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ABSTRACT 

A constant problem is to localize a number of acoustic sources, to separate their individual signals and to estimate their 
strengths in a propagation medium. An acoustic receiving array with signal processing algorithms is then used. The 
most widely used algorithm is the conventional beamforming algorithm but it has a very low resolution and high 
sidelobes that may cause a signal leakage problem. Several new signal processors for arrays of sensors are derived to 
evaluate the strengths of acoustic signals arriving at an array of sensors. In particular, we present the covariance vector 
estimator and the pseudoinverse of the array manifold matrix estimator. The covariance vector estimator uses only the 
correlations between sensors and the pseudoinverse of the array manifold matrix estimator operates with the minimum 
eigenvalues of the covariance matrix. Numerical and experimental results are presented. 
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1. Introduction 

Arrays of sensors are used in many fields to detect weak 
signals, to estimate the bearing and the strengths of sig- 
nals arriving from different directions. For example, in 
industrial environment an array of microphones is used 
to localize and to determine the strength of polluting 
noise sources. Conventional ways of noise source identi- 
fications include sound intensity measurement [1] and 
acoustic holography [2] but these techniques suffer from 
the drawbacks of being restricted in only small areas or 
short distances and cannot be applied in far fields or in a 
complex industrial environment. In this study, we pro- 
pose array processing algorithms which are useful in 
identifying acoustic sources in the far field of the array. 
Excellent text regarding the fundamental aspects of array 
signal processing techniques can be found in Stoica et al. 
[3]. Shan et al. proposed in [4] a spatial smoothing tech- 
nique to resolve the multipath problem in narrowband 
beamforming. Schmidt developed in [5] a multiple signal 
classification (MUSIC) algorithm that is essentially an 
eigenvalues-based approach to significantly improve the 
resolution of multiple sources. The extension of MUSIC 
in the presence of steering vector errors was developed in 
[6]. Yang et al. presented in [7] a spatial likelihood 
method to locate an acoustic source in real time by sum- 

ming the spatial likelihood from all sensors. Searching 
the maximum in the likelihood map, the source location 
was obtained. In this paper, it is assumed that the sources 
are point emitters situated in the far field of the array, the 
propagation medium is not dispersive and the waves ar- 
riving at the array are planar. Furthermore, the sources 
and the sensors are in the same plane and the signals and 
noise are random processes with zero mean, stationary 
and statistically independent.  

The approach taken here is to assume that the signal field 
at the array is comprised of P independent plane-wave 
arrivals from P known directions, as shown in Figure 1. 

In practice, of course, the directions are rarely known  
 

 

Figure 1. Receiving array and plane-wave arrivals. 

Copyright © 2013 SciRes.                                                                                  OJA 



J. LARDIES  ET  AL. 2 

exactly, however this difficulty can be overcome by us- 
ing the standard MUSIC algorithm [5,6], which consti- 
tutes an angular pseudo-spectrum and an indicator of 
directions of arrival of different signals. The problem 
then reduces to estimating the signal powers from each of 
the P directions.  

This study focuses on developing estimators which are 
used to identify the distribution of signal power gener- 
ated by acoustic sources. This paper is organized as fol- 
lows. An array signal model and the spatial covariance 
matrix of the sensor outputs are formulated in Section 2. 
The conventional beamformer and adaptive beamformers 
are presented respectively in Sections 3 and 4. A tech- 
nique to obtain the strengths of signals arriving at an ar- 
ray of sensors based on the covariance vector of signals 
is developed in Section 5. A signal power estimation 
obtained by the pseudoinverse of the array manifold ma- 
trix is studied in Section 6. Numerical and experimental 
results showing the effectiveness and the weakness of 
different algorithms in signal power estimation are pre- 
sented in Section 7. This paper is briefly concluded in 
Section 8. 

2. Signal Representation and Sensor Output  
Covariance Matrix 

Consider a uniform linear array with N sensors (Figure 
1). Assume that P acoustical plane waves at frequency f 
impinge upon the array from P different directions 

 1 pθ , ,θ . The complex envelope of the kth sensor’s 
output is [3-5] 

       
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where the meanings of the various parameters are as fol- 
lows:  is t  is the complex envelope of the ith signal 
source at the first sensor; d is the space between two ad- 
jacent sensors;  is the signal wavelength correspond- 
ing to frequency f and  is the additive noise output 
of the kth sensor.  

λ
 kn t

The complex envelope of the ith source is a zero-mean 
complex random variable. Its variance, denoted pi, char- 
acterizes the signal power of the ith source which we 
wish to estimate 

     Vari i i ip s t E s t s t
               (2) 

Here,  E  is the expectation operator and the su- 
perscript * represents the complex conjugate. 

Equation (1) can also be expressed in the vector form 
as the N-dimensional vector [3] 
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where 
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1 1, , , , ,N Nt x t x t t n t n t      x n    

Here, T denotes transpose, and the direction of arrival 
of the ith signal source is represented by the N-dimen- 
sional complex vector  ia . The noise is assumed to 
be spatially white (uncorrelated from sensor to sensor) 
and the same power level is present in each receiver. 
With these assumptions, the covariance matrix for the  

noise alone is given by ,     H

n nE t t p   R n n I

where n  is the noise power,  the  identity 
matrix and the superscript H denotes the Hermitian 
transpose operation. Equation (3) may be rewritten in the 
matrix form 

p I N N

    t t x As n t            (4) 

A  is the  N P  array manifold matrix containing 
the manifold vectors for different sources as its columns, 

   , , P1    aA a . For any single plane wave arri- 
val, the outputs from the N individual receivers will dif- 
fer in phase by an amount determined by the geometry of 
the array and the arrival direction. In other words, the 
elements Akr of the matrix A are known functions of the 
signal arrival angles and the array elements locations. It 
can readily be seen that the output signal from the qth 
sensor may be written as 

     
1
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q qr r
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qx t A s t n

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Since the P arrivals are by assumption independent, 
the source covariance matrix is given by 

     H

1diag , ,s PE t t p p   R s s        (6) 

and the diagonal elements are the powers of the sources , 
from the P directions, which we wish to estimate. The 
spatial covariance matrix of the receiver outputs can be 
expressed, for signals uncorrelated of each other and of 
noise, as 

   H H
s nE t t    R x x AR A R          (7) 

In practice, the spatial covariance matrix is estimated 
by a finite number of time domain samples (snapshots) 
and the following estimated form is used 

   H

1

1ˆ
T

i i
i

t t
T 

 R x x              (8) 

where  itx  is the array signal vector sampled at time ti 
and T is the number of such samples. The caret (^) de- 
notes an estimated value. We can now derive a variety of 
processors to estimate the strengths of P independent 
signals arriving at array of N sensors, when the arrival 
directions are known. Note that the number of sources 
can be obtained by examining the singular values of the 
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covariance matrix [3]. 

3. Conventional Beamformer 

The conventional beamformer, also called the “time de- 
lay and sum” or “unweighted add-squared” beamformer, 
consists of a system of delay and sum networks which 
are designed to make the signals from the beamformer 
direction in phase at each sensor. The directional data 

 js t  from direction j must be estimated from the sen- 
sors output data vector . The usual approach is to 
find a matrix , such that  reconstructs 
the directional data, and for a conventional beamformer 
the equation is [8] 

 tx
M    t s Mx t

   H1
CB t

N
s A tx               (9) 

A power estimate for the signals can be found by 
forming the covariance matrix 

   H H
2

1
sCB CB CBE t t

N
   R s s A RA        (10) 

and the strength of the ith source estimated by the con- 
ventional beamformer is 

   H

2

1
 iCB i ip
N

  a Ra             (11) 

However, this leads to a biased estimate, as can be 
seen by substituting (7) into (10) 

H H
2

1
 sCB s nN

R A AR A R  A           (12) 

So unless  and n , neither of which 
is generally the case, then the estimate will be biased. 

H NA A I 0R

4. Minimum Variance Beamformer 

The conventional beamformer can be considered as a 
kind of linear spatial filter with data- independent coeffi- 
cients. In contrast, the minimum variance beamformer, 
called also the standard Capon beamformer [3], can be 
considered has a kind of data-dependent spatial filter, in 
which the coefficients, represented by the weight vector 
w of the array element outputs, are chosen such that the 
filter has a constant gain at a particular direction i  
while its output power is minimized. The constraint en- 
sures that the signal power coming from the ith source 
will be reproduced in undistorted form in the processor 
output. Thus, the beamformer tries to eliminate as best it 
can all the signals received at the sensors except the sig- 
nal coming from the ith wanted source. The weight vec- 
tor w is selected so as to minimize the output power of 
the array 

H H Hmin E    w
w xx w w Rw           (13) 

subject to the constraint 

 H 1i w a                (14) 

By the method of Lagrange’s multiplier, it can be 
shown that the optimum weight vector is 

       1H1 1
i i i  


 w R a a R a         (15) 

and the power of the ith source estimated by the standard 
Capon beamformer is 

   H 1

1
 iSCB

i i

p
 


a R a

           (16) 

The standard Capon beamformer has better resolution 
than the conventional beamformer provided that the array 
steering vector corresponding to the signal of interest is 
accurately known. However, the performance of this tra- 
ditional adaptive beamformer can degrade seriously in 
practice when errors exist in the signal of interest steer- 
ing vector, which may be due to look direction error, 
array sensor position error and small mismatches in the 
sensor responses. In such cases the signal of interest 
might be mistaken as an interference signal and might be 
suppressed. A robust Capon beamforming algorithm [9], 
which is a natural extension of the standard Capon algo- 
rithm, is presented to overcome this difficulty. In the 
robust Capon beamforming algorithm we suppose that 
 ia  is the true direction vector of the ith source, 
 ia  is the assumed direction of the ith source and we 

consider that  ia  is in the vicinity of  ia . This 
can be expressed mathematically by the following ine- 
quality:     2

 i i   a a , where   is a bound con- 
trolling the uncertainty in the assumed look direction. To 
derive the robust Capon beamforming algorithm we use 
the reformulation of the standard Capon beamforming 
problem to which we append the previous inequality. We 
have the following minimization problem 

Hmin
w

w Rw                  (17) 

subject to the constraint 

    2
 i i   a a            (18) 

The optimization problem can be rewritten as the fol- 
lowing form 

   H 1min i i 

a
a R a             (19) 

subject to the constraint (18). We consider the solution 
on the boundary of the constraint set and we reformulate 
the optimization problem as the following quadratic form 
with a quadratic equality constraint 

   H 1min i i 

a
a R a  ubject to     2

 i i   a a  

(20) 

This problem can be solved by the method of La- 
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grange’s multiplier which is based on the cost function 

          2H 1
i i i if         a a R a a a   (21) 

Differentiating (21) with respect to  ia  and equat- 
ing to zero gives the optimal solution 

       1 H
i i i     a a U I U a 


       (22) 

where  and  are  matrices containing 
the eigenvectors and eigenvalues of the covariance ma- 
trix  and 

U  N N

R   is the Lagrange multiplier. Using (22) 
in the equality constraint of (20) the Lagrange multiplier 
is obtained as the solution to the constraint equation 

   
21 H

i U I U aΓ           (23) 

The signal power estimation of the ith source using the 
robust Capon beamformer is then 

     
1H 2 1 2 H

1

2
iRCB

i i

p
λ  

 

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  (24) 

In summary of this section, the standard Capon beam- 
former is an optimal spatial filter that maximizes the 
signal to noise ratio, provided that the true covariance 
matrix and the array steering vector are accurately known. 
However, the covariance matrix can be inaccurately es- 
timated due to imperfect array calibrations, gain and 
phase errors in the sensors. The robust Capon beam- 
former presented in the paper can then be used in such 
situations for both signal power estimation and source 
location as shown in examples given in Section 7. An- 
other power estimator using the covariance vector of 
signals is presented in the next section. 

5. Signal Power Estimation by the  
Covariance Vector Estimator 

Since we are interested in the signal powers, the covari- 
ance matrix of the data contains all the information about 
these signal strengths. The correlation between sensor k 
and l is  and from Equation (5) we obtrain kl k lr E x x 

       
1 1

P P

k kj j k li i l
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


N

 (25) 

But since signals from different directions must be 
uncorrelated, we have 

1

; 1, , , 1, ,
P

kl i ki li n kl
i

r p A A p k N l



         (26) 

The sensor noise power on each sensor is constant and 
equals pn and kl 1   for  k l  and zero otherwise. 
Equation (26) may be split into real and imaginary com- 
ponents as 

   
1

Re Re
P

kl ki li i n kl
i

r A A p p 
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        (27) 
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r A A


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Of the 2N2 equations represented by (27) and (28) only 
 2 1N N   equations are independent. Indeed, one 
gets 

   Re Re , 1, , ; 1, ,kl lkr r k N l    N       (29) 

   Im Im , 1, , ; 1, ,kl lkr r k N l     N      (30) 

   Im 0, 1, , and Re Re ,kk kk llr k N r r k  l     (31) 

Equations (27) and (28) may then be written in the 
form 

 r Bp                  (32) 

where r, B and p are reals. r is the  vector 
which contains the real and imaginary components of 

 2 1N N 

 klr  and is called the covariance vector; p is the 
 1P   vector containing the signal powers  ip  and 
sensor noise power pn. Note that if the sensor noise is 
small, it may be desirable to omit the model of sensor 
noise. B is the   2 1N N P 1     matrix which con- 
tains all the array geometry terms and kl  if required 

 
 
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Im 0

ki li kl
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A A

A A





 
 
 
 

B              (33) 

The least squares solution to (32) is given by 

  1T
CV


p B B BTr              (34) 

pCV is the vector containing the strengths of signals by 
the covariance vector. Performances of this estimator are 
given in Section 7. Another power estimator based on the 
pseudoinverse of the array manifold matrix A is pre- 
sented in the next section. 

6. Signal Power Estimation by the  
Pseudo-Inverse of the Array Manifold  
Matrix 

From Equation (7) we obtain 

H
s n p    nAR A R R R I            (35) 

A possible approach to estimate the signal strengths is 
to select the P diagonal elements of the matrix Rs. We 
get 

     
 

1 1H H H

H

s

n

n

 

 

 

 

R

A A A R R A A A

A R R A

        (36) 
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where A+ is the pseudoinverse of the array manifold ma- 
trix. To obtain the noise covariance matrix n npR I , or 

value decom- the noise power pn, we consider the eigen
position of the covariance matrix R 

   H
s np  R AR A I            (37) 

The rank of H
sAR A  is equal to the number of inci- 

dent signals P and can be determined from the P largest 
eigenvalues of R. The minimum eigenvalue of R corre- 
sponds to the noise power pn.  

Numerical simulations and experimental tests are now 
pr h

mental Results 

stimator (CV) and the pseudoin- 
e 

rs. In 

 

esented to evaluate t e performances of the estimators 
presented in the paper. 

7. Numerical and Experi

The conventional beamformer (CB), the standard Capon 
beamformer (SCB), the robust Capon beamformer (RCB), 
the covariance vector e
verse estimator (PI) are employed to estimate th
strengths of signals arriving at an array of receive
our simulations, we assume a uniform linear array with N 
= 6 omnidirectional sensors and half-wavelength sensor 
spacing. Four point sources are located at bearings of— 
30˚, 0˚, 22˚ and 45˚. The source powers are respectively 
60 dB, 55 dB, 80 dB and 70 dB and the number of snap- 
shots is T = 4096. The signal to noise ratio is SNR = 20 
dB. Figure 2 shows the power estimates of CB, SCB and 
RCB as a function of the direction angle in the case 
where there are no gain and phase errors in the sensors of 
the array. The small circles denote the true direction of 
arrival and the true power of the four sources. The SCB 
and RCB estimators provide excellent power estimates of 
the incident sources and can also be used to determine 
their directions of arrival based on the peak power loca- 
 

 

Figure 2. Power estimates versus the steering direction θ 
using CB, SCB and RCB without gain and phase errors and 
SNR = 20 dB. 

tions. The CB estimator has much poorer resolution than 
both SCB and RCB and the sidelobes of the former give 
false peaks and false directions of arrival of sources. 

Figure 3 shows the power estimates of CB, SCB and 
RCB in the case where there are a gain error of 0.02 and 
a phase error 0.2˚ in each sensor. We note that SCB and 
RCB can still give good direction of arrival estimates for 
the incident signals based on the peak locations, however, 
the SCB estimates of the incident signal powers are way 
off. In this case, only the RCB algorithm gives good 
power estimates of the incident sources and can also be 
used to determine their directions of arrival based on the 
peak locations. 

The remaining part of the section is focused on the ap- 
plication of the developed algorithms to the experimental 
identification of noise sources generated by two loud

s (the loudspeakers) in the anechoic room. 

- 
speakers. The experimental setup is schematically shown 
in the block diagram of Figure 4 with the acoustic array 
and two source
 

 

Figure 3. Power estimates versus the steering direction θ 
using CB, SCB and RCB with 0.02 gain error and 0.2˚ 
phase error in each sensor and SNR = 20 
 

 

Figure 4. Block diagram of the experimental system. 
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The receiving acoustic array is linear and formed with 
six omnidirectional microphones equally spaced, with 

ter-element spacing of d = 4.5 cm. The two acoustic 
sources (the loudspeakers) and the acoustic array are in 
the same horizontal plane. The transmitting loudspeakers 
generate two typical audio signals at a frequency of 3800 
Hz corresponding to a microphone separation distance of 
one-half wavelength. The number of snapshots is T = 
4096. We are able to find the direction of the two sources 
by using the MUSIC algorithm, however, unlike the 
methods mentioned earlier, MUSIC does not physically 
correspond to the signal power. The MUSIC algorithm is 
only an indicator of directions of arrival of different sig- 
nals. Figure 5 shows the normalized angular spectrum 
function obtained from MUSIC where important peaks 
appear at the signal directions. We obtain the angular 
position of the sources  and 

Once the arrival angl  been ed we ca
es
pr

in

1 10  

es have
2 19   . 

 determin n 
ti ur 
oposed algorithms. Table 1 shows the results obtained 

by our algorithms. 
The experimental results confirm that the CV and the 

PI estimators give very similar results and the RCB esti- 
mator overestimates very slightly the source powers. 

Figure 6 shows the power estimates versus the steer- 
ing direction using the RCB algorithm. From this plot we 
obtain simultaneously an estimate of directions of arrival 
and an estimate (slightly overestimated) of the power of 
the two sources, based on the two peak locations. 
 

mate the power of the two acoustic sources by o

 

Figure 5. Experimental MUSIC spatial spectra. 
 

Table 1. Power estimation using different estimators. 

Estimator RCB CV PI 

Source 1, 72.1 dB 70.9 dB 70.8 dB 1 10    

Source 2, 73 dB 71.8 dB 71.8 dB 2 19    

 

F  

8. 

Five s essors to ate the strengths of signals 
arr n ar  of  have  stud he 
conve  beamform he standard Capon beam- 
fo ide in gene or po imat e 
incident sources. The robust Capon beamformer gives 
good power estimates and can also be used to determine 
the directions of arrival of incident sources. The covari- 
ance vector and the pseudoinverse estimators give excel- 
lent power estimates. From numerical simulations and 
field tests, the RCB, CV and PI algorithms exhibit re- 
markable effectiveness in finding the strengths of signals. 
The performances of these algorithms in the case of very 
close sources are under investigation. 

These techniques have been developed for the estima- 
tion of signal strengths using an array of receivers. How- 
ever, the principles can be applied to a wide range of 
other estimation problems, of which the spectrum analy- 
sis of a time series is an example. 
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