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Abstract: We show how the availability function as defined from the entropy function 

concavity can be used for the stability analysis and derivation of control strategies for non-

isothermal Continuous Stirred Tank Reactors (CSTRs). We first propose an overview of the 

required thermodynamic concepts. Then, we show how the availability function restricted to 

the thermal domain can be used as a Lyapunov function. The derivation of the control law and 

the way the strict entropy concavity is insured are discussed. Numerical simulations illustrate 

the application of the theory to the open loop stability analysis and the closed loop control of 

liquid-phase non-isothermal CSTRs. The proposed approach is compared with the classical 

proportional control strategy. Two chemical reactions are studied: the acid-catalyzed 

hydration of 2-3-epoxy-1-propanol to glycerol subject to steady state multiplicity and the 

production of cyclopentenol from cyclopentadiene by acid-catalyzed electrophilic addition of 

water in dilute solution exhibiting a non-minimum phase behavior. 
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The aim of this paper is twofold: to provide an overview of the existing thermodynamic 

concepts required for dynamic stability analysis of irreversible physicochemical systems and 

to describe, in the case of the single-phase CSTR, how to derive a stabilizing Lyapunov based 

control law from the so called thermodynamic availability function. This thermodynamically 

driven systematic approach is of interest as such processes are highly nonlinear mainly due to 

chemical reaction kinetics while the coupling between energy and material balances can lead 

to multiple steady states (Perlmutter, 1972) or non-minimum phase behavior (Engell and 

Klatt, 1993; Van de Vusse, 1964). 

 

The stability analysis and the design of control laws of CSTRs are widely studied in literature. 

Usually, the stability analysis is based on mathematical tools such as linearization methods 

(see for example Aris and Amundson, 1958; Uppal et al., 1974) or direct Lyapunov methods 

(see for example Perlmutter, 1972; Warden et al., 1964). Direct Lyapunov methods are based 

on the definition of the so-called ―energy‖ storage function that is subject to dissipation 

(Ramírez et al., 2009) and is very often quadratic. In general even for open thermodynamic 

systems, this storage function has not the dimension of energy.  Indeed in this case, the stored 

energy is the internal energy and, from the first law of thermodynamics, no dissipation occurs 

since energy is a conserved quantity.  

 

As far as control design is concerned, numerous contributions have been published with 

respect to applications and to theoretical developments. An overview of classical methods for 

chemical processes control is presented in (Bequette, 1991). In many applications, the 

objective is only to regulate the temperature of the chemical reactor. This problem has been 

successfully solved by differential geometry approaches such as output feedback linearization 
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(Viel et al., 1997) for control under constraints, by nonlinear PI control (Alvarez-Ramirez and 

Puebla, 2001) and direct Lyapunov-based methods for the design of nonlinear output 

feedback control laws (Antonelli and Astolfi, 2003).  

 

As far as thermodynamic methods are concerned, since the pioneering works of Glansdorff 

and Prigogine (Glansdorff and Prigogine, 1971), it is well established that the irreversible 

thermodynamics theory can be applied to the stability analysis of physicochemical systems. A 

thermodynamics based Lyapunov function related to the irreversible entropy production has 

thus been used for local stability analysis of a CSTR (Dammers, 1974 ; Tarbell, 1977). The 

question of control design can also be addressed within this framework. The idea of control 

by energy/power shaping has been recently developed (Favache and Dochain, 2009, 2010 ; 

Ramírez et al., 2009; Battle et al., 2010; Alvarez et al., 2011). A physical interpretation of 

slow and fast modes of process dynamics based on linearized models has been given 

(Georgakis, 1986). Simple extensive variables are then used for the control design by 

regulating the fast mode. Georgakis stability analysis method has been extended to a reaction 

leading to a possible equilibrium with less restrictive assumptions (Favache and Dochain, 

2009). The authors proposed different thermodynamic Lyapunov function candidates for a 

wide range of operating conditions. Finally, the concept of availability as it has been proposed 

within the framework of passivity theory for processes (Alonso and Ydstie, 1996; Ydstie and 

Alonso, 1997; Farschman et al., 1998; Ruszkowski et al., 2005) is inspired from the concepts 

developed by the Brussels School of Thermodynamics (Glansdorff and Prigogine, 1971). As a 

matter of fact, in order to study the stability of physicochemical systems, Prigogine and co-

workers have used the local curvature of the entropy function. The concept of availability is 

the nonlinear extension of this curvature as it will be shown in the first section of this paper.  
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This concept is very general since it also allows dealing with the control of infinite 

dimensional processes (Alonso et al., 2000; Alonso and Ydstie, 2001; Alonso et al., 2002). 

 

Nevertheless, in all these studies, control design is achieved by using passive techniques, 

especially for the distributed or network systems, with some restrictions on the chemical 

reaction kinetics and/or operating conditions, for instance isothermal/adiabatic conditions or 

close to the thermodynamic equilibrium state (Farschman et al., 1998; Alonso and Ydstie, 

2001; Ruszkowski et al., 2005). The strategy developed in this paper is quite different as a 

nonlinear state feedback is used to shape a desired closed loop Lyapunov function. This 

closed loop Lyapunov function is directly derived from the aforementioned availability 

function and can be applied to one or multiple reactions system operating far from 

equilibrium (Hoang et al., 2012) as well as to intensified continuous and batch slurry reactors 

(Bahroun et al., 2010, 2013) as soon as the system states are unique at a given temperature. 

Such a nonlinear feedback allows compensating the main non-linearity that is due to the 

chemical reaction rate (Antonelli and Astolfi, 2003). 

 

The paper is organized as follows. The availability function as defined by Ydstie and co 

workers (Alonso and Ydstie 1996; Ydstie and Alonso, 1997; Farschman et al., 1998; Alonso 

et al., 2000; Alonso and Ydstie, 2001; Alonso et al., 2002; Ruszkowski et al., 2005) is 

introduced within the general framework of the second law of Thermodynamics. The way the 

time derivative of this availability function is derived for the CSTR is exposed. Provided that 

a condition of strict concavity for the entropy function can be satisfied, this availability 

function will be used as a Lyapunov function for the open loop dynamic stability analysis and 

for the design of a stabilizing control law for the jacketed single-phase non-isothermal CSTR. 

This control strategy, applicable to a large class of chemical reactors is illustrated by two 

examples of particular interest. The first one is an example of single reaction system subject 
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to steady-state multiplicity, the acid-catalyzed hydration of the 2-3-epoxy-1-propanol to 

glycerol and the second one is an example of multiple reactions system that exhibits a non-

minimum phase behavior, the production of cyclopentenol from cyclopentadiene by acid-

catalyzed electrophilic addition of water in dilute solution. These chemical processes have 

been widely studied in the literature (Heemskerk et al., 1980; Rehmus et al., 1983; 

Vleeschhouwer et al., 1988; Vleeschhouwer and Fortuin, 1990) and (Engell and Klatt, 1993; 

Niemiec and Kravaris, 2003; Antonelli and Astolfi, 2003; Guay et al., 2005; Chen and Peng, 

2006) respectively and they exhibit some difficulties and challenges for control design and 

stabilization problem. We have shown (Hoang et al., 2012) that physically admissible control 

laws are obtained by using what we call the thermal part of the availability function and the 

jacket temperature as the only manipulated variable.  This thermal part of the availability is 

obtained as soon as the availability of the bulk is separated into the sum of two terms. The 

designed control law leads to closed loop global stabilization around a desired reference state. 

Throughout the paper, the numerical simulations illustrate these developments via the two 

above-mentioned examples. Finally, the designed control is compared to classical 

proportional feedback with respect to closed loop performances and thermodynamic 

properties.  

 

2. Applications of the second law of Thermodynamics: a brief 

overview of some fundamental concepts  

 

The applications of the second law of Thermodynamics under consideration are based on the 

concepts of availability, exergy or available work. On the one hand, these concepts have been 

used for thermodynamic efficiency analysis of processes (Bejan, 2006). On the second hand, 

equilibrium stability studies have been performed on this basis (Kondepudi and Prigogine, 
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1998). In this section, we give a brief overview of these concepts and the way they have lead 

to dynamic stability studies.  

 

2.1. Available work and exergy 

 

It has been pointed out by Kestin (1980) that concepts of availability, available work or 

exergy of a system are very similar. The aim of these concepts is to account for the capacity 

of a system to exchange power and then to provide a method for comparing different systems 

from this thermodynamic efficiency point of view. These concepts, that have been derived 

mainly in the case of non-reacting systems, are firstly based on the definition of a passive 

environment that is in contact with the system under consideration and that is characterized by 

a constant pressure 



P0 , a constant temperature 



T0  and constant components i chemical 

potentials 



i0 (Sussman, 1980). Secondly, the system that has to be described is assumed to 

exchange material with other systems k according to the molar flow rate of component i,



F
ik
, 

as well as with the passive environment according to the molar flow rate of component i, 



F
i0

. 

Heat flows 



0  and 



m  are also supposed to be exchanged by the system respectively with the 

passive environment and with other heat sources at 



Tm . The total power that is exchanged by 

the system is divided into   



P  and



 P0

dV

dt
, the latter being due to mechanical expansion of the 

system against the passive environment. In order to derive the power that the system is able to 

exchange, we consider the material, energy and entropy balances, assuming that kinetic and 

potential energies can be neglected: 
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

dN i

dt
 Fik

k

  Fi0                                                       (a)

dU

dt
0  m

m

  P  P0

dV

dt
 Fikhik

i,k

  Fi0hi0   (b)
i



dS

dt

0

T0


m

Tmm

   Fiksik

i,k

  Fi0si0                  (c)
i


  0                                                                           (d)
















 (1) 

U, S and Ni are respectively the internal energy, the entropy of the system and the number of 

mole of component i. 



 is the entropy production per time unit due to irreversible processes 

that is nonnegative according to the second law of Thermodynamics. 



h
ik
 and 



s
ik
 are 

respectively the partial molar enthalpy and entropy of the component i in the flow k. By 

eliminating 



0  that is coupling the energy and entropy balances equations (1b) and (1c) with 

respect to the passive environment, one finds from equations (1a) to (1d): 

   



d U  P
0
V T

0
S  

i0
N

i

i












dt
 

m
1

T
0

T
m











m

  P  F
ik

h
ik
T

0
s

ik i0 
k

 T
0


 (2) 

The batch exergy E or availability function B and its flowing material molar counterpart are 

then defined as follows (Kestin, 1980; Wall, 1977; Wall and Gong, 2001): 

 



E  B U  P0V T0S  i0N i        (a)
i



b  h T0s i0x i                            (b)
i















 (3) 

In order to get the significance of the batch exergy function, let us consider a particular case 

of equation (2) where 



F
ik
 0 and 




m
 0 : 

 
  



d U  P
0
V T

0
S  

i0
N

i

i












dt
 P T

0
  (4) 

The power   



P  that can be exchanged in this case is related to the time variation of the batch 

exergy or availability function 



E  B U  P
0
V T

0
S  

i0
N

i

i

 . 
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Let us note that Fredrickson (1985) has derived a particular case of equation (2) for 



F
i0
 0 : 

 

  



d U  P
0
V T

0
S 

dt
 

m
1

T
0

T
m











m

  P  F
ik

h
ik
T

0
s

ik 
k

 T
0
  (5) 

In the case of a closed system (



F
ik
 0) with 




m
 0 , an equation similar to (4) leads to the 

definition of the corresponding batch exergy E (Kestin, 1980) or availability B (Keenan, 1951; 

Denbigh, 1956; Crowl, 1992) as well as the corresponding flowing availability per mol or 

mass unit:  

 



b  h T
0
s  h

eq
T

0
s

eq  (6) 

This quantity is equal to the reversible work per mass (or mole) unit that can be obtained 

when a reversible transformation of the flowing material is considered between a constant 

pressure and temperature source of matter toward the equilibrium with the passive 

environment (Sussman, 1980; Crowl, 1992). 

 

Let us now consider the way these concepts can be used for the stability characterization of an 

equilibrium state as well as a non-equilibrium state. 

 

2.2. Classical thermodynamic stability theory of an equilibrium state 

 

The classical thermodynamic stability theory (Callen, 1985) can be exposed according to two 

representations: the energetic representation and the entropic representation. The entropic 

representation is the starting point for the definition of a Lyapunov function well suited for 

both for the stability analysis and control design of open finite dimensional systems far from 

equilibrium.  

 

 



 9 

2.2.1. Energetic representation 

 

Let us consider a system initially at a thermodynamic equilibrium point characterized by the 

intensive variables 



P
eq
, T

eq
, 

ieq
. These equilibrium variables are assumed to be constant so 

that the situation can be treated by using equation (2) with 



F
ik
 0, 




m
 0  and   



P  0 and by 

considering that the initial equilibrium situation is imposed by a passive environment at 



P
0
 P

eq
, T

0
T

eq
, 

i0


ieq
: 

 



d U  P
eq
V T

eq
S  

ieq

i

 N
i











dt
 T

eq
  0  (7) 

The question is to determine if this initial equilibrium situation is dynamically stable with 

respect to some fluctuations of the system state. According to equation (7), the system is 

stable with respect to perturbations that lead to an increase of 



U  P
eq
V T

eq
S  

ieq

i

 N
i . 

Indeed, after the perturbation, the system is driven back to the equilibrium by irreversible 

processes since ∑ > 0. An equivalent proposition is that the following inequality holds for a 

stable system: 

 



U  P
eq
V T

eq
S  

ieq

i

 N
i
U

eq
 P

eq
V

eq
T

eq
S

eq
 

ieq

i

 N
ieq

 (8) 

where 



U
eq
 P

eq
V

eq
T

eq
S

eq
 

ieq

i

 N
ieq

 is the value of the function 



U  P
eq
V T

eq
S  

ieq

i

 N
i
 

when the system has reached equilibrium. Inequality (8) can also be written as follows: 

 



U  U
eq
 T

eq
S  S

eq  P
eq

V V
eq  

ieq
N

i
N

ieq 
i










 (9) 

According to the Gibbs equation applied to the equilibrium point, 



dU
eq


U

S











eq

dS
eq


U

V











eq

dV
eq


U

N
i











eq

dN
ieq

i

  T
eq

dS
eq
 P

eq
dV

eq
 

ieq
dN

ieq

i

 , the quantity 
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

U
eq
 T

eq
S  S

eq P
eq

V V
eq  

ieq
N

i
N

ieq 
i

  is the equation of the tangent plane to the 

internal energy surface 



U S,V,N
i  at the equilibrium point. From the inequality (9), it comes 

that this function is convex for a stable equilibrium point (Callen, 1985). 

 

2.2.2. Entropic representation 

 

The inequality (9) can be written according to the entropy function as follows: 

 



S  S
eq


1

T
eq

U U
eq 

P
eq

T
eq

V V
eq 


ieq

T
eq

N
i
N

i eq 
i

  (10) 

By considering the corresponding Gibbs equation at the equilibrium point, 



dS
eq


S

U











eq

dU
eq


S

V











eq

dV
eq


S

N
i











eq

dN
ieq

i

 
dU

eq

T
eq


P

eq

T
eq

dV
eq



ieq

T
eq

dN
ieq

i

 , the quantity 



S
eq


1

T
eq

U U
eq 

P
eq

T
eq

V V
eq 


ieq

T
eq

N
i
N

i eq 
i



 

is the equation of the tangent plane to the 

entropy surface 



S U,V,N
i  at the equilibrium point. From inequality (10), it comes that this 

function is concave for a stable equilibrium point (Callen, 1985). Then, a finite algebraic 

distance between the tangent plane to the entropy surface at the equilibrium point and the 

entropy function can be defined as: 

 



S
eq


1

T
eq

U U
eq 

P
eq

T
eq

V V
eq 


ieq

T
eq

N
i
N

i eq 
i










 S 

U
1

T
eq


1

T









V

P
eq

T
eq


P

T









 N

i


ieq

T
eq




i

T











i

  0

 (11) 

This equation is obtained by considering 



S  S U,V,Ni  as a first order homogeneous 

function and by applying the Euler theorem at the equilibrium point (Sandler, 1999): 

 



S
eq


U
eq

T
eq


P

eq

T
eq

V
eq



ieq

T
eq

N
ieq

i

  (12) 
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If small perturbations are considered, equation (11) is equivalent to the second order Taylor 

development of the entropy function:  

 



S U,V ,N
i  S

eq


S

U











eq

U 
S

V











eq

V 
S

N
i











eq

N
i

i




1

2

 2S

U 2











eq

U 
2


 2S

V 2











eq

V 
2


 2S

N
i
N

k











eq

N
i  N

k 
i ,k

















 2S

UV











eq

UV 
 2S

UN
i











eq

UN
i

i

 
 2S

VN
i











eq

VN
i

i



 (13) 

The quantity 



S
eq


S

U











eq

U 
S

V











eq

V 
S

N
i











eq

N
i

i

  is the tangent plane equation as 

expressed locally so that the following local stability condition can be derived that is 

equivalent to condition (11) for small perturbations (Kondepudi and Prigogine, 1998):  

 




1

2
 2S  

1

2

 2S

U 2











eq

U 
2


 2S

V 2











eq

V 
2


 2S

N
i
N

k











eq

N
i  N

k 
i ,k

















 2S

UV











eq

UV 
 2S

UN
i











eq

UN
i

i

 
 2S

VN
i











eq

VN
i

i

  0

 (14) 

In this case, the equilibrium point is locally stable and is said to be metastable. Let us now 

consider the way the stability condition (11) as it has been obtained in the entropic 

representation, can be extended to the stability studies of systems far from equilibrium. 

 

2.3. Extension to open systems far from equilibrium 

 

The equilibrium state stability condition (11) has been used to derive a general condition that 

the entropy state function 



S  S U,V,Ni  should satisfy if an equilibrium point is assumed to 

be stable. This condition is that the entropy function 



S  S U,V,Ni  is concave. According to 

the local equilibrium principle (De Groot and Mazur, 1984), such a function can also be used 

to calculate the entropy of a system far from equilibrium. This is the ordinary way 
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thermodynamic properties are evaluated for process modeling and simulation purposes 

(Sandler, 1999). For finite dimensional systems, the local equilibrium principle is applied to 

macroscopic domains like a CSTR (Costa and Trevissoi, 1973; Favache and Dochain, 2009) 

or liquid and vapor phases in a flash for example (Rouchon and Creff, 1993). For such 

macroscopic domains, equilibrium is neither reached with the surrounding nor with other 

macroscopic domains when they are inserted in a network to represent a process plant (Gilles, 

1998; Mangold et al., 2002; Antelo et al., 2007; Couenne et al., 2008b). Their 

thermodynamic properties can be however calculated by taking their current state. In the same 

manner, the stability conditions (11) or (14) can be extended to non-equilibrium situations. 

This method has been extensively used for studying the stability of physical systems for small 

perturbations by extending the condition (14) to non-equilibrium situations (Glansdorff and 

Prigogine, 1971). 

 

Let us apply this approach to the dynamic stability analysis of a CSTR. 

 

3. Dynamic stability of the single-phase CSTR far from 

equilibrium 

 

3.1. The availability function of the single-phase CSTR as a Lyapunov 

function 

 

The situation under consideration is that of a CSTR containing a stable single-phase mixture, 

that is to say a mixture that remains a liquid or a gas for example, whatever the operating 

conditions. In this case, the entropy function is concave. If one considers the algebraic 



 13 

distance between the entropy function and its tangent plane as given by equation (11), it 

becomes a positive quantity. Furthermore, if one considers the local equilibrium principle 

(Glansdorff and Prigogine, 1971; De Groot and Mazur, 1984), this condition is also applicable 

with respect to a steady state point: 

 



A
Z 

Z U
1

T 


1

T









V

P 

T 


P

T









 N

i


i

T 



i

T











i

  0  (15) 

where the steady state values of the state variables are denoted 



P , T , 
i
, Z  U ,V ,N 

i , S . 

The significance of the local equilibrium principle is as follows. 



S U ,V ,N i  is also the 

entropy of the system that would be at equilibrium at 



T , P , i  even if this system is only at 

steady state. Then, the tangent plane at this steady state point can be defined in the same 

manner. For any other state of the system defined by 



T T , P  P , i i , it is also possible 

to define its entropy 



S U,V,Ni  for the same reason so that the inequality as given by 

equation (15) is true for a single-phase system far from equilibrium. The quantity 



A
Z 

Z  is 

called the thermodynamic availability and has been defined as a storage function within the 

context of passivity based process control methods (Alonso and Ydstie, 1996; Ydstie and 

Alonso, 1997; Farschman et al., 1998; Hangos et al., 1999; Alonso et al., 2000; Alonso and 

Ydstie, 2001; Alonso et al., 2002; Ruszkowski et al., 2005). In this work, we use it as a 

Lyapunov function to derive stabilizing control laws. 

 

Let us recall the definition and properties of a Lyapunov function 



W (Z). A steady state 



Z  Z  is asymptotically stable if there exists a positive continuous function 



W (Z), 



(ZD) 

named Lyapunov function satisfying the three following conditions (Khallil, 2002): 

1. 



W Z   0 

2. 



W Z  0     Z  Z , Z  D 
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3. 



dW Z 
dt

 0  Z  Z ,  Z  D 

Let us consider the availability function 



A
Z 

Z  as a candidate Lyapunov function. It is 

straightforward that 



A
Z 

Z  as defined by equation (15) satisfies the first condition. We show 

in the following section the way the second condition can be satisfied provided that the strict 

concavity of the entropy function can be insured. Afterward we will write down the dynamic 

equation for 



A
Z 

Z . Differently from other studies devoted to passivation (Antelo et al., 2007; 

Ruszkowski et al., 2005), the control strategy that we propose consists in choosing the input 

variables through a state space feedback such that 



A
Z 

Z  satisfies the third condition. 

 

3.1.1. Condition for the strict concavity of the entropy function 

 

The entropy function is not strictly concave even if the phase under consideration is 

thermodynamically stable. Let us consider the tangent plane to the entropy surface at the 

steady state point 



S  S Z   as defined by the direction vector 



w T 
1

T Z  

P Z  
T Z  


i Z  
T Z  









. 



T Z , P Z  and i Z  are zero order homogeneous functions with respect to iNVU  and , : 

 



T Z  T Z         (a)

P Z  P Z        (b)

i Z  i Z       (c)

 (16) 

From equation (15), the condition 



A
Z 

Z  0 is satisfied at the steady state point but also at all 

the points satisfying the following conditions derived from (16): 

 



U

U


V

V


Ni

N i

  (17) 
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In order the entropy to be strictly concave and the condition 



A
Z 

Z  0 to be satisfied only at 

the steady state point, at least one constraint on the extensive properties has to be imposed 

(Jillson and Ydstie, 2007). Let us take a simple example to illustrate this point. 

 

Example: Let us consider the mixing entropy 



Sid
m

 of a binary ideal solution (Sandler, 1999): 

 



Sid
m  Rln

N1

N1  N2









N1  Rln

N2

N1  N2









N2 (18) 

One can verify that 



Sid
m

 is a first order concave homogeneous function with respect to 1N  

and 2N  and that 



Sid
m

N1

Sid
m

N2









 R ln

N1

N1  N2









 R ln

N2

N1  N2



















 are zero order 

homogeneous functions with respect to 1N  and 2N . The 



Sid
m

 surface is represented in Figure 

1. The algebraic distance 



A N1,N2  between the tangent plane to the 



Sid
m

 surface at 



N
1
 N 

1
N

2
 N 

2  and the function 



Sid
m N1,N2  is given by: 

 

 

 

0lnlnlnln

,

2

21

2

21

2

1

21

1

21

1

21













































































N
NN

N

NN

N
RN

NN

N

NN

N
R

NNA

 (19) 

 

One can easily verify that 



A N 
1
,N 

2  A N 
1
,N 

2  0. The condition



A  0 is then satisfied 

on the contact line between the entropy surface and its tangent plane including 



N 
1

N 
2  as 

well as the origin )0,0( as it is shown in figure 1(a).  If a constraint is imposed to the extensive 

state variables, for example constant 21 NN  (or constant 21 MM , 

constant 21 VV …), the entropy surface becomes a strictly concave line and the point 



Z  N 
1

N 
2  is the unique one that satisfies 



A N 
1
,N 

2  0  (see Figure 1(b)). 
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3.1.2. Derivation of  



dA
Z 

dt
 for the CSTR with reaction networks 

 

From equation (15), the following equations can be written for the differential of 



A
Z 

Z  that 

is a first order homogeneous function with respect to 



U,V,Ni: 

 



dA
Z 
 dU

1

T 


1

T









 dV

P 

T 


P

T









 dN i

i
T 

i

T









          (a)

i



dA
Z 

dt


dU

dt

1

T 


1

T











dV

dt

P 

T 


P

T











dN i

dt

i
T 

i

T









      (b)

i















 (20) 

In order to derive the expression of 



dA
Z 

dt
, one has to consider the balance equations as 

follows:  

 



dU

dt
 Fi

inhi

in

i

  Fi

outhi

out

i

 0  P0l t dis         (a)

dV

dt
 l t                                                                     (b)

dN i

dt
 Fi

in  Fi

out   i

rrv

rV
r

                                         (c)















 (21)  

where  tl  is the volume time variation and 



dis is an extra term accounting for possible 

mechanical dissipation. The molar flow rate of component i is denoted 



F
i
, the superscripts in 

and out standing for inlet and outlet flows. The volume of the system can vary with respect to 

the surrounding at 



P
0
. Heat transfer can occur with an external heat source at 



T
0
. 



rv

r is the rate 

per volume unit of the r
th

 reaction and 



 i

r  is the stoichiometric coefficient of the component i 

when it is involved in the r
th

 reaction. In the case of a gas phase, the volume variation can be 

due to the displacement of a piston. For example, new chemical reactors have recently been 

described where a free piston is moving within a cylinder (Roestenberg et al., 2010). The 



l t  

function is then related to the piston motion. In the case of a liquid phase, the volume can vary 

due to the evolution of the total number of moles of the mixture or to the variation of its molar 
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density. The quantity 



dA
Z 

dt
 is easily derived from equations (20b) and (21). One can see here 

the main advantage of the entropic approach (see section 2.2.) since the derivation of 



dA
Z 

dt
 is 

based on the energy and material balances that are classically performed in chemical 

engineering. If the energetic approach were used, the distance as defined by equation (9) 

should be used and the derivation of its dynamic equation would be based on the entropy and 

material balances. The former is less common although it has been used for the application of 

the Bond Graph language to chemical engineering (Couenne et al., 2006, 2008a,b). 

 

A specific formulation for isobaric systems can be derived since such situations are very 

common. In this case, the mechanical equilibrium is assumed between the surrounding and 

the vessel content so that 



P  P  P0. The energy balance is then written by using the 

enthalpy function 



H U PV : 

 



dH

dt
 Fi

inhi

in

i

  Fi

outhi

out

i

 0 dis (22) 

The 



A
Z 
 function is now defined with respect to the enthalpy as following: 

 



dA
Z 
 dH

1

T 


1

T









 dN i

i
T 

i

T









         (a)

i



dA
Z 

dt


dH

dt

1

T 


1

T











dN i

dt

i
T 

i

T









      (b)

i















 (23) 

The isobaric formulation of 



dA
Z 

dt
 is obtained by combining the material balances equations 

(21c) with equations (22) and (23b). 
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3.2. Case study 1: open loop stability analysis of a liquid-phase non-isothermal 

CSTR 

 

We consider the non-isothermal isobaric CSTR involving the liquid phase acid-catalyzed 

hydration of 2-3-epoxy-1-propanol to glycerol. For this system, oscillating or unstable 

behavior have been experimentally shown (Heemskerk et al., 1980; Rehmus et al., 1983; 

Vleeschhouwer et al., 1988; Vleeschhouwer and Fortuin, 1990). Its stoichiometric equation is 

as follows: 

 



C
3
H

6
O

2

1

 H
2
O

2

H


  C
3
H

8
O

3

3

 (24) 

The rate per mass unit of this reaction is given by: 

 



r
m
 k

0
c

H  e


Ta

T c
1
 (25) 

where 



c
H  , 



c1 , 



k0  and aT  stand for the molar concentrations of 



H   and 2-3-epoxy-1-

propanol per mass unit, the kinetic constant and the activation temperature, respectively. The 

system is fed with a mixture of 2-3-epoxy-1-propanol, water and sulfuric acid according to the 

total mass flow rate 



qin
. The mass fraction of sulfuric acid is assumed to be very low so that 

its balance equation is not considered.  

 

3.2.1. Dynamic model of the system 

 

The material balances are as follows: 

 



dN1

dt
 qinc1

in  qoutc1

out  rm M  F1

in  F1

out  rm M                 (a)

dN2

dt
 qinc2

in  qoutc2

out  rm M  F2

in  F2

out  rm M                (b)

dN3

dt
 qoutc3

out  rm M  F3

out  rm M                                 (c)













 (26) 
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The total mass of the reacting mixture is assumed to be constant. This condition is satisfied by 

using an outlet total molar flow regulation so that 



M iq
inci

in

i

  qin  M iq
outci

out

i

  qout  q . 

This hypothesis insures the strict concavity of the entropy function since the constraint 

constant
i

ii NMM  is imposed to the mole numbers.  The cooling system is a jacket 

that is supposed to be at uniform temperature wT  playing the role of the environment as well 

as the role of the manipulated variable. The heat flow 



w  between the jacket and the bulk is 

given by using a global heat transfer coefficient   according to the following relation: 

 

 



w  Tw T  (27) 

 

In order to calculate the temperature evolution of the system, the energy balance equation 

under isobaric conditions (22) is used as it is classically done for chemical reactors modeling 

(Sandler, 1999; Luyben, 1990). To this end, we assume that the liquid mixture behaves like an 

ideal solution and that the pure components liquid phase constant pressure heat capacities are 

constant. These assumptions are usually adopted for the dynamic modeling of liquid phase 

chemical reactors (Luyben, 1990). The constitutive equations of the partial molar enthalpy, 

entropy and chemical potential are then as follows (Sandler, 1999): 

 

 



hi P,T  hi

* P,T  hi

* T  c p,i

* (T Tref ) hiref                                        (a)

si P,T  si T  si

* T  R ln
N i

N l

l


















 c p,i

* ln
T

Tref









 siref  R ln

N i

N l

l


















   (b)

i(T,P, x i)  i

*(T,P)  RT ln
N i

N l

l


















 hi

* Tsi

*  RT ln
N i

N l

l


















                (c)


















 (28) 
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where the superscript * stands for pure liquid component. This thermodynamic model is 

compatible with the entropy concavity assumption since it represents the thermodynamic 

properties of a stable liquid. The liquid mixture could have been considered as a non-ideal 

solution. The component heat capacities could have been considered as functions of the 

temperature. Such assumptions are also compatible with the concavity of the entropy function 

but they are not really necessary since the main thermal effect in the situation under 

consideration is due to the heat released by the chemical reaction. The dynamic equation for 

the temperature is then as follows: 

 



Nic p,i

*

i












dT

dt
 Fi

incp,i

*

i










T

in T w   rH rm M dis (29) 

where 



 rH   ihi

i

  is the reaction enthalpy and 



dis is an extra term accounting for possible 

mechanical dissipation and mixing effects. We have assumed the quantity 



c
H   3108  kg.mol1 to be constant, the reaction (24) being considered as a pseudo first 

order reaction with 



k0  86109  kg.mol1.s1 and 



Ta  8822 K  (Vleeschhouwer et al., 1988). 

In Tables 1 and 2 are given the other parameters issued from (Parks et al., 1946; 

Vleeschhouwer and Fortuin, 1990; Liessmann et al., 1995; Frankvoort, 1977; Alberty, 2006; 

Dechema, 2007) that we have used to perform the simulations.  

 

3.2.2. Steady state multiplicity and open loop behavior 

 

According to the operating conditions that are given in Table 2, the system exhibits three 

stationary operating points denoted 



P
1

T 
1
,Z 

1 , P2
T 

2
,Z 

2  and 



P
3

T 
3
,Z 

3  that are given in Table 

3. 
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The simulations results presented in the phase plane 



N1,T  in Figure 2 show that 



P1 and 3P  

are stable and  222 ,ZTP  is unstable. It can be noted that some trajectories miss narrowly 2P  

and finally reach 3P . The behavior of the availability function 



A
Z 1

Z  given in Figure 3 from 

the four initial conditions as given in Table 4 is that of a natural Lyapunov function for three 

of them ),,( 431 CCC  since it is decreasing until 



lim
ZZ 1

A
Z 1

Z  0 . The curves issued from 3C
 
and 

4C  are superimposed. The fourth curve issued from 2C corresponds to the curve that 

asymptotically reaches 3P . As a consequence,   0lim
1

3




ZA
ZZZ

 but one can easily check that 

  0lim
3

3




ZA
ZZZ

. It can be noted that in all the cases, the availability remains positive. 

  

Since the point 



P3 also corresponds to a stable operating point, simulation results are not 

presented. Let us now consider the steady state point 



P2. Dynamic simulations are performed 

by considering the same aforementioned initial conditions. The simulations shown in Figure 4 

illustrate the fact that the point 



P2 is unstable since all these trajectories are such that 



A
Z 2

(Z)  

does not asymptotically tend to zero. The final value of the availability depends on the 

reached stationary points 



P1 or 



P3. Finally the availability from 2C  comes close to zero when 

the trajectory in the phase plan goes past 



P2 (see Figure 2). 

 

4. Application to the control of the liquid phase non-isothermal 

CSTR: simulation studies 

 

From the control point of view, since the availability is used as a Lyapunov function, it 

remains to express the control input from state variables such that 
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

dA
Z 
(Z)

dt
 0,Z  Z ,  Z  D. In the literature, the availability function is mostly used for a 

posteriori stability analysis while the control strategy is achieved with classical PI or 

nonlinear controllers (Antelo et al., 2007). In this paper we design the nonlinear controller 

directly from the use of the availability function as a candidate Lyapunov function. 

 

4.1. Design of a stabilizing feedback control law 

 

In order to control the non-isothermal CSTR, the jacket temperature wT  is chosen as the 

manipulated variable (Viel et al., 1997; Alvarez-Ramirez and Puebla, 2001) according to the 

industrial practice. It has been shown in previous works (Hoang, 2009; Hoang et al., 2008, 

2009) that the feedback laws obtained from the condition 



dA
Z 

Z 
dt

 0  Z  Z  lead to 

variations of the manipulated variable wT  that cannot be realized in practice. Then, it has been 

proposed to relax the initial control objective into 



dA
Z 

T Z 
dt

 0  Z  Z  where 



A
Z 

T  A
Z 
 A

Z 

M
 

(



A
Z 

M
 being a positive function defined later on) captures the thermal part of the availability 

(Hoang et al., 2012). In this case, asymptotic stability is insured with a physically admissible 

manipulated variable in the vicinity of any desired steady state 



T,Z  , particularly in the case 

of an open loop unstable point. So, let us assume the following closed loop control objective: 

 

 



dA
Z

T

dt
 K

1

T


1

T











2

 (30) 

 

with the constant 



K  0.  
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Proposition. Provided that the total mass within the CSTR is constant as well as inT and 



Fi

in , 

the system under consideration coupled with the nonlinear feedback law: 

 



Tw 
1


K

1

T


1

T











f i


1

T


1

T











dN i

dt
i

  Fi

in

i

 hi

in  Fi

out

i

 hi

out dis



















 T  (31) 

where 

  



f
i

T,T  c
p ,i

* T
ref
 h

iref 
1

T


1

T









 c

p ,i

* ln
T

T









 (32) 

 

and 



K  0 is stable and asymptotically converges to the desired operating point 



P T,Z   from 

any initial condition 



T 0 ,Z 0   according to the control objective equation (30).  Let us note 

that the system converges to the desired steady state the most faster than the value of K is 

large. Furthermore, the manipulated variable is continuous at 



t  0 if 



T 0 ,Z 0  , 



T
w

0  and 

K are such that equation (31) is satisfied at 



t  0 with 



K  0. Therefore, among all the 



K  0 

admissible values, one can choose the one given by equation (33): 

 



K 

 Tw 0 T 0  
f i 0 


1

T 0 


1

T











i


dN i

dt
0  Fi

in 0 
i

 hi

in 0  Fi

out

i

 hi

out 0 dis 0 

1

T 0 


1

T











 (33) 

 

Proof. This proposition is proved by using the availability function 



A
Z 
 (Hoang et al., 2009, 

2012; Hoang, 2009). From the constant total mass hypothesis, 



A
Z  is strictly convex. The time 

derivative of 



A
Z 
 is given as follows for an isobaric reactor: 
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

A
Z

Z 
1

T


1

T









H 

i
T 

i

T











i

 N i                  (a)

dA
Z

Z 
dt


1

T


1

T











dH

dt


i
T 

i

T











i


dN i

dt
        (b)













 (34) 

 

One can decompose 









TT

ii 
 into a thermal part 



fi(T,T) given by equation (32) and a 

material part as follows: 

 



i
T 

i

T









 f i(T,T) gi(...,N l ,...,....,N l ,....)  f i(T,T) R ln

N i

N l
l



N l

l



N i

















 (35) 

The availability as given by equation (34a) can be expressed as follows:  

 

 



A
Z

Z 
1

T


1

T









H  f i

i

 N i

A
Z

T

   gi

i

 (...,N l ,...,....,N l,....)N i











A
Z

M

 (36) 

On the one hand, by using 
i

iihNH where ih  is given by equation (28a) and the fact that 



1
T

T
 ln

T

T



















 0  T  and 0*

, 














i

ipicN , the thermal availability 



A
Z

T
 satisfies: 

 



A
Z

T   1
T

T
 ln

T

T



















 N

i
c

p ,i

*

i










 0  (37) 

On the other hand, 



A
Z

M
 can be explicitly rewritten as follows: 

 



A
Z

M  -R ln
N 

i

N 
l

l



N
l

l



N
i













i

 N
i  (38) 

One can check for the fact that 



A
Z

M
 is a first order homogeneous function with respect to 



N i  

so that: 
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

dA
Z

M

dt
 - g

i

i


dN

i

dt
 (39) 

By combining equations (34b) and (39), we obtain: 

 



dA
Z

T

dt


1

T


1

T











dH

dt
 f

i

i


dN

i

dt
 (40) 

By using the energy balance equation (22), we obtain from equation (40): 

 

 



dA
Z

T

dt
 

1

T


1

T









 Fi

inhi

in

i

  Fi

outhi

out

i

  (Tw T)dis









 f i

dNi

dt
i

  (41) 

 

One can check that by including the feedback law (31) in equation (41), the control objective 

equation (30) is satisfied. 

 

Remark 1.



A
Z

M
 is also positive: 

 



A
Z

M  R ln
N

i

N
l

l















i

 N
i
 R ln

N 
i

N 
l

l















i

 N
i
 0  

 



A
Z

M
 is the distance between the strictly convex first order homogeneous function with respect 

to 



N i , 



R ln
N i

N l

l

















i

 N i  and its tangent plane at 



N i . Strict convexity is due again to constant 

total mass assumption. 

 

Remark 2. The stabilization obtained by using 



dA
Z

T

dt  
(Hoang, 2009; Hoang et al., 2008, 2009, 

2012) leads to smooth time responses of the system and feasible trajectories of the 

manipulated variable because 











TT

f i

11
 in equation (31) is a smooth function and as already 
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mentionned TT   only when  ZZ  .  Such a condition is not satisfied when the total 

availability 



A
Z 
 is used as in (Hoang et al., 2008). 

 

4.2. Case study 1: closed loop stabilization of chemical reactors operating 

under multiple steady states 

 

This problem is illustrated by the liquid phase acid-catalyzed hydration of 2-3-epoxy-1-

propanol to glycerol as described in the section 3.2. In this case, there is only one reaction and 

it can be shown that, as soon as 



K  0, the time derivative of the temperature is monotonous 

increasing or monotonous decreasing following that the initial temperature is greater or 

smaller than the target temperature. Furthermore, it can be shown that there is only one steady 

state temperature corresponding to a given set of stationary mole numbers. Consequently, 

thanks to the Lasalle theorem (Khallil, 2002), the invariant set associated to 



dA
Z

T

dt
 0 reduces 

to Z so the trajectories converge asymptotically to Z  and the control remains bounded. 

 

In Figure 5, the total availability 



A
Z 2

Z  is drawn in the case of a proportional controller 

(noted P in what follows) of the form: 

 

 



T
w
 k

p
T T 

2  (42) 

 

associated to the perfect feedback on outlet flow rate. We recall this latter control enables the 

strict concavity of entropy to be satisfied. A proportional integral (PI) controller does not 

improve the stabilization property. The availability function is drawn for the four initial 
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conditions with the proportional coefficient 9.0pk . It can be seen that the availability is not 

decreasing with time albeit it asymptotically converges to zero. When the proportional gain is 

chosen large enough, it becomes impossible to prove that the closed loop availability is a 

Lyapunov function. 

 

In Figure 6, the control time profile 



T
w
 is given with a choice 9.0pk . Finally the thermal 

availability is presented in Figure 7. It can be noted that the thermal availability is not strictly 

decreasing with the proportional controller. 

 

Closed loop trajectories issued from some initial states represented by a times mark obtained 

with the P controller (



k
p
 0,9) and the entropy-based controller for 4103.4 K  are given in 

Figures 8 and 9 respectively.  The K value of the entropy-based controller has been chosen in 

order to insure a similar dynamic behavior than to the one obtained with the P controller 

(



k
p
 0,9).  It can be noted that some closed loop reactor temperature trajectories with the P 

controller go farther in high temperature. The same tendency is also reported with the PI 

controller in (Antelo et al., 2007). This is not the case with the entropy-based controller. So 

for initial states far from steady state points the entropy-based controller has smaller values 

than for P control.  

 

Let us now examine more closely the simulation results with the entropy-based controller. 

The availability and the thermal availability are given in Figures 10 and 11 respectively. This 

latter one is as predicted strictly decreasing to zero. Figure 12 shows the corresponding 

controls. The control wT  moves between 285 K and 360 K depending on initial conditions. 

The main drawback of the proposed control strategy is that the closer to 2P  the initial 
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condition is, the higher the control is. It is compensated by the fact it is possible to easily 

compute the tuning parameter K  such that the control wT  be continuous at 



t  0 as stated in 

equation (32) (in this case the K value is directly derived from the initial conditions). Indeed 

the domain of initial conditions for which the system can be stabilized with a control variable 

continuous at 0t  is larger in the case of Lyapunov-based control than in the case of 

proportional control. With these choices the control variable range between 293 K and 330 K 

as shown in Figure 13.  Finally let us note that such an adaptation cannot be performed with a 

proportional controller.  

 

4.3. Case study 2: optimization and control of multiple reactions system 

with non-minimum phase behaviour 

 

We consider a liquid phase non-isothermal CSTR where some series/parallel reactions take 

place. The proposed control strategies can be applied to this multiple chemical reactions 

system. One has only to assume that the isothermal open loop dynamics has a unique 

stationary point at 



T  T ; if it is the case, it immediately follows that if 



T  tends to T  then Z  

tends to Z  and the control is well defined. 

More precisely, we are interested in the reaction for the production of cyclopentenol ( 2S ) 

from cyclopentadiene ( 1S ) by acid-catalyzed electrophilic addition of water in dilute solution 

(Engell and Klatt, 1993; Niemiec and Kravaris, 2003; Antonelli and Astolfi, 2003; Guay et 

al., 2005; Chen and Peng, 2006; Ramírez et al., 2009). Such a process is described by the 

well-known Van de Vusse reactions system (Van de Vusse, 1964) and can be written as 

follows: 
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

C5H6

S1

 H2O

S5

k1 / H 

  C5H7OH

S2

C5H7OH

S2

 H2O

S5

k2 / H 

  C5H8(OH)2

S3

2C5H6

S1

k3  C10H12

S4

 (43) 

where 1S  is the reactant, 2S is the desired product and 3S  and 4S  are unwanted by-products. 

5S  and 6S  are water and catalyst/sulfuric acid respectively. The system dynamic model is 

derived from the material and energy balance equations (Engell and Klatt, 1993; Niemiec and 

Kravaris, 2003) where the molar concentrations per mass unit 



c i 
N i

M
 have been used: 
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In equations (44), the chemical rates are also expressed on a mass basis. The molar number of 

sulfuric acid is regulated to be constant in the reactor by imposing some appropriate initial 

condition 



N6(t  0) 
M

M 6

6

in








 and let us note that the dynamical model (44) fulfills the 
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constraint on the total mass 



M  constant  since 

.06
6

2
2

1
1 

dt

dN
M

dt

dN
M

dt

dN
M

dt

dM
  We neglect the additive power 



dis due to 

possible mechanical dissipation and mixing effects in the energy balance equation (44g). 

Kinetic and thermodynamic parameters are given in Tables 5 and 6 adapted from (Engell and 

Klatt, 1993; Niemiec and Kravaris, 2003). 

 

The control objective is to maintain the process output 2N  as close as to a steady state set 

point by adjusting the jacket temperature wT  only. 

 

4.3.1. Dynamical analysis and non-minimum phase behaviour  

 

Let 
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N 
1
,N 

2
,T   be possible steady states of the system (44). A mathematical analysis for such 

states leads to: 
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and 

 


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At given operating conditions (see Table 7), we obtain the following steady state point 

mol 5930.11 N , 



N 2 1.419 mol and 



T  398.2 K. The transfer function from the input wT  

to the output 2N  of the linear approximation of equations (44) around this steady state 

exhibits a right half plane zero 2104305.2 z  and all poles in the left half plane. Hence the 

system is locally asymptotically stable and locally non-minimum phase. As a consequence, 

the original system has unstable zero dynamics so that it cannot be controlled by using the 

well-known conventional approaches (Engell and Klatt, 1993; Chen and Peng, 2006) such as 

exact linearization of the differential geometry by nonlinear coordinate transformations and 

nonlinear feedback (Khallil, 2002). 

 

4.3.2. Optimal stationary operating points 

 

In order to maximize the quantity of the desired product 2S  in the reactor, the following 

optimization problem can be stated from equations (45) and (46) as follows: 

 

 



max
Tw

N 
2

T  

subject to (T ,T
w
)  0 and T 

min
 T T 

max

  (47) 

 

where 



T 
min

 

and 



T 
max

 are physical bounds imposed on the bulk temperature for practical 

implementation. The above-mentioned problem is an implicit nonlinear programming one 

with constraints. The optimal solution can be found by analytical/numerical methods.  

It is shown in Figure 14 that when 



T 
min
 300 K and 



T 
max

 400 K, the optimal solution of (47) 

is mol 37.32 optN  and 



T opt  367.28 K at the desired jacket temperature K 361woptT . 
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4.3.3. Control objective and numerical simulations 

 

Our control objective is to stabilize the reactor around a desired operating point using the 

jacket temperature wT  as the only control input. As shown in subsection 4.3.2, this problem 

consists in controlling the jacket temperature to track a desired bulk reference temperature. 

Hence the regulation of the desired product 2S  is then insured. The desired bulk reference 

temperature can be proposed as follows: 

 



T
d
(t) 

T 
e
, 0  t  t

1

min T 
e
,T 

opt 
1

2
T 

opt
T 

e

T 
opt

, t  t
2









, t
1
 t  t

2
  (48) 

where:  

 



T 
e
 is the open loop bulk temperature exhibiting a non-minimum phase behaviour of the 

system (44) at the operating conditions given in Table 7 (see subsection 4.3.1); 

 



T 
opt

 

is the optimal bulk temperature derived from the optimization problem (47) that 

consequently corresponds to a maximal value of the desired product 



S2 . 

Let us remark that in order to avoid thermal shocks that may damage the desired product 

and/or reactor when moving from 



T 
e
 to 



T 
opt

, the intermediate 



T
d
(t) min T 

e
,T 

opt 
1

2
T 

opt
T 

e
   t

1
 t  t

2
is proposed for )(tTd . 

 

In what follows, we show by simulation that the nonlinear controller (31) remains valid and is 

quite effective for the trajectory tracking problem. 

 

In Figure 15 is shown the reactor bulk temperature T  trajectory: it can be seen that it tracks 

the desired trajectories )(tTd  by means of the general nonlinear controller (31) based on the 
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thermal availability. These numerical simulations have been obtained with 



t
1
 0.7 h , 



t
2
1.4 h and two values for the controller parameter for the initial conditions: 

 for 



T(t  0)  430 K, 91050K  or ;1025 9K  

 for 



T(t  0)  380 K, 91035K  or .1015 9K  

 

As illustrated in Figure 15, the convergence rate is greater with the greater values of the 

controller gain K . The control input wT  is physically admissible in terms of the amplitude 

and the variation rate. In Figure 16 is shown the effectiveness and performance of the 

proposed controller. 

 

5. Conclusion 

 

In the first part of this paper, we give a brief overview of thermodynamic concepts like 

exergy, available work, availability and show how they are used for the stability analysis and 

control design of physicochemical systems. Then, we have shown how the availability 

concept 



A
Z 
 as defined in the field of passivity based process control is a nonlinear extension 

of the local curvature entropy concept as used for linear physical systems stability analysis. In 

the case of a single chemical reaction system, we have studied the liquid phase non-isothermal 

CSTR open loop stability by using this concept. In the case of one or multiple reaction 

systems, we have shown how to stabilize a CSTR at a desired operating point or to track 

desired trajectories by using the same concept as a Lyapunov function in order to derive the 

corresponding control laws. This approach is applicable as soon as the steady state is such that 

to a steady state temperature corresponds a unique set of stationary mole numbers. The 

stabilization and trajectories tracking are guarantied in some domain of validity issued from 
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the positivity condition of the design parameter K  and the continuity of the feedback law for 

wT . Some guidelines for the design of parameter K in terms of the trade-off between 

performances and actuator solicitation are given. The proposed approach is illustrated via 

simulation examples by using thermodynamic and kinetic data of chemical reactions that are 

described in the literature. The simulation results show that stabilization is solved with 

physically admissible time evolution of the jacket temperature used as the only manipulated 

variable and compared with results obtained using a proportional feedback controller. It is 

also shown that the stability region with the entropy-based controller is larger than the one 

with P or PI controller. The range of the control values are of the same order with the two 

controllers. 
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NOMENCLATURE 

Z
A : availability (J.K

-1
) 

T

Z
A : thermal part of the CSTR availability (J.K

-1
) 

M

Z
A : material part of the CSTR availability (J.K

-1
) 

B: available work or exergy (J) 

b: steady flow availability (J.mol
-1

 or J.kg
-1

) 

c: concentration (mol.kg
-1

) 



c p: constant pressure heat capacity (J.mol
-1

.K
-1

) 

D: domain of variation for the extensive variables (-) 

E: available work or exergy (J) 

f: function involved in the expression of the thermal part of the availability (J.K
-1

.mol
-1

) 

g: function involved in the expression of the material part of the availability (J.K
-1

.mol
-1

) 

H: enthalpy   (J) 



 rH : reaction enthalpy (J.mol
-1

) 

h: specific enthalpy (J.mol
-1

 or J.kg
-1

) 



k0 : kinetic contant (kg.mol
-1

.s
-1

) 

K: controller parameter (-) 

l(t): volume time variation (m
3
.s

-1
) 

M: mass (kg) 



M : molar mass (kg.mol
-1

) 

N: number of mole (mol) 

P: pressure (Pa) 

  



P : power (W) 



q: mass flow rate (kg.s
-1

) 
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R: ideal gas constant (J.mol
-1

.K
-1

) 

r: chemical reaction rate (mol.s
-1

.m
-3

 or mol.s
-1

.kg
-1

) 

S: entropy (J.K
-1

)  

s: specific entropy (J.K
-1

.mol
-1

 or J.K
-1

.kg
-1

) 

T: temperature (K) 

t: time (s) 

U: internal energy (J) 

V: volume (m
3
) 

W: Lyapunov function (-) 

x: molar fraction (-) 



wT
: vector of intensives variables (-) 



ZT
: vector of extensive variables (-) 

 

Greek symbols 



 : global heat transfer coefficient between CSTR jacket and bulk fluid (W.K
-1

) 



 : homogeneity ratio (-) 



: entropy production per time unit (J.K
-1

.s
-1

) 



 : heat flow (W) 



: chemical potential (J.mol
-1

) 



 : stoichiometric coefficient (-) 



 : mass density (kg.m
-3

) 



 : mass fraction (-) 



 : variation of a quantity (-) 
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Subscript 

a: activation 

d: desired 

dis: dissipation 

eq: equilibrium 

i, l: components i, l 

0: passive environment or surrounding 

opt: optimal 

w: wall  

k: system k 

m: heat source or per unit of mass 

v: per unit of volume 

 

Superscript 



X : steady-state value of X 

in: inlet 

out: outlet 

r: r
th

 reaction 

*: pure liquid component 
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Figures captions 

Figure 1. Entropy surface, the tangent plan, the singular straight line and the restriction with 

some constraint on the extensive quantity 

 

Figure 2. Case study 1: some open loop trajectories in the phase plan 

Figure 3. Case study 1: open loop availability 



A
Z 1

Z  time evolution from the unstable steady 

state point 

 

Figure 4. Case study 1: open loop availability 



A
Z 1

Z  time evolution  

 

Figure 5. Case study 1: closed loop availability time evolution - Proportional controller  

 

Figure 6. Case study 1: closed loop control time evolution - Proportional controller  

 

Figure 7. Case study 1: closed loop thermal availability time evolution - Proportional 

controller  

 

Figure 8. Case study 1: some trajectories in the phase plan - Proportional control 

Figure 9. Case study 1: some trajectories in the phase plan - Entropy based control  

Figure 10. Case study 1: closed loop availability time evolution - Entropy based control with 

43000K  

Figure 11. Case study 1: closed loop thermal availability time evolution. Entropy-based 

control with 43000K  

Figure 12. Case study 1: closed loop control time evolution. Entropy-based control with 

43000K  

Figure 13. Case study 1: closed loop control time evolution. Entropy-based control, 



K  being 

fixed according to the initial conditions (



K  2.9 105
 from C1, 



K  4.3 105
 from C2, 



K  0.16 105
 from C3, 



K  0.12 105
 from C4) 

Figure 14. Case study 2: representation of stationary states 

Figure 15. Case study 2: dynamics of the controlled system. Entropy-based control 

Figure 16. Case study 2: dynamics of the control input 
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Tables captions 
 

 

Table 1: Case study 1: thermodynamic properties 

 

 

Table 2: Case study 1: CSTR operating conditions 

 

 

Table 3: Case study 1: the three steady states operating points 

 

 

Table 4: Case study 1: initial conditions for simulations  

 

 

Table 5: Case study 2: kinetic parameters  

 

 

Table 6: Case study 2: thermodynamic parameters  

 

 

Table 7: Case study 2: CSTR operating conditions 



 

 

 

 

 

 

 

 

 

 

 

 

Symbol (unit) C3H6O2 (1) H2O (2) C3H8O3 (3) 



i
* (kg.m

-3
) 1117 1000 1261.3 



c p,i
*  (J.mol

-1
.K

-1
) 

128.464 75.327 221.9 



h
i ,ref

 (J.mol
-1

) 



2.95050105 



2.8580105 



6.6884 105  



s
i ,ref

 (J.K
-1

.mol
-1

) 316.6 69.96 247.1 

 

Table 1 

Table(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol (unit) Numerical value 
inT (K) 298  

wT  (K) 298  



q (kg.s
-1

) 



0.46103 
inF1 (mol.s

-1
) 0013.0  

inF2  (mol.s
-1

) 0200.0  

 



M (kg) 



75103
 



  (W.K
-1

) 4.0  



dis (W) 75.8  

 

Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Symbol (unit) Point 1P      Point 2P   Point 3P   



T  (K) 



314.35 



323.60 



346.47 



N 1 (mol) 1723.0  1364.0  0469.0  



N 2  (mol) 2181.3  1822.3  0927.3  



N 3 (mol) 0470.0  0829.0  1724.0  

 

 

Table 3 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Symbol (unit) Point 1C     Point 2C   Point 3C    Point 4C   



T 0  (K) 330  320  310  315   



N1 0  (mol) 05.0  18.0  14.0  135.0   



N2 0  (mol) 3  3  3  3   



N3 0  (mol) 1880.0  0835.0  1157.0  1197.0   

 

Table 4 



 

 

 

 

 

 

Symbol (unit) Numerical value 

01k  (h
-1

) 1210287.1   

R

Ea1  (K) 
 

9758.3 

02k  (h
-1

) 1210287.1   

R

Ea2  (K) 
 

9758.3 

03k  (g.mol
-1

.h
-1

) 1210043.9   

R

Ea3  (K) 
 

8560 

 

Table 5 

 

 

 

 



 

 

 

 

Symbol (unit) 



i
* (g.cm

-3
) 



c p,i
*  (J.mol

-1
.K

-1
) 



h
i ,ref

 (J.mol
-1

) 
iM  (g.mol

-1
) 

C5H6 (S1) 0.786 115.3 3109.105   66 

C5H7OH (S2) 0.95 763.9 3109.235   84 

C5H8(OH)2 (S3) 1.235 529.7 3102.500   102 

C10H12 (S4) 0.98 321.6 3104.160   132 

H2O (S5) 1 75.327 3108.285   18 

H2SO4 (S6) 1.84 138.9 310814  98 

 

Table 6 

 



 

 

 

 

 

Symbol (unit) Numerical value 
inT (K) 15.403  

wT  (K) 397  



q (g.h
-1

) 31036  



1

in  0.1 



5

in  0.85 



6

in  0.05 

 



M (g) 31010  

  (J.h
-1

.K
-1

) 866880  

 

Table 7 
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Figure 1 

Figure(s)1-2



 

 

 

 
 

Figure 2 

 



 

 

 

 

 
 

Figure 3 

Figure(s)3-4



 

 

 

 

 

 
 

Figure 4 

 

 



 

 
 

Figure 5 
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Figure 9

Figure(s)9-to-12
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Figure 13 

Figure(s)13-to-16
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 > A tutorial description of the thermodynamic availability concept. > Its use for 

open loop dynamic analysis of the non-isothermal CSTR. > Its use for Lyapunov based 

control laws derivation of the non-isothermal CSTR. > Illustration of the performances of the 

controller by simulations. > Comparison of the controller with a proportional one. 
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