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25000 Besançon, France

ABSTRACT

The paper presents a new methodology for solving the in-

verse problem of manipulator precision design. Such design

problems are often encountered when the end-effector uncer-

tainty bounds are given, but it is not clear how to allocate preci-

sion bounds on individual robot axes. The approach presented in

this paper uses interval analysis as a tool for uncertainty mod-

elling and computational analysis. In prior work, the exponential

formulation of the forward kinematics map was extended to inter-

vals. Here, we use this result as an inclusion function in the com-

putation of solutions to set-valued inverse kinematic problems.

Simulation results are presented in two case studies to illustrate

howwe can go from an uncertainty interval at the end-effector to

a design domain of allowable uncertainties at individual joints

and links. The proposed method can be used to determine the

level of precision needed in the design of a manipulator such

that a predefined end-effector precision can be guaranteed. Also,

the approach is general as such it can be easily extended to any

degree-of-freedom and kinematic configuration.

∗Address all correspondence to this author.

INTRODUCTION

The success of automated assembly by robotic manipulators

is highly dependent on the precision of the positioning mecha-

nisms employed in the kinematic design of the robot. The im-

portance of precision becomes more prominent when the desired

operational accuracy is in micro/nano scale as in micro-assembly

and nano-manipulation applications. Most of the parametric un-

certainties that are negligible in conventional robotics become

the predominant error sources in micro/nano applications. With

the emergence of micro/nano-robotics in the last decade, there

is a growing demand for design guidelines describing how to

build these robots based on application specific precision criteria.

Since the current methodology have not addressed this problem

well, we propose a new approach to the kinematic analysis and

design of robots using interval analysis.

In late 80’s and early 90’s, modelling of errors in robot kine-

matics was a popular topic [1–6]. However, these works are lim-

ited to analysing the effects of general error transformations and

do not address how they come about or how to choose or design

the parameters of a manipulator for a given end-effector preci-
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sion. On the other hand, mechanical design of multi-axis ma-

chines based on the accuracy required at the tool tip has been

investigated for precision machine design. A concept called er-

ror budget was proposed to account for the effect of each error

source on the tool accuracy [7, p. 61], [8]. Using first order and

small angle approximations to simplify the homogeneous trans-

formation matrices describing geometric errors in the mechanism

of a machine, an overall kinematics map can be created to anal-

yse the effects of error terms on the tool accuracy. The results of

this analysis provide the designer with insight into how to allo-

cate mechanical tolerances to the individual system components.

However, there is no systematic way of doing this allocation due

to the fact that this type of an inverse problem is difficult to pose

and solve.

A recent work in [9] studies modular robotic chains made

up of individual axes with link/joint uncertainties for several

different configurations. It was shown that some of the kine-

matic configurations provide more successful operation. Also,

joint position uncertainties were shown to manifest themselves as

end-effector inaccuracy in different magnitudes depending on the

kinematic design. The analysis of error propagation in this work

was done using Monte Carlo simulations which suffer from in-

ability to provide guaranteed closed form solutions since Monte

Carlo method can only solve for sample points and produce sets

of points in the solution space.

Finding guaranteed solutions to a set of equations with un-

certain data is possible with interval analysis. Interval analysis is

a mathematical tool for computation of rigorous bounds on solu-

tions to ideal model equations when the input arguments of the

model are represented as intervals instead of point values. It ex-

tends the model equations to the interval domain and allows for

analytical and computational handling of uncertain data without

having to assume a distribution for it or to sample it. It also helps

avoid the complex mathematical formulations involving distribu-

tion functions [10].

Intervals were used in [11] to model uncertain physical pa-

rameters of a robot and to find its forward kinematics map using

Denavit-Hartenberg (D-H) notation. Optimization of the D-H

parameters was done to minimize volumetric end-effector error

while optimizing the cost of precision. While this work nicely

approaches the problem from a mechanism design perspective, it

fails to consider the fact that a mechanism design cannot be op-

timized practically without considering the uncertainty in joint

positions. Interval analysis was also used in [12] to find the

multiple solutions to the forward kinematics problem of paral-

lel robots. Then, [13] extends the method to finding the robot

parameters that guarantee a singularity-free workspace.

In our prior work [14], the exponential formulation of the

forward kinematics map for serial manipulators was extended

to intervals. This makes it possible to use interval analysis to

find guaranteed precision bounds on the end-effector pose given

the uncertainty of the kinematic parameters. The contribution

of the current paper is that we now propose a new method that

can solve the inverse problem of bounding the allowable uncer-

tainty in kinematic parameters of a manipulator based on given

end-effector precision specifications. Besides precision machine

designers, this method bears an importance for those roboticists

who have to design a manipulator using elementary building

blocks. For instance, custom design of multi-axis precision ma-

nipulators using individual single-axis stages is a common prac-

tice in the micro-assembly area [15–17]. The cost of such stages

increase significantly with the increase in motion precision. For

a given application, therefore, determining the level of precision

required in each axis is an important yet insufficiently addressed

consideration.

Next section provides an overview of [14], the forward kine-

matics problem with uncertain parameters. Then, we discuss

how the precision manipulator design problem can be posed via

interval analysis of inverse kinematics. We present simulation

results illustrating the use of our method for a simple 2-link ma-

nipulator and a 3-DOF PPR stage, a commonly used robot in pre-

cision assembly. Finally, the paper is concluded with references

at the end.

FORWARD KINEMATICS WITH UNCERTAIN JOINT PA-

RAMETERS

Kinematic description of a robot involves certain parame-

ters such as link lengths and joint axis vectors. In an ideal robot

model, these are all assumed to be perfectly precise values. A

practical implementation, however, requires calibrating the robot

to minimize the uncertainty in the knowledge of such constants.

Even with calibration, identification of kinematic parameters can

only be done with a limited precision. Robot kinematics also in-

volves joint position variables which are known to a limited pre-

cision as well. Therefore, there needs to be a kinematic model

that can handle these uncertainties with ease and efficiency.

Using the screw-based exponential formulation [18] and in-

terval analysis [10], we formulated the interval extension of for-

ward kinematics map in [14]. The advantage of the exponential

formulation over D-H parameters is that the joint parameters can

be described with respect to the world reference frame which is

the frame of reference used in the description of precision met-

rics. We model uncertain parameters and variables of a robot

with intervals. For example, a (real) interval such as x [1,2]
is a closed set of real numbers represented by the two boundary

values, 1 is called the left endpoint and 2 is called the right end-

point. In this paper, we follow the notation in [19] and denote

intervals with square bracketed letters.

For a revolute joint, the interval extension of the homoge-

neous transformation matrix, [T], can be represented with the

function in (1) where [ω] is the joint axis vector, [ω̂] is the skew-
symmetric matrix of [ω], [θ] is the joint displacement, and [q] is
a point along the joint axis. Note that in exponential formula-
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tion, joint transformations are with respect to the base reference

frame.

[T]([ω],[θ],[q]) e[ω̂][θ] (I−e[ω̂][θ])[q]
0 1

(1)

In equation (1), [T]([ω],[θ],[q]) is called an inclusion func-

tion since it covers all possible homogeneous transformation ma-

trices T(ω,θ ,q) of the special Euclidean group SE(3) that can be
obtained by varying the arguments ω , θ , and q in the respective

ranges of [ω], [θ], and [q].
Similarly for a prismatic joint, the interval extension for the

joint transformation is represented with the inclusion function

in (2) where [d] is the joint displacement and [v] is the joint axis
vector. The rotation part of the transformation denoted with [R] is
ideally a 3×3 identity matrix. In an actual linear axis, however,

tilt error of the stage may also play an important role. Hence,

this part can be modelled as a general rotation transformation

[R]= e[ω̂][θ].

[T]([d],[v]) [R] [d][v]
0 1

(2)

Finally, interval extension of the forward kinematics map of

a serial manipulator with n joints can be written as

[f]([x]) = [T1]···[Tn]·[f]([x0]) (3)

where [f] represents the inclusion function for the forward kine-

matics map and [x] is the vector of joint parameters and variables.

For further details on the forward kinematics map, the reader is

referred to [14].

INTERVAL ANALYSIS OF INVERSE KINEMATICS
Computing the joint angles of a manipulator for a given

end-effector pose is called inverse kinematics. There are two

main types of solution to this problem: closed-form solutions

and numerical solutions [20, p. 106]. Closed-form solutions are

based on analytical expressions of the inverse relationship be-

tween joint angles and end-effector pose. Due to the complex

nonlinear nature of robot kinematic equations, finding a closed-

form solution is difficult in general. On the other hand, numerical

solutions rely on the description of forward kinematics map and

repeated evaluation of approximate joint angles until the desired

end-effector configuration is sufficiently approached.

Inverse Kinematics with Joint Parameter Uncertainty:

An Example

Consider the simple example shown in Fig. 1 where a two-

link planar manipulator with revolute joints is depicted. The

l1±δl1

θ1±δθ1

θ2±δθ2

l2±δl2

Bx

By
(xE, yE)

FIGURE 1: TWO-LINKMANIPULATORWITH UNCERTAIN

LINK LENGTHS AND JOINT ANGLES.

knowledge of the link lengths and joint positions are assumed

to be uncertain to the extent denoted by δ li and δθi for i= 1,2,
respectively. Given the nominal link lengths li and joint positions

θi, the corresponding interval arguments can be expressed as

[x]











[l1]
[θ1]
[l2]
[θ2]





















[l1−δ l1,l1+δ l1]
[θ1−δθ1,θ1+δθ1]
[l2−δ l2,l2+δ l2]
[θ2−δθ2,θ2+δθ2]











. (4)

It was shown in [14] that the rotation part of the revolute

joint transformation in (1) reduces to the interval extension of the

Rodrigues’ formula when the joint axis is a real (point-valued)

vector as in the case of this example. That is,

R(ω,[θ]) eω̂[θ]= I+ω̂ sin([θ])+ω̂
2(1−cos([θ])) (5)

where ω = (0,0,1)T is a real vector for the manipulator in Fig.

1. Then, the inclusion function for the transformation of the end

effector pose can be written as

[f]([x]) = [T](ω1,[θ1],[q1]) ·[T](ω2,[θ2],[q2]) ·[f]([x0]) (6)

where

[T](ωi,[θi],[qi]) = R(ωi,[θi]) (I−R(ωi,[θi]))[qi]
0 1

. (7)

Then, the inverse problem for this mapping can be posed as fol-

lows:

For a given interval of end-effector position

[y]= [f]([x]), what should be the manipulator parameters

[x]= ([l1],[θ1],[l2],[θ2])T?
Note that the answer to the above question can provide not

only the range of [θi] for the desired interval of end-effector posi-
tion but also the maximum allowable uncertainty in [θi] and [li].
Therefore, this methodology can be used as a tool for precision
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design of manipulators. That is, determination of the required

joint encoder resolution and of the manufacturing tolerance for

the robot mechanism can be done based on the results of this

inverse kinematic analysis.

When the kinematic mechanism is as simple as the one

in Fig. 1, the point-valued inverse kinematics problem can be

solved analytically as in (8) [20, p. 112]. These equations pro-

vide a couple of solutions for θ1 and θ2 for each end-effector po-

sition (x,y). However, as the number of joints increases, the for-

ward kinematics map becomes non-invertible. Also, incorpora-

tion of mechanism errors and parameter uncertainties introduces

additional degrees of freedom to the formulation. Then, finding

the inverse solution with interval arguments requires a set-based

computational method. In order to address this problem, next we

will introduce a set inversion algorithm that is based on interval

analysis.

θ2 =±cos−1( x
2+y2−l21−l22

2l1l2
)

θ1 = atan2(y,x) cos−1( x
2+y2+l21−l22

2l1

√
x2+y2

)
(8)

Set Inversion via Interval Analysis

Given a nonlinear function f from Rn to Rm and a set Y in

Rm, finding X described as

X ={x∈Rn | f(x) ∈Y}= f−1(Y) (9)

is the set inversion problem [19, p. 55]. Jaulin et al. addressed

this problem via an algorithm called SIVIA (Set Inversion Via

Interval Analysis) [21]. For a given Y ∈Rm, X can be bounded

arbitrarily closely with a lower bound X and an upper bound X
such that X ⊂X ⊂X provided that an inclusion function [f] can
be found for f. Note that X is guaranteed to be a solution set

whereas X may contain non-solution points.

The process of finding X using SIVIA is illustrated in Fig.

2 for 2-dimensional x and y spaces. SIVIA starts with an initial

search domain [x0] that is guaranteed to contain X. Then, the

following 4-step procedure is applied:

If the mapping [f]([x]) results in an interval (box) in the y-

space that intersects with Y without being fully enclosed by

Y as in Fig. 2(a), then [x] is said to contain part of the so-

lution set X but regarded as undetermined. If the width of

[x] is greater than a predetermined resolution parameter ε ,

then it needs to be bisected along the longest side and the

procedure needs to be repeated recursively on each sub-box.

If [f]([x])∩Y = /0 as in Fig. 2(b), then [x] is not part of X
hence can be discarded.

If [f]([x]) ⊂Y as in Fig. 2(c), then [x]⊂X and [x]∈X and

[x]∈X.

x1

x2 [x0]

y1

y2

X
[f]

Y
x1

x2 [x1]

X

[f]

y1

y2

Y

(a) (b)

x1

x2

[xn]
X

[f]

y1

y2

Y

(d)
x1

x2

[xn]
X

[f]

y1

y2

Y

(c)

FIGURE 2: SIVIA ALGORITHM PROCEDURE (BASED ON

[19, p. 57]).

Finally, if [x] is undetermined and width([x]) < ε as in Fig.

2(d), then the procedure stops for [x] and it is added to the

upper bound X of X.

General Case of Inverse Kinematics via Set Inversion

Let f be the forward kinematics map of a serial manipulator

from Rn to SE(3) where n is the total number of joint variables

and parameters that are uncertain. Also, let Y be a subset of

SE(3). Then, calculating X in (9) is the inverse kinematics prob-

lem in presence of joint parameter uncertainties for a given set

of end-effector configurations. This is inherently a set inversion

problem and can be addressed using SIVIA.

Application of SIVIA to a general inverse kinematics prob-

lem requires comparing [f]([x]) in (3) with Y and determining

whether or not they intersect or one includes the other. This is

relatively simpler if Y can be represented as an interval so that

both [f]([x]) and Y are 4×4 interval matrices. Then, the compar-

ison can be done element-wise. Otherwise, each member of Y
has to be compared with [f]([x]) one by one.

SIMULATIONS

In this section, we present some example simulation results

that show how the proposed method can be implemented. We

carried out interval calculations using MATLAB and a toolbox

called INTLAB developed by S. M. Rump [22]. INTLAB sup-

ports many operations with real and complex interval scalars,

vectors, and matrices. It provides efficient functions for basic

operations in algebra, trigonometry, etc.

In order to verify the results obtained using interval analy-

sis, we also performedMonte Carlo analysis. When an analytical

expression for inverse kinematics is available, it can directly be

used to go from the configuration space to the parameter space.

For instance, by evaluating equation (8) for various samples of
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TABLE 1: TWO-LINK MANIPULATOR SIMULATION PA-

RAMETERS.

l1 δ l1 l2 δ l2 [θ1(0)] [θ2(0)]
1 0.001 1 0.001 [0,π/2] [−π/2,π/2]

the input arguments [l1], [l2], [x], and [y], one can obtain a set of
points in the joint space whose convex hull approximately pro-

vides the inverse solution X. We refer to this as the Monte Carlo
solution in the next part.

Precision Design of the Two-Link Manipulator

In this part, we present the solution to the inverse kinematics

problem of the two-link manipulator discussed in . This serves

as a validation example such that we verify the interval analysis

results with Monte Carlo simulation of inverse kinematic equa-

tions. The results will enable us to determine the minimum joint

encoder resolution required to achieve a given end-effector pre-

cision.

For the manipulator parameters given in Table 1 and for a

sample end-effector position ([x],[y]) = (1.4±0.01,1.2±0.01),
the solutions of the SIVIA algorithm for a stopping criterion of

ε = π/1800 is shown in Fig. 3. The picture on the left shows the
7018 subpavings (i.e. bisected arguments) of θ1 and θ2 each of

which represent an interval sample from the joint space. SIVIA

produces increasing concentration around the two solution re-

gions as it converges by bisecting initial ‘undetermined’intervals.

The exploded view of one of those regions on the right shows that

the remaining undetermined region X (yellow) found by SIVIA
properly encloses the inverse Monte Carlo solution X (blue line)
which in turn encloses the lower bound X (green region) as sug-
gested by SIVIA.

The result in Fig. 3 shows that if the joint positions can be

addressed as precisely as to fit in the lower bound (green region,

X), then it can be guaranteed that the end-effector can be posi-
tioned in the given interval ([x],[y]) = (1.4±0.01,1.2±0.01).
The question is then how to quantify the precision based on this

result.

Fig. 4(a) shows X in more detail where an interval of

(θ1,θ2) with the largest overlapping area with X is encircled.
If the length of this interval along θ1 is A and that along θ2

is B, then the proper design choice for the joint resolution of

the manipulator about these two axes can be described as in

equation (10). This makes sure that the actual joint positions

[θ1] [θ1−δθ1,θ1+δθ1] and [θ2] [θ2−δθ2,θ2+δθ2] can
be commanded to be inside X for a certain value of θ1 and θ2.

This is explained pictorially in Fig. 4(b) with an arbitrarily posi-

tioned grid of addressable intervals each of which represents the

0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

θ
1

(rad)

θ
2

(r
a
d
)

0.44 0.46 0.48

0.74

0.76

0.78

0.8

0.82

0.84

0.86

θ
1

(rad)

θ
2

(r
a
d
)

Monte Carlo

Upper Bound

Lower
Bound

FIGURE 3: BOUNDS ON θ1 AND θ2 OF THE TWO-LINK

MANIPULATOR FOR ([x],[y]) = (1.4±0.01,1.2±0.01).

set of actual joint positions for a given position command. When

the condition in (10) is satisfied, there exists at least one interval

of ([θ1],[θ2]) that completely overlaps with X. In Fig. 4(b), there
are five such possible joint positions shown by boxes with the

slash pattern. Therefore, δθ∗
1 and δθ∗

2 are the coarsest resolution

values for the joint encoders that guarantee the given end-effector

precision. In this case, (A,B) is measured to be (π/900,π/450)
which correspond to (δθ∗

1 ,δθ∗
2 ) = (0.05°,0.1°). For this par-

ticular end-effector position, it can be seen that the resolution

requirement for the first joint is higher as it can introduce more

Abbe error due to its distance from the end-effector.

δθ1 ≤ δθ
∗
1

A/4 , δθ2 ≤ δθ
∗
2

B/4 (10)

The lower bound X can always be improved in expense of
computational time by reducing the value of ε . Fig. 5(a) com-

pares the previous result in Fig. (3) where ε was π/1800 with
the one in Fig. 5(b) where ε is π/3600. It can be seen that a
finer bisection resolution improves the lower bound X towards
the Monte Carlo result. The amount of improvement in this case

is from (A,B) = (π/900,π/450) to (A,B) = (7π/3600,π/400) which
means that the δθ∗

1 and δθ∗
2 are now 0.0875° and 0.1125°, re-

spectively. The total number of subpavings processed in this

case is 57590 which is significantly higher than the previous

value 7018. Indeed, SIVIA terminates after generating less than

(width([x0])/ ε +1)n bisections while the computing time increases
exponentially with the dimension of [x] [23] which is propor-
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FIGURE 4: (a) THE INTERVAL OVERLAPPING WITH THE

LOWER BOUND X WITH MAXIMUM AREA OF A × B

(b) AN ARBITRARILY POSITIONED GRID OF ADDRESS-

ABLE INTERVALS FOR δθ1 = A/4 AND δθ2 = B/4.

tional to the number of degrees of freedom of a manipulator.

However, using bisections is one of the most basic techniques

of interval analysis in terms of computational efficiency. There

are efficient solvers that combine use of bisections, contractors,

inclusion tests, and local optimization procedures to reduce the

computational complexity to polynomial order [19]. Application

of these solvers to the inverse kinematics problem is not covered

in this paper but will be addressed in the future.

Allocation of Mechanism Tolerances in a 3-DOF Preci-

sion Stage

In this part, we will demonstrate how the presented method

can also be used to allocate tolerances to the mechanical design

of a 3-DOF PPR manipulator as in Fig. 6 such that a given end-

effector precision can be achieved. For clarity, we will focus

only on some of the parametric uncertainties of the manipula-

tor such as prismatic joint axes and rotary joint position vec-

tors. The presented method will enable us to bound the allow-

able misalignment in these vectors. The vectors [vx], [vy], and

[q] that parametrize the manipulator are represented as shown in

(11) with error bounds denoted by [δvy] for the misalignment of

[vx] along y-axis, [δvx] for the misalignment of [vy] along x-axis,

and [δq] for the misalignment of [q] along x and y axes. In a

practical scenario, for instance, these terms can represent the er-

rors introduced into the geometry of the manipulator during its

manufacturing or assembly.

0.44 0.46 0.48

0.74

0.76

0.78

0.8

0.82

0.84

1
(rad)

2
(r

a
d
)

Upper Bound

Monte Carlo
Result
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(a)

0.44 0.46 0.48

0.74

0.76

0.78

0.8

0.82

0.84

1
(rad)

2
(r

a
d
)

Upper Bound

Monte Carlo
Result

Lower
Bound

(b)

FIGURE 5: UPPER (X) AND LOWER (X) BOUNDS FOUND

USING SIVIA AND (X) FOUND USING MONTE CARLO

FOR (a) ε = π/1800 (b) ε = π/3600.

[vx]

[vy]

ω

x y

z

[q]

FIGURE 6: 3D MODEL OF A 3-DOF PPR PRECISION MO-

TION STAGE.

[vx]=





1

[δvy]
0



 [vy]=





[δvx]
1

0



 [q]=





[δq]
[δq]

0



 (11)

The objective in this simulation is to find how large [δvy],
[δvx], [δqx], and [δqy]can be for a given stage positioning preci-

sion. For example, assume a configuration attached to the rotary

stage needs to be driven from an initial pose pi to a final pose p f
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FIGURE 7: (a) BOUNDING OF ERROR TERMS [δvy],
[δvx], and [δq] (b) END-EFFECTOR POSITION BY MONTE

CARLO SAMPLING OF (13).

through the manipulator transformation that can be described as

[p f ]= I dx[vx]
0 1

I dy[vy]
0 1

eω̂θ (I−eω̂θ )[q]
0 1

pi (12)

where dx, dy, and θ are the desired displacements of the axes. We

chose the initial end-effector position to be (10mm,0mm,0°) and
final joint position to be (200mm,400mm,45°). Then, we solved
for [δvy], [δvx], and [δq] that guarantee a maximum deviation of

30µm from the desired final position. Fig. 7(a) shows the lower

bound solution of this simulation. Similar to the previous case,

the largest interval box that can be fit into the lower bound has

approximate dimensions of (60,140,13) µm. Then from (10),

the allowable maximum uncertainty in the axes vectors can be

expressed as

[δvx]= [−15,15]µm
[δvy]= [−35,35]µm

[δq]= [−3.25,2.25]µm
. (13)

Fig. 7(b) shows the distribution of end-effector position by

sampling the intervals in (13) using Monte Carlo method. It can

be seen that the results all lie inside the allowed boundary for fi-

nal end-effector position hence (13) is a guaranteed tolerance al-

location. It can also be seen in (13) that the amount of allowable

uncertainty is different for different parameters. This depends

on the given initial and final positions, desired stage positioning

precision, and the kinematic design. Hence, the result can also

be used to do sensitivity analysis to find out which parameter is

likely to cause more deviation at the end-effector.

CONCLUSIONS

In this paper we propose a methodology for solving manip-

ulator design problems with precision bounds. The simulation

results show that the proposed method is effective in determining

the level of precision needed in the design of a manipulator for

a given end-effector precision. Solution of the inverse kinemat-

ics problem using interval analysis not only provides the range

of joint space variables for a desired end-effector position but

also allows calculation of the maximum allowable uncertainty in

the joint sensor (encoder) feedback and the mechanism geome-

try tolerances. Therefore, the method can be used as a design

aid in robotic applications that involve designing, building, or

choosing individual axes of a multi-degree-of-freedom manipu-

lator. Since we use standard interval analysis tools such as SIVIA

algorithm, our approach can easily be applied to any kinematic

configuration. Future work will include using heuristics to speed

up the computational efficiency of the algorithm and exercising

this method on the design of a modular micro-assembly robot.
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