
explored using a deterministic
C-program for r varying from 8 to
1024. The obtained results are
reported in Table V.

As conclusion, optimal area solutions (Mux=Muxmin) are
exclusively based on radix-22 algorithm (0,0,c,0), but they
are excessively slow (Del>>Delmin). While optimal speed
solutions (Del=Delmin) are entirely composed of radix-28
algorithm (a,0,0,0), but they are exaggeratedly large
(Mux>>Muxmin). Finally, balanced area/speed solutions are
mainly based on radix-25 algorithm with at most one or two
instances of radices 21 and 22 algorithms (0,b,c,d). However,
even the “balanced” solution is not really balanced enough
since the mean values of Del and Mux are 1.4×Delmin and
5.2×Muxmin , respectively. The reason is due to the large
disparity between Mux values of the basic radices
(Table IV). To correct this disequilibrium, we replace
respectively the two Seidel radix-28 and 25 expressions
(j

iA and j
iB) included in equation (14) by their

mathematically equivalent counterparts as follows:

∑
=

=
3

0

22
k

ji
k

kj
i CA and jijijij

i CCDB 1
3

00 22 ++= . These new

expressions are radix-28 and 25 , respectively. They produce
respectively the same intermediary partial products at PPGji
output as their Seidel counterparts. In fact j

iA is formed by
a succession of four instances of McSorley algorithm, while

j
iB is composed of one instance of Booth algorithm

followed by two instances of McSorley algorithm. Del and
Mux values of the new basic radices are grouped in Table
VI. Results delivered by the deterministic C-program are
reported in Table VII. All solutions are optimal since
Del=Delmin and Mux=Muxmin. They
are all based on radix-28 algorithm
(a,0,0,0). In case r is not a multiple
of 8, optimal solutions are also
obtained, composed mainly of radix-
28 algorithm with at most one
instance of radix-21, 22 or 25
algorithms, depending on the
remainder of r by 8 division.

TABLE IV
DELAY AND MULTIPLEXER

COMPLEXITY OF BASIC
RADICES: STEP #1

Algorithm Del Mux
21 0 5
22 0 10
25 2 133
28 6 1548

Mux values are extracted
from the heuristic
developed in Section III.
Ex: 1548=194 × 8.

TABLE V
OPTIMAL PPGj SOLUTION (a,b,c,d) LEADING TO THE OPTIMAL

RADIX-2r MULTIPLIER ACCORDING TO COMPOSITE METRICS AiTj

Instance Number r size
(bits)

Criteria
a b c d

Del Mux Delmin Muxmin

8 A – T 0 0 4 0 3 40 3 40
A – AT5 0 0 8 0 7 80

16 T 0 3 0 1 5 404 5 80

A – AT3 0 0 16 0 15 160
32 AT4 – T 0 6 1 0 8 808 8 160

A – AT2 0 0 32 0 31 320
AT3 – AT5 0 12 2 0 15 1616 64

T 8 0 0 0 13 12384
13 320

A – AT2 0 0 64 0 63 640
AT3 – AT5 0 25 1 1 28 3340 128

T 16 0 0 0 21 24768
21 640

A – AT 0 0 128 0 127 1280
AT2 – AT5 0 51 0 1 53 6788 256

T 32 0 0 0 37 49536
37 1280

A – AT 0 0 256 0 257 2560
AT2 – AT5 0 102 1 0 104 13576 512

T 64 0 0 0 69 99072
69 2560

A – AT 0 0 512 0 512 5120
AT2 – AT5 0 204 2 0 207 27152 1024

T 128 0 0 0 133 198144
133 5120

A – T: all the metric span A, A5T, A4T, A3T, A2T, AT, AT2, AT3,
AT4, AT5, T. To A and T metrics correspond respectively the
minimal values Muxmin and Delmin that serve as reference for the
optimization process.

TABLE VI
DELAY AND MULTIPLEXER
COMPLEXITY OF THE NEW
BASIC RADICES: STEP #2

Algorithm Del Mux
21 0 5
22 0 10
25 2 25
28 3 40

TABLE VII
OPTIMAL PPGJ SOLUTION (a,b,c,d) LEADING TO THE

OPTIMAL RADIX-2r MULTIPLIER ACCORDING TO
COMPOSITE METRICS AITJ

 Instance Number r size
(bits) a b c d

Del Mux Delmin Muxmin

8 1 0 0 0 3 40 3 40
16 2 0 0 0 4 80 4 80
32 4 0 0 0 6 160 6 160
64 8 0 0 0 10 320 10 320
128 16 0 0 0 18 640 18 640
256 32 0 0 0 34 1280 34 1280
512 64 0 0 0 66 2560 66 2560

1024 128 0 0 0 130 5120 130 5120

The new results are so interesting that we are encouraged
to pursue further the optimization process using higher basic
sub-radices (s>8) to reduce the total delay (DelT) of the
multiplier. Let us this time replace j

iA and j
iB as follows:

∑
=

=
7

0

22
k

ji
k

kj
i CA and ∑

=

=
3

0

22
k

ji
k

kj
i CB .We eliminate radix-25

since it can be derived from radix-21 and 22. The new Del
and Mux values of basic radices are grouped in Table VIII.

The C-program shows up even
more interesting results since starting
from r≥64 (Table IX), lower delays
are obtained with the same
multiplexer complexities as the ones
reported in Table VII. Based on the
obtained results, we pushed farther
the optimization process using even
higher basic sub-radices (s=16..32).

All optimal solutions come either on the form (a,0,0,0) or
(0,b,0,0). At this level we can draw a significant conclusion:
since the optimal solution is always in the form (a,0,0,0) or
(0,b,0,0) with a=2k and b=2k', there exists an integer s=2k''
such as either (s,0,0,0) or (0,s,0,0) is the optimal solution.

Consequently, equation (14) is rewritten accordingly, as

follows: rj
r
N

j

s
r

i

si

s

k

kji
k .CY 222

1

0

1

0

1
2

0

2∑ ∑ ∑
−

=

−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= (15)

and ji
k

ji
k

ji
k

ji
k yyyC 12212 2 +− −+= with }{ 21012 ,,,,C ji

k −−∈ .
Based on heuristic developed in Section III, multiplexer

complexity of equation (15) for the whole multiplier is
always equal to MuxT=10×N/2=5N for any value of r and s.
As for the multiplier delay (DelT), we need to determine the
couple (r,s) that leads to the shortest critical path in terms of
adder levels. This is what is achieved in the next section.

V. THE OPTIMAL PARTITIONNING
The total delay (DelT) of the whole multiplier related to

equation (15) is: DelT= N/r-1+Del+d2 where Del is the PPGj
delay equal to (r/s-1)+(s/2-1), and d2 is the multiplexer
delay corresponding to the recoding logic of radix-22. Thus,
DelT= N/r+r/s+s/2-3+d2.

The optimal delay with regard to r is obtained for (r,s)
couples satisfying () 0/ =∂∂ rDelT , which gives N.sr = .
When r is substituted by N.s into DelT expression, we
obtain: 232//2 dssNDelT +−+= . Likewise, the optimal
delay with regard to s is obtained for s value satisfying
() 0/ =∂∂ sDelT . We obtain 3 2/2 Ns = . Hence, the optimal

delay becomes: 2
3 32/3 dNDelT +−= .

Finally, we conclude that the optimal N-bit multiplier, in
comparison to equation (8) [13], relies on the new triple
recursive equation (15) with (r,s)=(3 22 N. , 3 22 /N).

Table X provides the s and r values that lead to the
optimal partitioning with respect to the operand size N. The
values s and r correspond to the number of multiplier bits
that are treated simultaneously inside each PPGji and each
PPGj, respectively. For N=64, the optimal partitioning is
obtained with (r,s)=(32,8) as illustrated by Fig. 4. Whereas
equations (15) and (8) require the same amount of hardware
resources (MuxT , AddT)=(320,31), they exhibit different
critical paths: 7 and 31 in terms of adder levels,
respectively.

VI. DISCUSSION OF THE IMPLEMENTATION RESULTS
We proved via FPGA implementation (Table III) how

much accurate are the area heuristics developed in Section
III (Table II). Based on this, we have undertaken a gradual
theoretical optimization process that yielded to equation
(15). This latter is implemented on FPGA with N=64, and
the results in terms of multiply-time, energy consumption
per multiply-operation, and total gate count, are as follows:
78.98 MMPS, 1.45pJ and 1987 slices, respectively.
Compared to implementation results of Seidel and Dimitrov
algorithms (Table III), gain ratios of 1.62, 1.71, 2.64 and
1.83, 1.71, 3.32 are obtained, respectively. A 64-bit
multiplier generated by Xilinx Coregen exhibits 75.86
MMPS and consumes twelve 18×18 bit DSP-slice
multipliers.

The real reasons behind these important results are
cleared up as follows.

TABLE VIII
DELAY AND MULTIPLEXER
COMPLEXITY OF THE NEW
BASIC RADICES: STEP #3

Algorithm Del Mux
21 0 5
22 0 10
28 3 40
216 7 80

TABLE X
THE OPTIMAL PARTITIONING VERSUS OPERAND SIZE N
Our recoding
Equation (15)

McSorley[13]
 Equation (8)

Seidel[11][19]
Equation (10)

Dimitrov [12]
Equation (13)N

(bits)
s r DelT DelT DelT DelT

8 4 8 2 3 6 1
16 4 8 3 7 7 2
32 8 16 5 15 9 4
64 8 32 7 31 13 8

128 8 32 9 63 21 16
256 16 64 13 127 37 32
512 16 128 17 255 69 64
1024 16 128 21 511 133 128
2048 32 256 28 1023 261 256
4096 32 512 35 2047 517 512
8192 32 512 45 4095 1029 1024

 s value corresponds to the number of bits that are treated
simultaneously inside each PPGji , while r value indicates the number
of bits that are processed simultaneously inside each PPGj. ds is not
included in DelT since d2<d8<d'8.

TABLE IX
OPTIMAL PPGJ SOLUTION (a,b,c,d) LEADING TO THE

OPTIMAL RADIX-2r MULTIPLIER ACCORDING TO
COMPOSITE METRICS AITJ

 Instance Number r size
(bits) a b c d

Del Mux Delmin Muxmin

8 0 1 0 0 3 40 3 40
16 0 2 0 0 4 80 4 80
32 0 4 0 0 6 160 6 160
64 4 0 0 0 10 320 10 320
128 8 0 0 0 14 640 14 640
256 16 0 0 0 22 1280 22 1280
512 32 0 0 0 38 2560 38 2560

1024 64 0 0 0 70 5120 70 5120
 : Optimal solution moved from (0,b,0,0) to (a,0,0,0)

Critical path (DelT)

X

"0" PPG00

1

y0 y1

y2

P127 - 0

64

+ y3

y4 y5

y6 y7

+

+

PPG01 y8 y9

y10 + y11

y12 y13
+

+

PPG02

+

+

+

PPG03

+

+

+

+

+

+

+

+

+

PPG11

+

+

+

PPG12

+

+

+

PPG13

+

+

+

+

+

+ +

2

3

4

5

6

7

PPG0

PPG1 PPG10

y14 y15

y16 y17

y18 y19

y20 y21

y22 y23

y29

y24 y25

y26 y27

y28

y30 y31

y61

y56 y57

y58 y59

y60

y62 y63

y37

y32 y33

y34 y35

y36

y38 y39

y45

y40 y41

y42 y43

y44

y46 y47

y53

y48 y49

y50 y51

y52

y54 y55

Fig. 4. Optimal partitioning of a two’s complement
64×64 bit radix-232 parallel multiplier based on
equation (15) with (r,s)=(32,8).

00
0C

00
1C

00
2C

00
3C

12
0C

12
1C

12
2C

12
3C

02
0C

02
1C

02
2C

02
3C

03
0C

03
1C

03
2C

03
3C

10
0C

10
1C

10
2C

10
3C

11
0C

11
1C

11
2C

11
3C

13
0C

13
1C

13
2C

13
3C

01
0C

01
1C

01
2C

01
3C

PP0

PP1

A. Area occupation
For operand size N=64, equation (15) is a composite

radix-232 algorithm (Table X), where each PPGj processes
simultaneously 32+1 inputs that are split on four sub-radix-
28 PPGji made of four instances (ji

kC) of McSorley algorithm
(Fig. 4). Seidel and Dimitrov algorithms are rather radix-28
algorithms, based on mono-bloc PPGj.

In fact, although radix-28 PPGji of equation (15) and
radix-28 PPGj of Seidel and Dimitrov are based on different
recoding schemes, they are mathematically equivalent since
they produce the same partial product PPji/PPj. Based on
theory (Table II) and implementation results (Table III),
Dimitrov recoding is the most space consuming due to the
use of odd-multiples of the multiplicand. On the other hand,
Seidel recoding does not require odd-multiples, but since
9 inputs are treated simultaneously in a mono-bloc PPGj, a
large amount of multiplexer resources is needed to recode
the 29=512 input combinations. Finally, radix-28 PPGji of
equation (15) is the least area consumer because it does not
employ odd-multiples and requires a small amount of
multiplexers as the total number of input combinations in
each radix-28 PPGji is equal to 8+8+8+8=32. Note that the
three recoding schemes are incorporating a number of
adders in their PPGji/PPGj which is 3, 6, and 1 for equation
(15), Seidel and Dimitrov algorithms, respectively.

Significant conclusion: the area occupation is dominated
by the Mux factor, and becomes larger as Mux number
becomes higher.

B. Delay
Using higher radices (r>>) will certainly shortens the

critical path. However, for high r values, mono-bloc PPGj
recoding induces an important delay (ds) due to the high
density of multiplexer logic that significantly degrades the
whole performance of the multiplier. This is clearly
illustrated by Dimitrov radix-28 recoding whose critical-path
totalizes 8 adder levels but exhibits a lower multiply rate
(43.17 MMPS) compared to Seidel recoding that have a
critical-path composed of 13 adder levels but shows a more
interesting rate (48.62 MMPS) due to lower multiplexer
complexity (Table II and III). As for equation (15), since a
composite PPGj is used, ds is equal to d2 (ji

kC delay) which is
the smallest delay (d2 < d5 < d8). Besides, the critical path
goes through the smallest number (7) of adder stages,
exploiting maximum parallelism that can be provided by the
triple-recursive equation (15). Thus, it is not surprising that
equation (15) achieves the best performance (78.98 MHz),
even when compared to Xilinx Coregen multiplier based on
DSP-slices (75.86 MHz). A double-recursive (s=2) version
of equation (15) served to design a scalable 16-bit setpoint
Finite-Word-Length PID controller, employing five
multiplication cores. The implementation results
outperformed the published ones at all levels [23].

Significant conclusion: using composite recoding in
conjunction with an optimal partitioning (r and s values)
provides the shortest critical path.

Equation (15) shows high aptitude for pipelining. Two
finely and coarsely grained systolic architectures for 64-bit
multiplier are depicted in Fig. 5.a and Fig. 5.b, respectively.
Fig. 5.a architecture is more suitable for high throughput
applications, with 7 clock-cycle latency.

VII. CONCLUSION AND FUTUR WORK
Upon the basis of the new multibit recoding

multiplication algorithm, we developed optimal parallel
multipliers with shortest critical paths and minimum
hardware resources for any value of operand size N. We
demonstrated by theory and FPGA implementation the
superiority of our high-radix algorithms over their existing
counterparts. Because exploiting the maximum parallelism
inherent in multiply operation, our look-up-table based
multiplier (eq. 15) is even speed-competitive with Xilinx’s
hardwired multiplier employing DSP-Slices (18×18 bit full-
custom multipliers).

More importantly, we demonstrated also that the current
trend relying upon minimal number-bases for the
development of high radix-2r recoding (r≥8) with mono-
bloc PPG requires an excessive amount of multiplexer
resources, which offsets speed and power benefits of the
compressor factor N/r. On the other hand, we proved that
composite PPG based on the new recursive multibit
recoding algorithm is the best realistic alternative.

The topology of our proposed recoding schemes shows
high capabilities for pipelining which can be finely or
coarsely grained to satisfy both high throughput and low
latency applications. A radix-232 64-bit parallel multiplier
was finely pipelined, resulting in a systolic architecture with
seven clock-cycle latency.

While the theoretical concept was validated using FPGA
as a preliminary step, an ASIC implementation based on a
standard-cell library is necessary for an ultimate validation
of the whole optimization work. This issue will be explored
in the near future, and we intend to report our results in a
forthcoming paper.

ACKNOWLEDGMENT
This work is supported by “Centre de Développement des

Technologies Avancées, CDTA,” Algiers, Algeria, under
project contract number: 21/CRSOC/DMN/CDTA/2011.
The project progresses under a close cooperation with
“Franche Comté Electronique Mécanique Thermique et
Optique-Sciences et Technologies, FEMTO-ST ” Besançon,
France.

The authors wish to thank T. Hilaire and B. Djezzar for
their careful review of this manuscript.

REFERENCES
[1] Reports on System Drivers of the International Technology Roadmap

for Semiconductors (ITRS), 2009 and 2010.
Available: www.itrs.net/reports.html

[2] H. Sam, and A. Gupta, “A Generalized Multibit Recoding of Two’s
Complement Binary Numbers and its Proof with Application in
Multiplier Implementation,” IEEE Trans. on Computers, vol. 39, N° 8,
August 1990.

[3] G. Kim et al., “A Low-Energy Hybrid Radix-4/-8 Multiplier for
Portable Multimedia Applications,” Proceedings of IEEE
International Symposium on Circuits and Systems, (ISCAS), pp.
1171-1174, Rio de Janeiro, Brazil, May 15-18, 2011.

[4] B.J. Benschneider et al, “A Pipelined 50MHz CMOS 64-Bit Floating-
Point Arithmetic Processor,” IEEE Journal of Solid-State Circuits,
vol. (24) 5, pp. 1317-1323, October 1989.

[5] C.F. Webb et al, “A 400-MHz s/390 Microprocessor,” IEEE Journal
of Solid-State Circuits, vol. (32) 11, pp. 1665-1675, November 1997.

[6] J. Clouser et al, “A 600-MHz Superscalar Floating-point Processor,”
IEEE Journal of Solid-State Circuits, vol. (34) 7, pp. 1026-1029,July
1999.

[7] R. Senthinathan et al, “A 650-MHz, IA-32 Microprocessor with
Enhanced Data Streaming for Graphics and Video,” IEEE Journal of
Solid-State Circuits, vol. (34) 11, pp. 1454-1465, November 1999.

[8] A. Scherer et al, “An Out-of-Order Tree-Way Superscalar Multimedia
Floating Point Unit,” Proceeding of IEEE International Solid-State
Circuits Conference (ISSCC), pp. 94-95, 1999.

7
6

5

4

3

2

1

X 64

"0" 00
0C y0 y1

y2 + y3

y4 y5

y6
y7

+

+

+

+

+ +

+

+

+ +

+

+

+ +

y29

y24 y25

y26 y27

y28

y30 y31

y8 y9

y10 y11

y12 y13

y14 y15

y16 y17

y18 y19

y20 y21

y22 y23

+

+

+

+

+

+ +

+

+

+ +

+

+

+ +

P127 - 0

+

X 64

00
1C

00
2C

00
3C

10
3C

10
2C

10
0C

10
1C

01
0C

11
0C

01
1C

11
1C

01
3C

01
2C

02
0C

02
1C

02
2C

03
0C

03
1C

13
3C

03
2C

03
3C

02
3C

11
2C

11
3C

12
0C

12
1C

12
2C

13
0C

13
1C

13
2C

12
3C

Fig. 5. Space/Time partitioning of a two’s complement 64×64 bit radix-232 parallel multiplier based on equation (15).
 (a) High-throughput finely-grained systolic architecture; (b) Low-latency coarsely-grained systolic architecture.

y61

y56 y57

y58 y59

y60

y62 y63

y45

y40 y41

y42 y43

y44

y46 y47

y53

y48 y49

y50 y51

y52

y54 y55

y37

y32 y33

y34 y35

y36

y38 y39

y31

y61

y56 y57

y58 y59

y60

y62 y63

y45

y40 y41

y42 y43

y44

y46 y47

y53

y48 y49

y50 y51

y52

y54 y55

y37

y32 y33

y34 y35

y36

y38 y39

y31

P127 - 0

X 64

"0" y0 y1

y2 y3

y4 y5

y6
y7

+

+

+

+ +

+

+

+ +

+

+

+ +

y29

y24 y25

y26 y27

y28

y30 y31

y8 y9

y10 y11

y12 y13

y14 y15

y16 y17

y18 y19

y20 y21

y22 y23

+

+

+

+

+

+ +

+

+

+ +

+

+

+ +

+

X 64

(b)

00
0C

00
1C

00
2C

00
3C

01
0C

01
1C

01
2C

01
3C

02
0C

02
1C

02
2C

02
3C

03
0C

03
1C

03
2C

03
3C

10
0C

10
1C

10
2C

10
3C

11
0C

11
1C

11
2C

11
3C

12
0C

12
1C

12
2C

12
3C

13
0C

13
1C

13
2C

13
3C

+

+

1

2

3

4 Critical path Clock Cycle Register
(a) (b)

[9] Intel Corp., “Intel 64 and IA-32 Architectures Software Developers
Manual,” volume 1, order number 253668, Copyright May 2011.

[10] R.J. Rieldlinger, “A 32 nm 3.1 Billion Transistor 12-Wide-Issue
Itanium Processor for Mission-Critical Servers,” Proceedings of IEEE
International Solid-State Circuits Conference (ISSCC), pp. 84-86, San
Francisco, CA ,USA, February 20-24, 2011.

[11] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Secondary Radix
Recodings for Higher Radix Multipliers,” IEEE Trans. on Computers,
vol. 54, N°2, February 2005.

[12] V.S. Dimitrov, K.U. Järvinen, and J. adikari, “Area Efficient
Multipliers Based on Multiple-Radix Representations,” IEEE Trans.
on Computers, vol. 60, N° 2, pp 189-201, February 2011

[13] O.L. McSorley, “High-Speed Arithmetic in Binary Computers,”
Proceedings of the IRE, Vol. 49(1), pp. 67-91, January 1961.

[14] F. Lamberti, “Reducing the Computation Time in (Short Bit-Width)
Two’s Complement Multiplier,” IEEE Trans. on Computers, vol. 60,
N° 2, pp. 148-156, February 2011.

[15] S.R. Kuang, J.P. Wang, and C.Y. Guo, “Modified Booth Multipliers
with a Regular Partial Product Array,” IEEE Trans. on Circuit and
Systems II, Express Brief, vol. 56, N° 5, May 2009.

[16] S.R. Kuang, J.P. Wang, “Design of Power-Efficient Configurable
Booth Multiplier,” IEEE Trans. on Circuit and Systems I, vol. 57, N°
3, March 2010.

[17] M. Själander and P. Larsson-Edefors, “Multiplication Acceleration
Through Twin Precision,” IEEE Trans. on Very Large Scale
Integration (VLSI) Systems, Vol. 17, N° 9, September 2009.

[18] A. D. Booth, “A Signed Binary Multiplication Technique,” Quarterly
J. Mech. Appl. Math., Vol. 4, part 2, pp. 236-240,1951.

[19] P.M. Seidel, L. D. McFearin, and D.W. Matula, “Binary
Multiplication Radix-32 and Radix-256,” Proceedings of the IEEE
Symposium on Computer Arithmetic (ARITH-15), ISBN: 0-7695-
1150-3, pp. 23-32, USA, June 2001.

[20] A.K. Oudjida et al., “A New Recursive Multibit Recoding Algorithm
for High-Speed and Low-Power Multiplier,” Accepted for publication
in Journal of Low Power Electronics (JOLPE), Vol. 8, N° 5,
December 2012.

[21] E. Manmasson et al., “FPGA in Industrial Control Applications,”
IEEE Trans. on Industrial Informatics, vol. 7, N° 2, May 2011.

[22] M. Alioto, Elio Consoli, and Gaetano Palumbo, “Metrics and Design
Consideration on the Energy-Delay Tradoff of Digital Circuits,”
Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS’09), pp. 3150-3153, Taiwan, May 24-27 2009.

[23] A.K. Oudjida et al., “High-Speed and Low-Power PID Structures for
Embedded Applications,” Proceedings of the 21th edition of the
International Workshop on Power and Timing Modeling,
Optimization and Simulation PATMOS, LNCS 6951, pp. 257-266,
Springer-Verlag Editor. Madrid, Spain, September 26-29, 2011.

APPENDIX

Proof of theorem 1: Initially, the multiplier Y is an N bit string. But to comply with the requirement

of the multibit recoding algorithm [2], we need to add a zero bit (y-1) to the less significant side of Y.

Thus, the total size becomes N+1.

122101 −−− ⋅⋅⋅= NN yyyyyyY with y-1=0

Y is a two’s complement number. It is written as follows:

1
1

2
2

2
2

1
1

0
0

1 22222 −
−

−
−

− −+⋅⋅⋅++++= N
N

N
N yyyyyyY

 j
N

j
j

N
N yy 22

2

1

1
1 ∑

−

−=

−
− +−=

In the multibit recoding algorithm, the multiplier Y is split into N/r two’s complement slices (jQ),

each of r+1 bit length. Two contiguous slices (Qj with Qj-1, and Qj with Qj+1) have one overlapping

bit in common. Thus Y becomes:

(∑
−

=
++− ⋅⋅⋅++++=

1

0
2

2
1

10
1 222

r
N

j
rjrjrjrj yyyyY) ∑

−

=
−+

−
−+

− =−+
1

0
1

1
2

2 2222
r
N

j

rj
j

rj
rrj

r
rrj

r Qyy

In fact the Qj term is no more than a two’s complement representation of r+1 bit string which can

be split in its turn into r/s two’s complement overlapping slices (Pji), each of s+1 bit length. Thus Y

becomes:

([∑
−

=
++− ⋅⋅⋅++++=

1

0
2

2
1

10
1 222

r
N

j
rjrjrjrj yyyyY .) +−+ −+

−
−+

− 0
1

1
2

2 222 srj
s

srj
s yy

 (⋅⋅⋅++++ +++++−+ 2
2

1
10

1 222 srjsrjsrjsrj yyyy .) +−+ −+
−

−+
− s

srj
s

srj
s yy 222 12

1
22

2
 .
 .
 .

 (⋅⋅⋅++++ +−++−+−+−−+ 22
2

12
1

2
0

21 222 srrjsrrjsrrjsrrj yyyy .) +−+
⎟
⎠

⎞
⎜
⎝

⎛ −

−−+
−

−−+
−

2

1
1

2
2 222 s

r
s

srrj
s

srrj
s yy

 (⋅⋅⋅++++ ++++++−+−−+ 2
2

1
10

1 222 srrjsrrjsrrjsrrj yyyy .)
⎥
⎥

⎦

⎤
−+

⎟
⎠

⎞
⎜
⎝

⎛ −

−+
−

−+
−

1

1
1

2
2 222 s

r
s

rrj
s

rrj
s yy

 () rj
r
N

j

s
r

i

si
sisrj

s
sisrj

s
sirjsirjsirjsirj yyyyyy 2222222

1

0

1

0
1

1
2

2
2

2
1

10
1∑ ∑

−

=

−

=
+−+

−
+−+

−
++++++−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+⋅⋅⋅++++= .

 rj
r
N

j

s
r

i

si
jiP 22

1

0

1

0
∑ ∑
−

=

−

= ⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

 A synoptic scheme is depicted in Fig. 1 to illustrate the use of theorem 1 in the partitioning of

a 16-bit Y operand.

Proof of theorem 2: Likewise, Y can also be rewritten as follows:

([∑ ∑
−

=

−
+

=
+++++++−

⎢
⎢
⎢

⎣

⎡

⋅⋅⋅+++=
1

0

1

0
1

10
1 22

r
N

j

ts
r

i
itsrjitsrjitsrj yyyY)()()(.) +−+ ++−+

−
++−+

−
itssrj

s
itssrj

s yy)()(1
1

2
2 22

 (⋅⋅⋅+++ +++++++++−+ itssrjitssrjitssrj yyy)()()(. 1
10

1 22)] ()] rjitss
itsrrj

t
itsrrj

t yy 22222 1
1

2
2 +

++−+
−

++−+
− −+)()(

 [] () rj
r
N

j

ts
r

i

itss
jiji TP 222

1 1

0
∑ ∑
− −

+

=

+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+=

A synoptic scheme is depicted in Fig. 2 to illustrate the use of theorem 2 in the partitioning of a 16-

bit Y operand.

y-1 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

P00

P01

P10

P11

Q0

Q1

Y

Figure 1. Partitioning of a 16-bit Y operand with
r=8 and s=4

Y
16+1 bits

Qj
8+1 bits

Pji
4+1 bits

y-1 y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

P00

T00

P10

T10

Q0

Q1

Y

Figure 2. Partitioning of a 16-bit Y operand
with r=8, s=6 and t=2

Y
16+1 bits

Qj
8+1 bits

Pji
6+1 bits 2+1 bits

Tji

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

