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Abstract

This work makes use of a passivity-based approach (PBA) and tools from
Lyapunov theory to design a nonlinear controller for the asymptotic stabiliza-
tion of a class of non isothermal Continuous Stirred Tank Reactors (CSTR)
around any desired stationary point. The convergence and stability proofs
are derived in the port Hamiltonian framework. Asymptotic observers that
do not require knowledge of reaction kinetics are also proposed for a system
with incomplete state measurement. Numerical simulations are given to il-
lustrate the application of the theoretical results to a CSTR with multiple
steady states.
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1. Introduction

Lyapunov theory [1], or more generally the Passivity Based Approach
(PBA) [2, 3, 4] combined with generalized energetic arguments as expressed
through a Hamiltonian function, is one of the most efficient ways to investi-
gate stability and design controllers for nonlinear dynamical systems [5, 6, 7].
The key idea of the PBA in the Port Hamiltonian framework [8] is to define
transformations (by means of control input or shaped dynamics) to obtain a
certain structured representation of the original system by rendering it pas-
sive with respect to a given storage function. The PBA was first proposed and
successfully applied for stability analysis and control design for the electro-
mechanical systems [9, 10]. In these systems the connections between the
energy and the dynamical behaviour of the system are well established by
the fact that the system reaches its stable state if and only if the total energy
is at its minimum. As a consequence, a Lyapunov function candidate can
be assigned to the total energy and passivity can then be related to energy
dissipation due to friction or resistance. Unfortunately, the link between
Lyapunov stability theory and the energy of chemical reactive systems is far
from being understood at present [11, 12]. This topic has therefore been an
active research area [13, 14, 15, 16].

The Continuous Stirred Tank Reactors (CSTRs) [17] provide a bench-
mark both in chemical engineering and in dynamical systems theory due to
their highly nonlinear dynamics. CSTRs may exhibit non-minimum phase
behaviour [18], instability and multiple steady states [19, 12]. Studies on
CSTRs have investigated control synthesis for stabilization [20, 21, 15, 23, 11]
and state observer design [24, 25, 26, 27]. The combination of these is an
important field of research.

The underlying motivation for nonlinear control of the CSTRs is that
industrial chemical reactors may have to be operated at unstable operat-
ing conditions [28]. Numerous control strategies have been developed to
achieve this objective. Input/output feedback linearization [19] for control
under constraints, nonlinear PI control [29], direct Lyapunov based control
[30], (pseudo) Hamiltonian framework [13, 14, 31, 21], power/energy-shaping
control [12, 11], inventory control [32] and dissipativity based decentralized
control of interconnected chemical reactors [33, 16] provide some examples.
Thermodynamics/physics based control has also been proposed to the stabi-
lization of chemical reactors in [20, 34] and more recently in [15] using the
availability function as its point of departure.
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State estimation for CSTRs has attracted the attention of researchers for
a long time. Papers [35, 36] and references therein provide good overviews of
recent developments. Strategies have been developed for industrial applica-
tions since on-line measurements of all reactant concentrations are difficult
and/or quite expensive to implement and the reactor temperature is in some
cases the only measurement available online [24, 26]. The missing state vari-
ables can be estimated by different tools [24, 25, 26, 37, 27]. The results
given in the papers referred above relate to systems where feedback is not
imposed. Closed loop stability can therefore not be guaranteed in general.

In this work we focus on the combined control and state estimation prob-
lems. First, we propose a passive nonlinear controller for the stabilization of
the fully actuated CSTR with chemical reactions around a steady state which
may be unstable. This approach is based on the passive Hamiltonian con-
cepts defined in [4, 3, 10]. The shaped Hamiltonian storage function is chosen
by using the techniques in [19, 32, 15] such that the resulting state feedback
is admissible [15]. Second, we assume that only the reactor temperature and
a subset of concentrations are available online. Following the same concepts
used for the passivity-based control, we propose a state estimation strategy
based on chemical reaction invariants via the so-called asymptotic observers
[37, 27]. We show, analytically and/or with simulations, that exponential
convergence of the estimated state variables and closed loop stability of the
CSTR are guaranteed.

This paper is organized as follows. The passivity based approach is in-
troduced and the state feedback control law is derived in section 2. The
dynamical model of the CSTR case study is presented and preliminary re-
sults are presented in section 3. Section 4 is devoted to the design of a
passive nonlinear controller within the port Hamiltonian framework. It is
shown that the resulting control is asymptotically stable and admissible in
terms of the amplitude and variation rate as long as the chosen closed loop
Hamiltonian function is appropriate. The results generalize previous ones
[19] without constraint on control input. Furthermore, they allow to rewrite
the closed loop system dynamics into a port Hamiltonian representation. A
state reconstruction method is then proposed via the so-called asymptotic
observers [37, 27]. The theoretical developments are then illustrated by sim-
ulation studies reported in section 5. Conclusions and future perspectives of
the work are given in section 6.
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2. The Passivity Based Approach (PBA)

Let us consider nonlinear systems that are affine in the control input u
and whose dynamics is given by the following set of ordinary differential
equations (ODEs) [1]:

dx

dt
= f(x) + g(x) u (1)

where x = x(t) ∈ Rn is the state vector, f(x) ∈ Rn is a smooth nonlinear
function with respect to x, g(x) ∈ Rn×m is the input-state map and u ∈ Rm

is the control input.
The purpose of the PBA is to find a static state-feedback control u = β(x)

such that the closed loop dynamics becomes a dissipative Port Controlled
Hamiltonian (PCH) system [10, 8]. The dynamics can then be written:

dx

dt
= Qd(x)

∂Hd(x)

∂x
(2)

where the controlled Hamiltonian storage function Hd(x) has a strict local
minimum at the desired equilibrium xd; and Qd(x) = [Jd(x) − Rd(x)] is the
difference of a skew-symmetric matrix Jd(x) and a symmetric one Rd(x) so
that:

Jd(x) = Qd(x)−Qd(x)
T

2
, Rd(x) = −Qd(x)+Qd(x)

T

2
(3)

Furthermore, the damping matrix Rd(x) in equation (3) fulfills:

Rd(x) = Rd(x)T ≥ 0 (4)

The system (2) is then dissipative in the sense that the time derivative

dHd(x)

dt
= −

[
∂Hd(x)

∂x

]T
Rd(x)

[
∂Hd(x)

∂x

]
(5)

is always negative and the Hamiltonian Hd(x) is bounded from below [3,
4]. Consequently, it plays role of Lyapunov function for stabilization at the
desired equilibrium xd. The following matching equation2 that follows from
equations (1) and (2) has to be solved to find u = β(x):

f(x) + g(x)β(x) = Qd(x)
∂Hd(x)

∂x
(6)

2A partial differential equation (PDE) [8].
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We assume that there exists a full rank left annihilator of g(x) denoted
g(x)⊥ such that g(x)⊥g(x) = 0. If Jd(x), Rd(x) and Hd(x) are chosen such
that:

g(x)⊥f(x) = g(x)⊥Qd(x)
∂Hd(x)

∂x
(7)

then the control variable is deduced from the state feedback β(x) given by
[8]:

β(x) = g(x)T
(
g(x)g(x)T

)−1(
Qd(x)

∂Hd(x)

∂x
− f(x)

)
(8)

Thus, a general methodology for the PBA in the port Hamiltonian frame-
work is derived from equations (3)(4) and (6)-(8). Three different guidelines
can be considered:

(i) We first choose an appropriate Hamiltonian storage function Hd(x). The
matrix Qd(x) fulfilling (3)(4) has to be found by considering (7). The
feedback u is then synthesized using (8) [14, 41].

(ii) We choose an appropriate matrix Qd(x) fulfilling (3)(4). The Hamil-
tonian storage function Hd(x) remains to be found by considering (7).
From this the feedback u is obtained using (8) [21].

(iii) The matrix Qd(x) fulfilling (3)(4) and the Hamiltonian storage function
Hd(x) are simultaneously solved by considering (7). The feedback u
is then given by (8) [31]. This guideline becomes quite difficult to
implement as degrees of freedom increase [8].

In what follows, we shall show that the PBA is useful, not only for con-
troller synthesis but also asymptotic observers design of a class of the non
isothermal CSTR with chemical reactions. The use of the PBA with the
guideline (i) is applied.

3. The CSTR case study with chemical transformation

3.1. The CSTR modelling

Consider a CSTR with nr chemical reactions3 with nc active components
Ci of molar mass Mi (i = 1, 2, . . . , nc). Such a reaction network is character-

3Without loss of generality, we assume that all considered reactions are irreversible.
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ized by the following reaction invariant :

nc∑
j=1

νijMi = 0, i = 1, 2, . . . , nr (9)

where νij is the signed stoichiometric coefficient of species j as it enters in
reaction i [22, 21]. For modelling purposes, we make the following hypothe-
ses :

(H1) The fluid mixture is isobaric, ideal and incompressible.

(H2) The heat flow from the jacket to the reactor is given by :

Q̇J = λ(TJ − T ) (10)

where λ > 0 is the heat exchange coefficient. The jacket temperature
TJ is the only control variable.

(H3) The reactor is fed by the species k (k = 1, 2, . . .) at a fixed temperature
TI and dilution rate d. The specific heat capacities cpk (k = 1, 2, . . .)
are assumed to be constant.

Remark 1. Any reversible reaction l (l ∈ {1, . . . , nr}) of the network (9)
can be considered to be irreversible [38] when we define the reduced reaction
rate:

rl =
(
rl

)(f)
−
(
rl

)(r)
(11)

where
(
rl

)(f)
and

(
rl

)(r)
are the forward and reserve reaction rates respec-

tively.

Under (H1), the energy balance is written using the enthalpy H. Hence
the material and energy balances are finally given as follows [23, 12, 15, 17]:

dN1

dt
= d(N1I −N1) +

nr∑
j=1

ν1jrj

dN2

dt
= d(N2I −N2) +

nr∑
j=1

ν2jrj

...

dNn

dt
= d(NncI −Nnc) +

nr∑
j=1

νnjrj

dH
dt

= d(HI −H) + Q̇J

(12)
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where:

• Ni is mole number of species i (i = 1, . . . , nc);

• H and rj represent the total enthalpy and the reaction rate of the
reaction j (j = 1, . . . , nr);

• d stands for the dilution rate which is assumed to be constant. The
subscript I written in equation (12) denotes ”Inlet”.

Remark 2. Species Not that are Inert and/or Catalyst can be added to the
dynamics by setting:

dNot

dt
= d(NotI −Not) (13)

where Not is a vector containing all these species. But we can easily check
that the differential equation (13) is stable and the states converge to 0. We
shall therefore only consider the dynamics of nc active species (12) from the
point of view of chemical reaction. However, the presence of Inert and/or
Catalyst should be considered in the energy balance since the total enthalpy H
in definition (14), the total heat capacity Cp in definition (17) and the total
mass mt depend not only on (N1, . . . , Nnc) but also Not.

Remark 3. The total enthalpy H of the reaction system is given by:

H =
∑

i

hi(T )Ni (14)

with hi(T ) = cpi(T − Tref ) + hiref where Tref and hiref are the reference
values. By using the local equilibrium hypothesis, the energy balance dH

dt
in

(12) can be rewritten in terms of temperature [15] so that:

dT

dt
=

r∑
j=1

(
−∆HRj

)
rj

Cp
+ d(TI − T )

CpI
Cp

+
1

Cp
Q̇J (15)

where

∆HRj =

nc∑
i=1

νijhi(T ) (16)
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represents the enthalpy of the chemical reaction j (j = 1, . . . , nr) and,

Cp =
∑

i

cpiNi (17)

is the total heat capacity.

The system dynamics with state variables (H,N1, . . . , Nnc) given by equa-
tion (12) or (T,N1, . . . , Nnc) defined by equations (15) and (12) are math-
ematically equivalent due to definition (14). The dynamical representation
corresponding to the state vector (T,N1, . . . , Nnc) given by ODEs (12) and
(15) will be used for controller synthesis. Asymptotic observer design will be
solved with the dynamics corresponding to the state vector (H,N1, . . . , Nnc)
in equation (12). The transient behaviour of the differential equation (13) is
considered for the energy balance in both cases.

Example 1. We consider the production of cyclopentenol C5H7OH from cy-
clopentadiene C5H6 by sulfuric acid-catalyzed addition of water in a dilute
solution [18]. The total mass of the liquid phase mixture mt is assumed to be
constant. The process is described by the Van de Vusse reaction system [39].
The stoichiometry is written as in (9) with nr = 3 and nc = 5:

C5H6︸ ︷︷ ︸
M1

+ H2O︸︷︷︸
M5

H+

−−→ C5H7OH︸ ︷︷ ︸
M2

+ H2O︸︷︷︸
M5

H+

−−→ C5H8(OH)2︸ ︷︷ ︸
M3

2 C5H6︸ ︷︷ ︸
M1

−→ C10H12︸ ︷︷ ︸
M4

(18)

The system dynamics (12) with 5 active species is given by:

dN1

dt
= d(N1I −N1)− r1 − 2r3

dN2

dt
= d(N2I −N2) + r1 − r2

dN3

dt
= d(N3I −N3) + r2

dN4

dt
= d(N4I −N4) + r3

dN5

dt
= d(N5I −N5)− r1 − r2

dH
dt

= d(HI −H) + Q̇J

(19)

Note that sulfuric acid is present as a catalyst. From Remark 2, we therefore
have:

dNot

dt
= d(NotI −Not) (20)
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In differential equations (19) and (20), we have d = qm
mt

and NiI = xiI
mt

Mi

where
∑
i

xiI = 1 and qm is the mass flow rate. Finally, the energy balance

dH
dt

in equation (19) is written in terms of the temperature T (see Remark 3)
so that:

dT

dt
=

3∑
j=1

(
−∆HRj

)
rj

Cp
+ d(TI − T )

CpI
Cp

+
1

Cp
Q̇J (21)

where: 
∆HR1 = −h1 − h5 + h2 > 0
∆HR2 = −h2 − h5 + h3 < 0
∆HR3 = −2h1 + h4 < 0

(22)

and,
Cp = cp1N1 + cp2N2 + cp3N3 + cp4N4 + cp5N5 + cpotNot (23)

3.2. Preliminaries

The following assumptions are now made to characterise the dynamical
behaviour of the system (12):

(A1) The reaction rates rj (j = 1, . . . , nr) are described by the mass action
laws,

rj = kj(T )Fj(N
|ν1j |
1 , N

|ν2j |
2 , . . .), j = 1, . . . , nr (24)

where Fj (j = 1, . . . , nr) are nonlinear functions with respect to their
arguments and kj(T ) (j = 1, . . . , nr) are reaction rate constants fulfill-
ing the condition that kj(T ) is monotone, non-negative and bounded
in accordance to thermodynamic principles [17, 12, 15] so that:

lim
T→0

kj(T ) = 0 and lim
T→+∞

kj(T ) = kjmax (25)

The Arrhenius law

kj(T ) = k0j exp
(−k1j

T

)
(26)

where k0j is the kinetic constant and k1j is the activation temperature,
is compatible with the limits in equation (25).

(A2) The temperature and mole numbers are non-negative.
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Assumption (A2) describes measurable physical quantities [30] and implies
that the CSTR is a positive system. In what follows, we first present the
following results which are instrumental in proving the main results of this
work.

3.2.1. Boundedness of material dynamics

Lemma 1 generalizes the results of Theorem 2.1 (i) presented in [19] by
considering multi-component homogeneous mixtures.

Lemma 1. The domain Ω =
{
N1, . . . , Nnc

∣∣∣ 0 ≤
nc∑
i=1

MiNi ≤
nc∑
i=1

MiNiI

}
is

positively invariant.

Proof. Define η =
nc∑
i=1

MiNi. By using the mass conservation property given

by equation (9), we obtain from equation (12):

dη

dt
= d
( nc∑

i=1

MiNiI − η
)

η(t) ≤
nc∑
i=1

MiNiI for all η(t = 0) ≤
nc∑
i=1

MiNiI since d > 0. Using (A2), one

gets η(t) ≥ 0. The latter completes the proof. �

3.2.2. Stability of the isothermal dynamics

Let (N1d, N2d, . . . , NNd, Td) be the steady state of the reaction system
defined by equations (12) and (15). Let us note that possible steady states
are calculated by considering that all time derivatives vanish and that there
may be more than one stationary solution to the problem [12]. An additional
assumption (used in [19, 29, 30] or recently [12]) is considered:

(A3) For the isothermal dynamics (T = Td), the system dynamics (12) ad-
mits a single equilibrium point (N1d, . . . , Nnd) which is globally asymp-
totically stable.

From a control point of view, we can show by means of Lyapunov con-
verse theorems [1] together with the above assumption, that there exists a
positive function V(N1, . . . , Nnc) with dV

dt
< 0 along the isothermal dynamics.

Several industrial chemical reaction processes verify this assumption. Let us
illustrate with the Van de Vusse reaction system in Example 1.

10



Example 2. We rewrite the isothermal dynamics derived from equation (19)
into the explicit form using (A1) so that:

dN1

dt
= d(N1I −N1)− k1(Td)N1 − 2k3(Td)N

2
1

dN2

dt
= d(N2I −N2) + k1(Td)N1 − k2(Td)N2

dN3

dt
= d(N3I −N3) + k2(Td)N2

dN4

dt
= d(N4I −N4) + k3(Td)N

2
1

dN5

dt
= d(N5I −N5)− k1(Td)N1 − k2(Td)N2

(27)

The existence of the positive-definite function V(N1, . . . , Nnc) is derived by
considering the separable dynamics of (27). Indeed the dynamics on N1 (27)
can be rewritten as follows:

dN1

dt
= −2k3(Td)

(
N1 −N1d

)(
N1 − N̄1d

)
(28)

where N1d > 0 and N̄1d < 0 are roots of the second-order polynomial equation
that follow by setting dN1

dt
= 0 in equation (27): N1d =
(d+k1(Td))−

√
(d+k1(Td))2+8 d k3(Td) N1I

−4k3(Td)

N̄1d =
(d+k1(Td))+

√
(d+k1(Td))2+8 d k3(Td) N1I

−4k3(Td)

(29)

Lemma 1 shows that there exits a positive constant % > 0 so that (28) can be
rewritten as follows:

dN1

dt
≤ −2%k3(Td)

(
N1 −N1d

)
(30)

It is now clear that the positive-definite function V1(N1) = 1
2
(N1−N1d)

2 is a
Lyapunov function candidate for the stabilization of (30) at N1d. The same
argument sequentially applies to N2, N3, N4 and N5. Finally, the (global)
Lyapunov function of the isothermal dynamics (27) is defined so that:

V(N1, . . . , Nnc) =

5∑
k=1

Vk(Nk) (31)

In the following we focus our attention on nonlinear control and state
estimation problems of non isothermal CSTR (27). These two problems will
be effectively solved in the framework of the passivity theory.
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4. Main results

4.1. Controller design

For controller synthesis, it is convenient to let the state vector x =
(N1, . . . , Nnc , T ) represent the reaction system dynamics (15)(12). The dy-
namics (1) is then obtained with:

f(x) =



d(N1I −N1) +
nr∑
j=1

ν1jrj

d(N2I −N2) +
nr∑
j=1

ν2jrj

...

d(NncI −Nnc) +
nr∑
j=1

νnjrjV

nr∑
j=1

(
−∆HRj

)
rj−λT

Cp
+ d(TI − T )

CpI

Cp



, g(x) =



0

0

...

0

λ
Cp


and u = TJ

(32)

The PBA with the guideline (i) (in Section 2) will be used to design a
passive nonlinear controller for the stabilization of the reaction system (1)
with (32) at a given desired state xd. The problem first consists of choosing
an appropriate closed loop Hamiltonian storage function Hd(x). Let us note
that in previous works [19, 29], a Lyapunov function candidate based on
thermal deviation 1

2
(T − Td)2 is considered for the temperature stabilization

problem. Farschman and coworkers in [32] have proposed an inventory-based
quadratic storage function 1

2
(x−xd)2 for control of chemical process systems.

In [21, 15], the thermodynamic availability and its individual contributions
have been used as the desired closed loop storage functions. We now show
that the matrix Qd(x) can be found using the PBA with the Hamiltonian
function:

Hd(x) = Hd(T,N1, . . . , Nnc) = (T−Td)2
2

(
1 +

nc∑
i=1

Ki(Ni −Nid)
2
)

(33)

where Ki ≥ 0. One consequence of definition (33) is that sufficient damping
is introduced to allow the stabilization problem to be accomplished with
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a smooth control law in terms of the amplitude and variation rate. The
proposed controller therefore generalizes the one obtained from [19] which
uses input constraints and non-smooth controls. It also allows us to rewrite
the closed loop dynamics (1) with (32) in a port Hamiltonian representation
as seen in Proposition 1 below.

Proposition 1. The reaction system described by equations (1) and (32) is
exponentially stabilized at the desired state xd = (N1d, . . . , Nnd, Td) with the
following state feedback control law:

TJ = T + 1
λ

{
Cp

[
−
(
∂Hd

∂T

)−1 nc∑
i=1

∂Hd

∂Ni

dNi

dt
−KT

∂Hd

∂T

]
−
(

nr∑
j=1

(
−∆HRj

)
rj + d(TI − T )CpI

)} (34)

where KT > 0 is a tuning parameter. Furthermore, the closed loop dynamics
are represented in the passive Hamiltonian format so that:

dx

dt
= [Jd(x)−Rd(x)]

∂Hd(x)

∂x
(35)

where:

Jd(x) =



0 . . . 0
(
∂Hd

∂T

)−1
dN1

dt

...
. . .

...
...

0 . . . 0
(
∂Hd

∂T

)−1
dNnc

dt

−
(
∂Hd

∂T

)−1
dN1

dt . . . −
(
∂Hd

∂T

)−1
dNnc

dt 0


(36)

Rd(x) =


0 . . . 0 0
...

. . .
...

...
0 . . . 0 0
0 . . . 0 KT

 (37)

and Hd(x) is given by (33).

Proof. By using the PBA as described in Section 2, we have Qd(x) =(
qij(x)

)
i,j=1...(nc+1)

and g⊥(x) = diag
(

1, . . . , 1, 0
)
∈ R(nc+1)×(nc+1).
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The matching equations from (7) give the following partial differential equa-
tions : 

q11(x)∂Hd

∂N1
+ . . .+ q1nc(x) ∂Hd

∂Nnc
+ q1(nc+1)(x)∂Hd

∂T
= dN1

dt
...

qnc1(x)∂Hd

∂N1
+ . . .+ qnn(x) ∂Hd

∂Nnc
+ qnc(nc+1)(x)∂Hd

∂T
= dNnc

dt

The number of equations equals nc with nc×(nc+1) unknown variables qij(x).
Hence this system has an infinite number of solutions. A simple solution is
found using the negative definiteness of the matrix Qd(x) as follows:

(a) set qij(x) = qji(x) = 0 for i, j = 1 . . . nc;

(b) then set qi(nc+1)(x) = −q(nc+1)i(x) =
(
∂Hd

∂T

)−1
dNi

dt
for i = 1 . . . nc;

(c) and finally choose q(nc+1)(nc+1)(x) = −KT .

It follows that qi(nc+1)(x), i = 1 . . . nc is well defined in the limit ∂Hd

∂T
→ 0

(refer to equation (41) below). The structure matrices Jd(x) (36) and Rd(x)
(37) are computed by using (3). Finally, the feedback law is derived from
(8) with Jd(x) defined in equation (36), Rd(x) defined in equation (37) and
Hd(x) given in equation (33):

Cp

[
−
(
∂Hd

∂T

)−1
∂Hd

∂N1

dN1

dt
− . . .−

(
∂Hd

∂T

)−1
∂Hd

∂Nnc

dNnc

dt

−KT
∂Hd

∂T

]
−
(

nr∑
j=1

(
−∆HRj

)
rj + d(TI − T )CpI

)
= Q̇J

Using (H2) with u = TJ leads to the feedback law (34). Let us note that
the feedback law (34) is well-defined when Hd(x) is defined by equation (33).
The function Hd(x) is positive definite and its time derivative satisfies

dHd(x)

dt
= −KT

(∂Hd

∂T

)2
< 0, ∀T 6= Td (38)

From Lemma 1 and equation (33) it follows that there exists ς > 0 so that:

dHd(x)

dt
≤ −ςHd(x) (39)

14



The stability proof immediately follows invoking La Salle’s invariance princi-
ple [1] and (A3). We now develop some important limiting properties of the
closed loop system to show that the control law proposed in equation (34)
is well-defined. First, it follows from the development above that the closed
loop dynamics of the temperature T with the feedback law given in equation
(34) can be rewritten as follows:

dT

dt
= −

(∂Hd

∂T

)−1dN1

dt

∂Hd

∂N1

− . . .−
(∂Hd

∂T

)−1dNnc

dt

∂Hd

∂Nnc

−KT
∂Hd

∂T
(40)

Second, we note that it follows from the definition of Hd(x) in equation (33)
that:

∂Hd

∂T
→ 0⇔ T → Td

and,

lim
T→Td

∂Hd

∂Ni

→ 0, i = 1, . . . , nc

From (33) we also have:

Hd(T = Td, N1, . . . , Nnc) = 0

and
dHd

dt

∣∣∣∣
(T=Td,N1,...,Nnc )

= 0

We have shown that Hd(x) is a Lyapunov function with (38) for the stabi-
lization of the reactor temperature T . As a consequence, we obtain lim

T→Td

dT
dt

=

lim
∂Hd
∂T

→0

dT
dt

= 0 and thus we deduce from (40):


lim

∂Hd
∂T

→0

(
∂Hd

∂T

)−1
dN1

dt
<∞

...

lim
∂Hd
∂T

→0

(
∂Hd

∂T

)−1
dNnc

dt
<∞

(41)

The latter completes the proof. �
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Remark 4. The feedback law (34) becomes similar to the one proposed by
Viel and coworkers [19] when the constraints are ignored and K1 = . . . =
Knc = 0 in Hd(x) as defined by equation (33). In this case, the stabilization
is dominated by the regulation of the thermal part in accordance with the

Assumption (A3). In the general case (
nc∏
i=1

Ki 6= 0), we may use the gains

to shape the amplitude and variation rate of the control input through the
presence of the material balances given by equations (33) and (34).

4.2. Asymptotic observers

We now consider a situation where only the reactor temperature T and
a subset of the concentrations are measured. In this case we have to design
an observer to reconstruct other missing variables within the mixture. We
also need to find a method to determine how many and which concentrations
need to be measured. The main feature of the proposed observer is that it is
independent of the system kinetics and is called asymptotic observers. These
asymptotic observers were first proposed in [37] for simplified CSTR models
and developed further in [27] for more general CSTR models. However,
feedback law was not considered in these contributions and there is a question
whether the use of the estimated states in feedback gives stable control. In
what follows we show, analytically and/or simulations, that the estimated
state variables exponentially converge to their exact values with and without
feedback. Let us reconsider the original system (12) and rewrite it into the
following form: (

Σ
)

dH
dt

= d(HI −H) + Q̇J

dN
dt

= d(NI −N ) + νr
(42)

where N = (N1, . . . , Nnc)
T is the vector of mole numbers. ν =

(
νij

)
i=1...nc
j=1...nr

is

the matrix of stoichiometric coefficients and r = (r1, . . . , rnr)
T is the vector

composed of chemical reaction rates. The following additional assumption is
made [37, 27]:

(A4) The reaction network (9) with nr < nc is independent so that,

rank(ν) = nr
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And (nr−1) concentrations and the reactor temperature T are assumed
to be available for the online measurement4.

We have the following lemma.

Lemma 2. There exists an nc × nc matrix Θ so that:

Θ =

(
υnr×nc

ν⊥(nc−nr)×nc

)
nc×nc

(43)

where the following equalities hold:

υ ν = Inr×nr (44)

and
ν⊥ ν = 0(nc−nr)×nr (45)

where Inr×nr and 0(nc−nr)×nr are the identity and the zero matrices respec-
tively.

Proof. The proof immediately follows using Assumption A4. Indeed it can
be shown that the matrix Θ is directly derived by Gauss elimination. �

Example 3. Let us consider the Van de Vusse reaction system given Exam-
ple 1. Its dynamics (19) can be re-expressed as (42), where:

ν =


−1 0 −2

1 −1 0
0 1 0
0 0 1
−1 −1 0

 and r = (r1, r2, r3)
T

After some manipulation we have:

Θ =


0 1 1 0 0
0 0 1 0 0
−1

2
−1

2
−1

2
0 0

1
2

1
2

1
2

1 0
0 1 2 0 1

 =

(
υ3×5
ν⊥2×5

)
5×5

and Θ verifies equations (44) and (45).

4That means that nr values are assumed to be measured.
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As a consequence of Lemma 2, We state Proposition 2.

Proposition 2. The map from Rnc to Rnc−nr , Z = ν⊥N , reduces the dy-
namics for N defined by equation (42) to:

dZ

dt
= d(ZI −Z) (46)

where ZI = ν⊥NI and ν⊥ are given in equation (43). Furthermore, the
reduced dynamics are independent of the chemical reaction kinetics.

Proof. The proof immediately follows by multiplying equation (42) with ν⊥

defined by equation (43) (see also [37, 27]). �

In the remaining of the paper, we let N = {1, . . . , nc} be the set of indices
for chemical species of the mixture described by the invariant (9) and the
differential equations (42). It is worth noting that there exists a disjoint
partitioning I,J ⊂ N with (nr − 1) and (nc − nr + 1) elements respectively
so that:

I ∩ J = ∅
I ∪ J = N (47)

where I and J refer to the subsets of (nr − 1) measured mole numbers5 and
(nc − nr + 1) remaining mole numbers to be estimated respectively. As a
consequence, we can write from definition (14) and Proposition 2:

H = hTINI + hTJNJ + hTotNot

Z =
(
ν⊥
)
I
NI +

(
ν⊥
)
J
NJ

(48)

where
(
ν⊥
)
I

and
(
ν⊥
)
J

are submatrices of the matrix ν⊥ formed by select-

ing columns corresponding to the marked mole numbers. The convergence
of the estimates N̂j, ∀j ∈ J to their exact values is shown in Proposition 3.

Proposition 3. If the square matrix defined by

O =

 hTJ(
ν⊥
)
J


(nc−nr+1)×(nc−nr+1)

(49)

5It does not include the temperature.
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fulfills the following condition,

rank(O) = nc − nr + 1 (50)

then the states of the system
(
Σ
)

defined by equation (42) are asymptotically

reconstructed with the asymptotic observer
(
Σ̂
)
:

(
Σ̂
)

dĤ
dt

= d(HI − Ĥ) + Q̇J

dẐ
dt

= d(ZI − Ẑ)

(51)

The convergence rate of each N̂j, ∀j ∈ J defined from
(
Σ̂
)

to the exact value
is exponential with the time constant τ = 1

2d
. Furthermore, the results above

hold whether the system is operated in open or closed loop.

Proof. Let us define ε(t) =

 εH̃

εZ̃

 =

 Ĥ −H

Ẑ −Z

 ∈ R(nc−nr+1). By

subtracting (51) to (42), we get:

dε

dt
= −d I(nc−nr+1)×(nc−nr+1)

 εH̃

εZ̃

 (52)

with d > 0. The dynamics of ε is then presented in the port Hamiltonian
format (2) where J(ε) = 0, R(ε) = d I(nc−nr+1)×(nc−nr+1) and the Hamiltonian
storage function H(ε) = 1

2
εTε ≥ 0. H(ε) plays a role of a Lyapunov function

for the stability of the zero dynamics of ε because:

dH(ε)

dt
= −

(∂H(ε)

∂ε

)T
R(ε)

(∂H(ε)

∂ε

)
< 0

Furthermore, it can be rewritten as follows:

dH(ε)

dt
= −d εTε = −2d H(ε)⇒ H(ε(t)) = H(ε(t = 0)) exp

− t
1
2d

H(ε(t)) exponentially converges to 0 with the time constant τ = 1
2d

since

d > 0. As a consequence, we have ε(t)→ 0, e.g. Ĥ → H and Ẑ → Z. Using
equation (48) together with equation (13), we obtain:

O
(
N̂J −NJ

)
= 0
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where the matrix O is defined by equation (49). With condition (50), we
conclude:

N̂J = NJ

The estimated values N̂J are then calculated from the asymptotic observer(
Σ̂
)

defined in equation (51) using equations (48) and (13):

N̂J = O−1

 Ĥ − hTINI − hTotN̂ot

Ẑ −
(
ν⊥
)
I
NI

 (53)

It is important to notice that the convergence does not depend on the feed-
back strategy. The latter completes the proof. �

Remark 5. The estimates N̂ot of the states Not used in equation (53) are
derived by using the differential equation (13) so that:

dN̂ot

dt
= d(NotI − N̂ot) (54)

We note that the observability matrix (49) and the full rank condition
(50) can be regarded as feasibility conditions for the asymptotic observer [40].
The condition (50) is fulfilled only if the reactions are independent [37, 27],
and more precisely if the states to be estimated in J have intrinsically been
involved in the same reactions. Hence the proposed result generalizes and
completes the analysis given in [37, 27]. Let us illustrate this statement via
the following example.

Example 4. Example 3 showed that N = {1, 2, 3, 4, 5} and

ν⊥ =

(
1
2

1
2

1
2

1 0
0 1 2 0 1

)

If we choose I = {1, 3} and J = {2, 4, 5} then we get O =

 h2 h4 h5
1
2

1 0
1 0 1

.

We can easily check that O is not full rank because it is not necessarily true
that det(O) = h2− 1

2
h4 + 1

2
h5 6= 0 for non isothermal reactors. Otherwise, if
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we choose I = {3, 4}, J = {1, 2, 5} then we get O =

 h1 h2 h5
1
2

1
2

0
0 1 1

. The

latter is full rank because the species N1, N2 and N5 are effectively involved
in the first chemical reaction of the network (18) and thus det(O) = 1

2
(h1 −

h2 + h5) = −1
2
∆HR1 < 0 as seen from equation (22).

5. Illustrative example

Let us consider a CSTR with one exothermic reaction involving 2 active
chemical species A and B (e.g. nc = 2 and nr = 1) with the stoichiometry:

νAMA → νBMB (55)

The reactor is fed by species A, B and an inert with a fixed inlet temperature
TI . The balance equations are (see also (12)):

dNA

dt
= d(NAI −NA) + νAr

dNB

dt
= d(NBI −NB) + νBr

dH
dt

= d (HI −H) + Q̇J

(56)

As previously mentioned, the energy balance in equation (56) can be rewrit-
ten in terms of temperature as follows:

Cp
dT

dt
=
(
−∆HR

)
r + d(TI − T )CpI + Q̇J (57)

where ∆HR = (νBhB(T ) + νAhA(T )) < 0 is the heat of reaction and Cp =
cpANA+cpBNB +cpInertNInert is the total heat capacity. Finally the dynamics
of inert is given by:

dNInert

dt
= d(NInertI −NInert) ≡ 0 (58)

The numerical values are given in Table 1 [41].
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Table 1: Parameters of CSTR

Numerical value
cpA 221.9 (JK−1mol−1) Heat capacity of species A
cpB 128.464 (JK−1mol−1) Heat capacity of species B
cpInert 21.694 (JK−1mol−1) Heat capacity of Inert
Ea 73.35 (KJmol−1) Activation energy
hAref −5.8085 105 (Jmol−1) Reference enthalpy of A
hBref −6.6884 105 (Jmol−1) Reference enthalpy of B
hInertref −3.3 105 (Jmol−1) Reference enthalpy of Inert
k0 2.58 109 (s−1) Kinetic constant
R 8.314 (JK−1mol−1) Gas constant
Tref 298 (K) Reference temperature
λ 0.75 (WK−1) Heat transfer coefficient
d 0.0070 (s−1) Dilution rate

The exothermic reaction (55) is considered with νA = −1 and νB = 1.
The open and closed loop simulations are carried out with respect to two dif-

ferent initial conditions, (C1) with
(
T0 = 340 (K), NA0 = 0.04 (mol), NB0 =

0.001 (mol)
)

and (C2) with
(
T0 = 300 (K), NA0 = 0.15 (mol), NB0 =

0.03 (mol)
)

.

5.1. Open loop simulation

Figure 1 shows that the system (56) has three steady states indicated
with P1, P2 and P3 under the input:{

TI = TJ = 298 (K), NAI = 0.18 (mol),
NBI = 0 (mol), NInertI = 3.57 (mol)

(59)

The intermediate steady state P2 is unstable whereas P1 and P3 are (locally)
stable. In the next subsection, we operate the reaction system at the unsta-
ble state P2 using the feedback law defined by equation (34) for the jacket
temperature TJ .

5.2. Closed loop simulation

In the first case we assume that all state variables are measured. In this
case we can use the state feedback law (34). We choose KT = 0.001, KA = 0
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Figure 1: The representation of the open loop phase plane

and KB = 0 in the Hamiltonian function Hd(x) defined in equation (33).
Figure 2 shows the closed loop response with phase plane. We see, for both
of the considered initial conditions, that the system converges to the desired
operating point P2. Figure 2 also shows that the control variable input TJ
(34) is admissible in terms of amplitude and dynamics.

The Hamiltonian Hd(x) (33) plays the role of a global Lyapunov function
for any choice of admissible initial conditions and consequently it converges
to 0 as shown in Figure 3.
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and the feedback law TJ for two different initial conditions (C1) and (C2)
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5.3. Simulation with the asymptotic observer

First of all let us check that the feasibility conditions of Proposition 3 are

satisfied. In our case, we have I = ∅, J = {A,B} and ν =

(
νA
νB

)
. Thus(

ν⊥
)
J

= (νB − νA), hTJ = (hA(T ) hB(T )) and det(O) = −νAhA(T ) −
νBhB(T ) = −∆HR > 0. It follows that the observability matrix O is full
rank and the asymptotic observer is feasible.

For the sake of simplicity, the initial condition (C2) is used for the system.

The initial conditions of the asymptotic observer are (Ĉ1) with
(
Ĥ(0) =

0.98H(T0, NA0, NA0), N̂(0) = 0.75N(NA0, NB0)
)

and (Ĉ2) with
(
Ĥ(0) =

H(0.85T0, NA0, NB0), N̂(0) = 0.95N(NA0, NB0)
)

where the numerical values

of T0, NA0 and NB0 are given with the initial condition (C2). The open loop
convergence of the estimates generated by the asymptotic observer (51) is
illustrated in Figure 4. With the initial condition (C2), the system converges
to the stable point P1. The closed loop simulations are given in Figures 5
and 6 with the initial conditions, (C2) and (Ĉ1), (C2) and (Ĉ2) respectively.
The stabilization at the unstable state P2 of the controlled reaction system
via the asymptotic observer is guaranteed. Furthermore, the dynamics of the
control input TJ remains admissible as seen in Figure 5(b) and Figure 6(b).
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Figure 4: NA, NB and their estimates in the open loop case -(a) for the initial conditions
(C2) and (Ĉ1) -(b) for initial conditions (C2) and (Ĉ2)
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Figure 5: NA and its estimate with the asymptotic observer in the closed loop case -(a)
for the initial conditions (C2) and (Ĉ1) -(b) the control input TJ with the asymptotic
observer
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Figure 6: NA and its estimate with the asymptotic observer in the closed loop case -(a)
for the initial conditions (C2) and and (Ĉ2) -(b) the control input TJ with the asymptotic
observer
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6. Conclusion

We have shown, by means of the passivity-based approach in the port
Hamiltonian framework, how to synthesize a nonlinear controller for the sta-
bilization and how to design an asymptotic observer of a class of CSTRs.
The results can be applied to non isothermal CSTRs operated under mul-
tiple steady states. The resulting state feedback developed in the paper
generalizes the one proposed by [19] in the sense that we do not add a con-
straint on the control input. The closed loop convergence of the system is
theoretically shown. The use of an asymptotic observer provided the rank
condition on the observability matrix. This condition is fulfilled by appro-
priate choice of measured states. Finally, numerical simulations show that
convergence objective is satisfied for a simple case study. The state feedback
law on the jacket temperature TJ is implementable and gives finite ampli-
tude and admissible rate of variation. Open questions concern the structure
of the observability matrix (with respect to traditional definition for linear
systems); and the performance/robustness of the control law with respect to
perturbations and parameters uncertainty.
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