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Abstract

Fuel Cell systems (FC) represent a promising alternative energy source. However, even if this technology is close to being
competitive, it is not ready for large scale industrial deployment: FC still must be optimized, particularly by increasing
their limited lifespan. This involves a better understanding of wearing processes and requires emulating the behavior of
the whole system. Furthermore, a new area of science and technology emerges: Prognostics and Health Management
(PHM) appears to be of great interest to face the problems of health assessment and life prediction of FCs. According to
this, the aim of this paper is to present the current state of the art on PHM of FCs, more precisely of Proton-Exchange
Membrane Fuel Cells (PEMFC) stack. PHM discipline is described in order to depict the processing layers that allow
early deviations detection, avoiding faults, deciding mitigation actions, and thereby increasing the useful life of FCs. On
this basis, a taxonomy of existing works on PHM of PEMFC is given, highlighting open problems to be addressed. The
whole enables getting a better understanding of remaining challenging issues in this area.
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1. Introduction

In the quest for the best candidate to replace fossil en-
ergy, fuel cell systems benefit from a growing interest. Not
only, are they presented as a good alternative to internal
combustion engine in transport applications, but also as
a clean and efficient portable power source for low power
electronic devices (µFC) or, on a bigger scale, for combined
heat and power systems (µCHP) that are used to generate
both heat and electricity for homes. As a fuel cell has no
moving part, it offers a great reliability even if subjected
to material degradation. However, it still suffers from a
too short life duration which impedes large scale deploy-
ment of this technology.
For its part Prognostics and Health Management can
be seen as a great option to help research on extending
PEMFC lifetime. Indeed, it appears to be an enabling
discipline that aims at utilizing real monitoring data to
facilitate relevant indicators and trends that depict the
health of the system [1]. Also, Prognostics and Health
Management discipline enables deciding adequate actions
at the right time when needed in order to extend the sys-
tem’s life, and it benefits from a growing interest from
FC community. Nevertheless, no work dealing with Prog-
nostics and Health Management applied to fuel cells can
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be found in literature. Consequently, this paper aims at
drawing a first classification of PEMFC works with Prog-
nostics and Health Management point of view. From that,
current and future challenging issues are pointed out.
To achieve this goal, the core of the paper is organized in
three main sections. First, Prognostics and Health Man-
agement discipline is briefly described with an emphasis on
prognostics. This part enables distinguishing important
sets of activities to be carried out and setting the specific
vocabulary used all along the paper. Then, main degra-
dation and behavioral models of PEMFC are synthesized
in order to depict the variety of aspects to be taken into
account for Prognostics and Health Management purpose.
All these bases set, the state of the art is drawn accord-
ing to the processing layers defined sooner. This enables
discussing in a last part remaining challenging issues.

2. Prognostics and Health Management (PHM)

2.1. Outline : processing layers of PHM

The growth of reliability, availability or safety demand
is a determining factor to ensure all new industrial sys-
tems spreading. Maintenance has been introduced as an
efficient way to meet these requirements while reducing
cost of the useful life of the system. Current maintenance
strategies have moved from breakdown maintenance, to
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preventive maintenance, then to Condition-Based Mainte-
nance (CBM). The objective of CBM is to maintain the
correct equipment at the correct time taking into account
the current and future health state of the system. CBM
is based on using real-time monitoring data to estimate
the actual health state of the system and thereby optimize
maintenance policies. Consequently, the complete aspects
of failure analysis and prediction must be viewed as a set
of activities, all of them must be performed. Indeed, var-
ious activities, ranging from data collection through the
recommendation of specific mitigation actions, must be
carried out to perform predictive control and maintenance
(and thereby improve systems’ performances). Prognos-
tics and Health Management follows from that. It can
be defined as a set of activities which main perspective
is to enhance the effective reliability and availability of a
product in its life-cycle conditions by detection of current
and approaching failures. It aims at predicting and pro-
tecting the integrity of equipment and complex systems,
and at avoiding unanticipated operational problems lead-
ing to mission performance deficiencies, degradation, and
adverse effects to mission safety. To achieve this goal, a
PHM system is seen as the integration of seven layers (ini-
tially defined for CBM). A general PHM architecture is
proposed on Fig. 1. A description of each layer is given
hereafter.

• Layer 1: Data Acquisition
It provides the PHM application with digitized sensor
or transducer data.

• Layer 2: Data Processing
It receives data from the sensors (or transducers or
signal processors), and performs signal transforma-
tions and features extraction, reduction and selection.

• Layer 3: Condition Assessment
It helps determining the system current state-of-
health by detecting and localizing a system fault. It
compares on-line data with expected values of sys-
tem’s parameters. It should also be able to generate
alerts based on preset operational limits.

• Layer 4: Diagnostic
It determines if the condition of the system has de-
graded. The module also generates a diagnostic
record and suggests fault possibilities. It permits to
isolate and to identify the component that has ceased
to operate (past propagation: from effects to causes).

• Layer 5: Prognostics
It predicts the future condition of the monitored sys-
tem, subsystem or component. The module should be
able to acquire data from all previous modules (prop-
agation from causes to effects).

• Layer 6: Decision Support
Its primary function is to provide recommended main-
tenance actions or alternatives on how to run the sys-

tem until the mission is completed. It should be done
automatically.

• Layer 7: Human-Machine Interface (HMI)
This module receives data from all previous modules.
This module could be built into a regular human-
machine interface.
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Figure 1: PHM Architecture adapted from [2]

From this description, one can guess the great interest
of prognostics. Let’s now focus on this layer.

2.2. Prognostics: a Key Process

Global performance requirements lead industrials to
strengthen their capability to anticipate degradation phe-
nomena and failures. This is mainly achieved thanks to
prognostics, that appears to be a key process to move from
a “fail to fix” to a “predict to prevent” strategy (Fig. 2),
enabling the improvement of reliability, availability and
safety of systems, while reducing costs and down times.

Figure 2: Anticipating instead of fixing [3]

Although there are some divergences in literature, prog-
nostics can be defined as proposed by the International
Organization for Standardization: “prognostics” is the es-
timation of time to failure and risk for one or more existing
and future failure modes [4]. In this acceptation, prognos-
tics is also called the “prediction of a system’s lifetime” as
it is a process whose objective is to predict the Remain-
ing Useful Life (RUL) before a failure occurs, given the
current machine condition and its past operation profile
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(Fig. 3). Various approach exist to perform prognostics,
and it does not exist a unique classification. Great reviews
of these methods can be seen in [5, 6, 7, 8].
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Figure 3: RUL illustration

2.3. Towards PHM of PEMFC

Over the past 20 years, many successful applications and
implementations of PHM theory in industrial problems
have been presented in the literature, that for very dif-
ferent kinds of systems such as mechanical systems [9, 10],
machining tools [11], air cooling systems [12] or electro-
chemical devices [13]. Hundreds of papers in PHM (both
theoretical and applied) appear every year in academic
journals, conference proceedings and technical reports.
This makes PHM a very interesting tool for monitoring the
state-of-health (SOH) and estimating the remaining useful
life (RUL) of PEMFC with the aim of extending its dura-
bility. In the sections below, we propose to discuss PHM
of PEMFC by considering main sets of aspects depicted
in Fig. 1: “degradation, losses and behavior” (section 3),
“observation”, “modeling / analysis” and “decision” (sec-
tion 4).

3. Degradation and behavior of PEM Fuel Cells

3.1. Degradation mechanisms

Due to its components and all the ancillaries surround-
ing, PEMFC implies several scales as depicted in Fig. 4
adapted from [14] but also multi physics phenomena,
namely electrical, mechanical, electrochemical and ther-
modynamic phenomena. Consequently, a great number
of parameters influencing performances, degradation
and durability of PEMFC can be identified. They can
be attributed to operating conditions, cell design and
assembly, environmental conditions and degradation
mechanisms.

Great reviews of the main parameters have been done
in [15, 16, 17, 18, 19], they are relative to various fields:
water management (flooding or drying out of the mem-
brane - electrode assembly), components degradation (see
Table 1), contamination (CO poisoning, presence of impu-
rities initiating chemical attacks), reactant gas starvation
or thermal management (influence of freezing or elevated
temperature). These parameters, if not properly moni-
tored and controlled, can lead to irreversible degradations

Nano‐scale                                  Micro‐scale                                       Fuel Cell                          System
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‐ Species distribution
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mechanisms
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Figure 4: PEMFC: a multi scales system adapted from [14]

and thus to the PEMFC failure.
Obviously, performance degradation cannot be avoided in
a long-term period, but mitigation strategies can be used
to prevent their consequences [19]. However it implies that
all the phenomena previously listed are completely under-
stood.

3.2. Behavior and losses through the lifetime

3.2.1. Behavioral models

As we said, PEMFCs are multiphysics systems, which
make highly difficult the establishment of a complete be-
havioral model. Furthermore such a model would hardly
be exploitable for practical applications due to the number
of parameters and the impossibility of monitoring some of
them. But before elaborating a complex model, one has to
think carefully of the purpose of its model. Indeed, not the
same models are requested when a diagnosis is performed,
when the system command is investigated or when the
purpose is developing the system. Considering that, the
level of the model has to be chosen (microscopic or macro-
scopic): dimension 0 can be enough for an elementary cell
study whereas three dimensions are needed to take into
account phenomena like mass transport or electrochemi-
cal interactions.
Different types of models are already used for PEMFCs
studies: static / dynamic models, analytical models (phys-
ical or mathematical), hybrid approaches (physical and
empirical models associated) [20], black-box models (data
driven approaches such as neural networks [21], fuzzy in-
ference systems [22], support vector machines [23], etc.).
As for an example, a common model for an electrical ap-
proach of PEMFC is the adaptation of the Randles model
proposed by [24], or the equivalent circuit model proposed
by [25]. Reviews of modeling of PEMFC can be found in
[26, 27, 28, 29].

3.2.2. Losses in PEMFC

Another efficient way to study PEMFC is to characterize
them, namely with polarization curves and Nyquist plots.
These characterizations allow catching the static and dy-
namic behaviors of the stack and the curves give useful in-
formation regarding losses and internal resistances in the
system. If we take a closer look at the polarization curve
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Table 1: Components degradation in the stack [19]

Component Failure modes Causes

Membrane

Mechanical degradation Mechanical stress due to non-uniform press pressure, inade-
quate humidification or penetration of the catalyst and seal
material traces

Thermal degradation Thermal stress; thermal cycles
Chemical/electrochemical degradation Contamination; radical attack

Catalyst layer

Loss of activation Sintering or dealloying of electrocatalyst
Conductivity loss Corrosion of electrocatalyst support
Decrease in mass transport rate of reactants Mechanical stress
Loss of reformate tolerance Contamination
Decrease in water management ability Change in hydrophobicity of materials due to Nafion or

PTFE dissolution

GDL
Decrease in mass transport Degradation of backing material
Decrease in water management ability Mechanical stress; change in the hydrophobicity of materials
Conductivity loss Corrosion

Bipolar plates
Conductivity loss Corrosion; oxidation
Fracture/deformation Mechanical stress

Sealing gasket Mechanical failure Corrosion; mechanical stress

on Fig. 5 for example, we can distinguish four zones cor-
responding to addition of different types of losses. The
Nyquist plot, as for it, can be used to study the behavior
evolution during aging process [30, 31].
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Figure 5: Visualizing losses: the polarization curve

Being able to model PEMFC behaviors and degradation
processes can be very useful for applying PHM methodolo-
gies.

4. State of the art of PHM regarding PEMFC

Lots of research works have been published in the past
years regarding PEMFC but none of them have ever
adopted a PHM point of view. Consequently, in this sec-
tion, we consider a certain amount of works by adopting
this vision. Each layers is treated separately to empha-
size their different characteristics. But we should fast give

some vocabulary precisions. Indeed, in the PEMFC litera-
ture it is very common to find works entitled “diagnosis of
...” but very often from the PHM point of view the term
diagnosis is misused. Instead of referring to diagnostics
as fault detection and identification, they mostly focus on
monitoring the current state of the stack or detect faults,
but they rarely go further. With the same idea, works
entitled “estimation of the lifespan of...” do not perform
prognostics, even if they try to predict the evolution of
some components, no remaining useful life is estimated.
That’s why one should keep in mind the definition of each
layer previously introduced when trying to classify fuel cell
works according to PHM statements.
The first step when using a PHM methodology is to choose
the system studied. In this paper we will limit our work
to the stack and its components, leaving aside ancillaries,
but also to works realised after 2000.

4.1. Observation layers

As PEM fuel cells are still in a process of development
and all the internal processes are not fully understood, a
great number of monitoring techniques have been applied.
That’s why, the observation layers are the most developed
ones.

4.1.1. Data Acquisition

A large amount of techniques dedicated to data ac-
quisition have been developed. Very often, home-made
test benches are constructed to meet specific needs. Of
course, usual sensors such as pressure sensors, thermocou-
ples, flowmeter, ammeter, etc. are commonly used. They
allows measuring common parameters as the cell or stack
voltages and currents in static and dynamic modes [32], or
pressure drops at the electrodes [33]. But more informa-
tive techniques are also employed due to the specific needs
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for stack or individual cells monitoring.
Electrochemical impedance spectroscopy (EIS) encounters
a large success [24, 30, 31]. Indeed it enables characterizing
electrode processes and complex interfaces by measuring
the response of the system to the application of a periodic
small amplitude AC signal [34]. This method gives rel-
evant informations about both dynamic (through a large
range of frequencies) and static behaviors. Nyquist plots
can be constructed from these informations in the next
PHM layers.
However more specific behavior-oriented means have been
tested. Some are well described in [35] and [36]. Due to
their great number, they are summarized in Table 2 but
some are described here after:

• Gas chromatography to measure directly high levels
of water saturation [37];

• Neutron imaging to localize condensed water [38];

• Current interrupt to measure cell resistances [39];

• Cyclic voltammetry to get informations about active
areas of the electrodes [39];

• Linear sweep voltammetry to visualize hydrogen
crossover [39];

• Transparent cells associated with a camera to record
the evolution of liquid water content and locate
flooded regions [40];

• Measurements of exit air humidity [41];

• Power compensated differential scanning calorimetry
to measure specific heat of the membrane [42];

• Infrared camera to study the temperature distribu-
tions [42].

This list could be more exhaustive but it needn’t to be
longer to show the great diversity of tools that can be
useful for fuel cell monitoring. What can be interesting
to notice is that very few of these techniques meet all
the requirements for transportable applications, namely,
reliable, non-intrusive, non-damaging and easily imple-
mentable (in terms of time and money costs and volume)
on-line technology.

4.1.2. Data Processing

To make raw data usable, a great variety of processing
tools are available. Their choice is closely linked to the
nature of gathered and to the condition assessment method
used directly after. We can divide them in at least four
categories.

Table 2: Summary of data acquisition techniques for PEMFC

Means References

EIS [24, 30, 31]

Gas or liquid chromatography [37, 43]

Neutron imaging [38, 44]

Current interrupt [39, 45, 46]

Cyclic voltammetry [39, 47]

Linear sweep voltammetry [39, 47, 48]

High frequency resistance [45, 49]

AC resistance [45]

MEMS sensors [50, 51]

Transparent cells [40, 52, 53]

Segmented cells [54, 55, 56]

Measurements of exit air humidity [41]

Power compensated differential scan-
ning calorimetry

[42]

Infrared imagery [42, 57, 58]

Chronoamperometry [47, 59, 60, 61]

Chronopotentiometry [61]

Cathode discharge [62]

Micro-sensors for CO detection [63, 64]

Chronocoulometry [65]

X-ray diffraction [47]

X-ray absorption fine structure spec-
troscopy

[66]

Atomic absorption spectroscopy [47]

Mass spectroscopy [67, 68]

Transmission electron microscopy [60]

Magnetic resonance imaging [69]

Scanning electron microscope and/or
Transmission electron microscope

[65, 70, 71]

Acoustic emission [72]

Feature extraction. This category gathers a great variety
of methods. One of the most used is generating the polar-
ization curve described earlier thanks to current density
and voltage signals, as well as the Nyquist plot thanks to
EIS measurements [24, 31, 73]. In [30], once the fitting
realized, the authors are able to extract particular hyper-
parameters and follow their evolution during time. Various
uses can be done from these plots, most of them are de-
tailed in the condition assessment part. A quite different
example is photo analysis, most often when experiments
are done with a transparent fuel cell. Some specific behav-
ioral characteristics such as start point of flooding can be
identified [40].

Signal processing. These techniques provide informations
about the signal in the frequency domain allowing to see
some characteristics invisible in the time domain. They
can be applied on different signals such as drop pressure,
resistance variation or voltage. Two of them can be identi-
fied in the PEMFC literature, namely, Fast Fourier Trans-
form (FFT) and Wavelet Transform (WT).
FFT is used in [74] in order to correlate the stack voltage
evolution with the pressure drop across the electrodes in
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different operating conditions. The aim of the authors is
then to find the dominant frequency of the cathode pres-
sure drop and then to be able to predict the sudden stack
voltage evolution indicating a flooding. But a drawback of
such a method is that it is not adapted to non-stationary
signals.
On the other side, WT is a multi-resolution analysis meth-
ods class that enables the examination of the signal and
its local features under different scale and time localiza-
tions. It allowed to extract features which, once classified,
are used to determine the fuel cell state of health. Some
applications of WT can be found in [32, 75, 76].

Model fitting. Very often, raw data show specific trends
and can be used to determine empirical models. This can
be achieved by using fitting procedures. In [77], a com-
plex non-linear least square fitting is used to fit to the
specific Nyquist plot obtained during CO-poisoning. In
[30], approximations of the polarization curve, of real and
imaginary parts of the impedance measurements by poly-
nomial models are performed. The same idea of fitting to
the Nyquist plot and polarization curve can be found in
[24] but this time the analytical model (Randles model)
is already known. We cite here only example of EIS data
fitting but it is also performed with other kind of measure-
ments (pressure drop, species concentration, etc.).

Statistical treatment. When a correlation seems to exist
between the measured variables it could be interesting to
use statistical treatments such as Principle Component
Analysis (PCA) [72, 78, 79]. In [79], PCA aims at visu-
alizing the different parameters, their variations and cor-
relations, and then allows the authors to identify which
ones mostly contribute to the stack behavior. This kind of
post processing is also used in [72] for data discrimination
between data coming from distinct origins for then catego-
rizing them into different clusters. Here we can also quote
data reduction [41] and data normalization [80] that are
very helpful when a huge amount of data exist or when
one wants to work with a small range of values.

4.2. Modeling and analysis layers

4.2.1. Condition Assessment

The condition assessment part is very often confused
with the diagnostic part, once again detecting and local-
izing a system fault or its state of health belongs to con-
dition assessment. On the other hand, diagnostic focus on
fault identification. As previously said, modeling fuel cells
behavior is quite difficult, making condition assessment
complicated if only model-based. In simple phenomena
studies, differential values between model data and mea-
surements called residues can be generated and analyzed.
The value of these residues enable assessing in which state
the system is operating [24, 31, 37, 40] or in [81] described
in 4.3. In [31], the residues are divided in different clusters
thanks to one fuzzy clustering algorithm, each one corre-
sponding to a different solicitation evolution. So, thanks

to points location, deviations from the operating point can
be detected. Fuzzy logic utilization can be found in [41].
Another method consists in using Artificial Neural Net-
works (ANN). In [32], ANN learns the correlation between
voltage variations, pressure drop at the cathode and wa-
ter conditions (normal, flooding or drying out) during the
learning phase. Then during various simulations, it can
indicate in which state the fuel cell is operating. Last
example, for condition assessment, is the use of represen-
tation of characteristic parameters as in [24] where the 3D
representation of the system ohmic, polarization and dif-
fusion resistances once again helps determine the fuel cell
state-of-health. A last tool, that is a starting point for
diagnostic, is Bayesian networks [82].

4.2.2. Diagnostic

Directly following fault detection, diagnostic allows de-
termining the failure causes. Even if significant works exist
in that direction a lot of them are related to fault identifi-
cation, which in this paper is called condition assessment.
The causes of the failures are not always clearly identified,
preventing these works to be classified as diagnostic in the
PHM sense.
Great reviews summarizing diagnostic methods and the
way they are used for PEMFC diagnostic can be found
in [28, 83]. On the one hand, [28] sums up model-based
methodologies such as parameter identification methods
[84, 85], observer-based model [86], parity space methods
[87, 88], while on the other hand [83] presents non-model
based ones namely Bayesian network [89, 90], some tools
are common with fault detection.
To detail some examples, in [90] two Bayesian network
structures are implemented, one with K2 algorithm the
other with MCMC algorithm, and compared for fault iden-
tification. In [78], a different kind of method is tested.
After applying PCA, a residual error effectiveness factor
for each characteristic variable is attributed. From this
and calculating a square prediction error, they manage to
select possible causes of a voltage variation. In [91], the
signatures of residues generated when a fault occurs are
analyzed thanks to fuzzy logic rules and the fault cause
can be identified. In this case, the only causes that can
be identified are H2O/N2 accumulation in the anode com-
partment or PEM drying but more rules could be added
to identify more failure causes.
However, even if diagnostic helps identifying failure causes,
it can only be performed after the fault occurs. Conse-
quently it doesn’t offer the possibility to anticipate fail-
ures and so prevents from acting on the system before it
breaks down. One step further, enabling anticipation, in
PHM set of activities is prognostics.

4.2.3. Prognostics

The prognostics layer is almost absent of PEMFC
studies. As said in this part introduction, a few studies
try to estimate the remaining lifespan of a specific
component or a single cell. The main idea of these works
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is to determine in which part of the fuel cell life, the
system is operating thanks to different aging tendencies
and indicators empirically defined [92, 93]. It implies
nevertheless to have a sufficient amount of data from
multiple fuel cells. However, even if it does not looks like
real prognostics, these papers can give starting points
that once developed could lead to prognostics.

2α

EoL

Figure 6: RUL prediction plot adapted from [94]

Only one paper in which a remaining useful life (RUL)
is calculated has already been published until now [94]. It
proposes a damage tracking and RUL prediction by us-
ing an unscented Kalman filter-based PHM scheme. A
physics-based prognostic-oriented model is implemented in
order to link the operating conditions to the degradation
rate of the electro-chemical active surface area. The main
idea is to use the size evolution of this area as an aging
criterion and by linking it to output voltage, to perform
RUL predictions. The end-of-life (EoL) of the fuel cell
is assumed to occur when this area becomes to small to
give an acceptable performance in terms of output voltage.
The result given are evaluate with α-performance metrics
described in [95]. The metrics indicates whether the pre-
dicted estimates are within the specified limits around the
actual EoL so that the prediction can be considered trust-
worthy. As we can see on Fig. 6 the predicted RUL is con-
tained in the 2α zone meaning that its prognostics method
shows good results. Yet, this prognostic is performed on
a single cell (not a whole stack) and covers a short period
of time (300 h). In an industrial perspective, research has
to be reinforced to face those two limits.

4.3. Decision Layers

4.3.1. Decision Support

As regards decision support, there are not so much works
dealing with automatic corrective actions. The American
patent made by Bosco and Fronk [81] is the most com-
plete paper dealing with this subject. Residues from pres-
sure drop measurement across given hydrogen or oxygen
flow fields are generated. These residues are compared
to empirically defined threshold of unacceptability during
the condition assessment and diagnosis phases. Then in

case of fault detection, corrective actions are automati-
cally launched in agreement with Fig. 7.

Figure 7: Automatic regulation of operating conditions [81]

4.3.2. Human - Machine Interface

No work dealing precisely with creating human - ma-
chine interface can be found in the literature. Indeed, work
teams tend to develop homemade HMIs dedicated to their
specific needs.

4.4. Global overview

The previous described layers are summarized in Fig. 8.
The number of works on each layer correspond to the num-
ber of works cited in this state of the art. It aims at show-
ing the proportion of works in each of them. As we can see,
works’ repartition on the different layers is very unequal.
Let’s now see in the next section what conclusions can be
drawn from that and what challenges for PEMFC’s PHM
it highlights.

5. Remaining Challenges and open issues

As stated before, PEMFC community never adopted a
PHM point of view regarding its work. That’s why no
paper dealing with CBM strategies for PEMFC or PHM
vocabulary can be found. This brief state of the art reveals
that all PHM layers are far from being complete and un-
evenly filled (Fig. 9). Moreover, one should keep in mind
that PEM fuel cells, when used in an hybrid vehicle but
also in much more smaller portable devices, are intended
to be transportable. Thereby, some remaining challeng-
ing issues can be pointed out. There are synthesized in
Fig. 10.
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Figure 8: State of the art summary
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Figure 10: Remaining Challenges - Overview

5.1. Observation

Research on the development of data acquisition and
processing techniques must be pursued so that improved
observation strategies are reached. Indeed it should meet
some requirements: being reliable, non-intrusive, and not
inducing perturbations or even damages. They should con-
sider the transportability of the measurement means and
so being easily implementable in accordance with applica-
tive constraints (cost, volume, rapid on line measurements,
etc.). If we take a look at the data acquisition and pro-
cessing techniques mentioned above, we can easily realize
that almost all of them are laboratory techniques and are
not appropriate for portable devices.

5.2. Modeling and analysis

Even if detection and diagnosis models exist, published
works focus on specific points such as flooding, drying out

or membrane degradation. Not all wearing mechanisms
are taken into account within a single model. A lot of work
has been done aiming at determining the state-of-health
of the fuel cell, but very few focus on fault identification.
It is a good thing to know that a fault has occurred, but
it is even better to know why. So diagnostic has to be
more developed. As far as prognostics is concerned, one
can point out that a complete model taking into account
the fuel cell behavior, the degradation processes involved,
as well as environmental and operating conditions is still
missing. Even if data-driven prognostics can be performed,
solid basis have to be found to ensure prognostics devel-
opments.

5.3. Decision

One should not forget that the decision support layer
is almost empty too. Fault-tolerant, self-adaptive and re-

8



Figure 9: Cited 63 works repartition (some are used on several layers)

configurable control algorithms have to be developed so
that the mission can be achieved in the best conditions.
Also verification and validation of modeling techniques is
an ill-problem, an ongoing issue for PHM community.

5.4. Facing the challenges

To face the afore-mentioned issues, the amount of ex-
perimental data is crucial. Indeed, to develop complete
models for behavior, aging and degradations a great quan-
tity of data in needed. Moreover to ensure the generality
and the transferability of the models data coming from
various mission profiles and different operating conditions
should be gathered. Considering the long periods of time
required to obtain complete results from experiments on
PEMFC stacks, one way to achieve this goal could be the
creation of international data bases as it is commonly done
in other communities. An example is the PHM community
with the NASA data base [96], in which a large amount of
data is available for worldwide prognostic research.
As lots of PHM methodologies are already existing and
can be adapted from one field to another (examples of
application section 2.3), the major work, at least for di-
agnostic and prognostics, relies on finding aging models,
trends or indicators that would help anticipating failures
and determining the remaining useful life.

6. Conclusion

This paper proposes a solution to extend PEMFC lifes-
pan, namely, Prognostics and Health Management. Once
PHM and its 7 layers are presented, a state of the art clas-
sifying PEMFC works on PHM layers is drawn. Directly
following this classification, remaining challenges and per-
spective of work are highlighted.
Considering benefits that can be expected, FC commu-
nity has a growing interest in PHM technology. PHM ap-
proaches aim at transforming raw monitoring data into
relevant information and behavior models (including the
degradation) of the system. They take as inputs the cur-
rent monitoring data and return as outputs predictions or

trends about the health state of the system.
This state of the art allows positioning a certain number
of works in the PHM scheme and showing how these works
are mostly gathered in the “observe” layers. It also enables
pointing out the remaining challenges and main directions
for work that can be adopted regarding PHM for PEMFC.
One can easily note that the greatest challenge to tackle
is the one of prognostics.
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[93] E. Laffly, M.-C. Péra, D. Hissel, Polymer electrolyte membrane
fuel cell modelling and parameters estimation for ageing con-
sideration, in: Industrial Electronics, 2007. ISIE 2007. IEEE
International Symposium on, 2007, pp. 180–185.

[94] X. Zhang, P. Pisu, An unscented kalman filter based approach
for the health-monitoring and prognostics of a polymer elec-
trolyte membrane fuel cell, in: Proceedings of the annual con-

11



ference of the prognostics and health management society, 2012.
[95] A. Saxena, J. Celaya, B. Saha, S. Saha, K. Goebel, On apply-

ing the prognostic performance metrics, in: Proceedings of the
annual conference of the prognostics and health management
society, 2009.

[96] NASA, Prognostics center of excellence (2013).
URL http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-

data-repository/

12


