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nonlinear controller for the asymptotic stabilization of a class of nonisothermal Continuous Stirred Tank
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ics are also proposed for a system with incomplete state measurement. Numerical simulations are given
to illustrate the application of the theoretical results to a CSTR with multiple steady states.
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1. Introduction

Lyapunov theory (Khalil, 2002), or more generally the Passivity
Based Approach (PBA) (Brogliato, Lozano, Maschke, & Egeland,
2007; van der Schaft, 2000a; Willems, 1972) combined with gener-
alized energetic arguments as expressed through a Hamiltonian
function, is one of the most efficient ways to investigate stability
and design controllers for nonlinear dynamical systems (Jeltsema,
Ortega, & Scherpen, 2004; Ortega, van der schaft, Mareels, &
Maschke, 2001; Ortega, Jeltsema, & Scherpen, 2003). The key idea
of the PBA in the Port Hamiltonian framework (Ortega, van der
Schaft, Maschke, & Escobar, 2002) is to define transformations
(by means of control input or shaped dynamics) to obtain a certain
structured representation of the original system by rendering it
passive with respect to a given storage function. The PBA was first
proposed and successfully applied for stability analysis and control
design for the electro-mechanical systems (Maschke, Ortega, & van
der Schaft, 2000; van der Schaft, 2000b). In these systems the con-
nections between the energy and the dynamical behavior of the
system are well established by the fact that the system reaches
its stable state if and only if the total energy is at its minimum.
As a consequence, a Lyapunov function candidate can be assigned
to the total energy and passivity can then be related to energy
dissipation due to friction or resistance. Unfortunately, the link
between Lyapunov stability theory and the energy of chemical
reactive systems is far from being understood at present (Alvarez,
Alvarez-Ramírez, Espinosa-Perez, & Schaum, 2011; Favache &
Dochain, 2010). This topic has therefore been an active research
area (Hangos, Bokor, & Szederkényi, 2001; Hoang, Couenne, Jallut,
& Le Gorrec, 2012; Hudon & Bao, 2012; Ramírez, Sbarbaro, &
Ortega, 2009).

The Continuous Stirred Tank Reactors (CSTRs) (Luyben, 1990)
provide a benchmark both in chemical engineering and in dynam-
ical systems theory due to their highly nonlinear dynamics. CSTRs
may exhibit nonminimum phase behavior (Niemiec & Kravaris,
2003), instability and multiple steady states (Favache & Dochain,
2010; Viel, Jadot, & Bastin, 1997). Studies on CSTRs have investi-
gated control synthesis for stabilization (Alvarez et al., 2011;
Favache, Dochain, & Winkin, 2011; Georgakis, 1986; Hoang,
Couenne, Jallut, & Le Gorrec, 2011; Hoang et al., 2012) and state
observer design (Alvarez-Ramírez, 1995; Dochain, Couenne, &
Jallut, 2009; Gibon-Fargeot, Hammouri, & Celle, 1994; Soroush,
1997). The combination of these is an important field of research.

The underlying motivation for nonlinear control of the CSTRs is
that industrial chemical reactors may have to be operated at unsta-
ble operating conditions (Bruns & Bailey, 1975). Numerous control
strategies have been developed to achieve this objective. Input/
output feedback linearization (Viel et al., 1997) for control under
constraints, nonlinear PI control (Alvarez-Ramírez & Morales,
2000), direct Lyapunov based control (Antonelli & Astolfi, 2003),
(pseudo) Hamiltonian framework (Dörfler, Johnsen, & Allgöwer,
2009; Hangos et al., 2001; Hoang et al., 2011; Ramírez et al.,
2009), power/energy-shaping control (Alvarez et al., 2011; Favache
& Dochain, 2010), inventory control (Farschman, Viswanath, & Yds-
tie, 1998) and dissipativity based decentralized control of intercon-
nected chemical reactors (Hudon, Höffner, & Guay, 2008; Hudon &

http://crossmark.crossref.org/dialog/?doi=10.1016/j.arcontrol.2013.09.007&domain=pdf
http://dx.doi.org/10.1016/j.arcontrol.2013.09.007
mailto:ha.hoang@hcmut.edu.vn
mailto:couenne@lagep.univ-lyon1.fr
mailto:couenne@lagep.univ-lyon1.fr
mailto:yann.le.gorrec@ens2m.fr
mailto:ccl@ntu.edu.tw
mailto:ydstie@cmu.edu
http://dx.doi.org/10.1016/j.arcontrol.2013.09.007
http://www.sciencedirect.com/science/journal/13675788
http://www.elsevier.com/locate/arcontrol


N. Ha Hoang et al. / Annual Reviews in Control 37 (2013) 278–288 279
Bao, 2012) provide some examples. Thermodynamics/physics
based control has also been proposed to the stabilization of chem-
ical reactors in Georgakis (1986), Ydstie and Alonso (1997) and
more recently in Hoang et al. (2012) using the availability function
as its point of departure.

State estimation for CSTRs has attracted the attention of
researchers for a long time. Papers (Dochain, 2003; Kravaris, Hahn,
& Chu, 2012) and references therein provide good overviews of re-
cent developments. Strategies have been developed for industrial
applications since on-line measurements of all reactant concentra-
tions are difficult and/or quite expensive to implement and the
reactor temperature is in some cases the only measurement avail-
able online (Alvarez-Ramírez, 1995; Gibon-Fargeot et al., 1994).
The missing state variables can be estimated by different tools
(Alvarez-Ramírez, 1995; Dochain, Perrier, & Ydstie, 1992; Dochain
et al., 2009; Gibon-Fargeot et al., 1994; Soroush, 1997). The results
given in the papers referred above relate to systems where feed-
back is not imposed. Closed loop stability can therefore not be
guaranteed in general.

In this work we focus on the combined control and state esti-
mation problems. First, we propose a passive nonlinear controller
for the stabilization of the fully actuated CSTR with chemical reac-
tions around a steady state which may be unstable. This approach
is based on the passive Hamiltonian concepts defined in Brogliato
et al. (2007), van der Schaft (2000a), Maschke et al. (2000). The
shaped Hamiltonian storage function is chosen by using the tech-
niques in Viel et al. (1997), Farschman et al. (1998), Hoang et al.
(2012) such that the resulting state feedback is admissible (Hoang
et al., 2012). Second, we assume that only the reactor temperature
and a subset of concentrations are available online. Following the
same concepts used for the passivity-based control, we propose a
state estimation strategy based on chemical reaction invariants
via the so-called asymptotic observers (Dochain et al., 1992; Doc-
hain et al., 2009). We show, analytically and/or with simulations,
that exponential convergence of the estimated state variables
and closed loop stability of the CSTR are guaranteed.

This paper is organized as follows. The passivity based approach
is introduced and the state feedback control law is derived in Sec-
tion 2. The dynamical model of the CSTR case study is presented
and preliminary results are presented in Section 3. Section 4 is de-
voted to the design of a passive nonlinear controller within the
port Hamiltonian framework. It is shown that the resulting control
is asymptotically stable and admissible in terms of the amplitude
and variation rate as long as the chosen closed loop Hamiltonian
function is appropriate. The results generalize previous ones (Viel
et al., 1997) without constraint on control input. Furthermore, they
allow to rewrite the closed loop system dynamics into a port Ham-
iltonian representation. A state reconstruction method is then pro-
posed via the so-called asymptotic observers (Dochain et al., 1992;
Dochain et al., 2009). The theoretical developments are then illus-
trated by simulation studies reported in Section 5. Conclusions and
future perspectives of the work are given in Section 6.
1 A partial differential equation (PDE) (Ortega et al., 2002).
2. The Passivity Based Approach (PBA)

Let us consider nonlinear systems that are affine in the control
input u and whose dynamics is given by the following set of ordin-
ary differential equations (ODEs) (Khalil, 2002):

dx
dt
¼ f ðxÞ þ gðxÞu ð1Þ

where x ¼ xðtÞ 2 Rn is the state vector, the nonlinear function
f ðxÞ 2 Rn and the input-state map gðxÞ 2 Rn�m are smooth and
u 2 Rm is the control input.
The purpose of the PBA is to find a static state-feedback control
u = b(x) such that the closed loop dynamics becomes a dissipative
Port Controlled Hamiltonian (PCH) system (Maschke et al., 2000;
Ortega et al., 2002). The dynamics can then be written:

dx
dt
¼ Q dðxÞ

@HdðxÞ
@x

ð2Þ

where the controlled Hamiltonian storage function HdðxÞ has a
strict local minimum at the desired equilibrium xd; and Qd(x) = [Jd(-
x) � Rd(x)] is the difference of a skew-symmetric matrix Jd(x) and a
symmetric one Rd(x) so that:

JdðxÞ ¼
Q dðxÞ � QdðxÞT

2
; RdðxÞ ¼ �

Q dðxÞ þ Q dðxÞT

2
ð3Þ

Furthermore, the damping matrix Rd(x) in Eq. (3) fulfills:

RdðxÞ ¼ RdðxÞT P 0 ð4Þ

The system (2) is then dissipative in the sense that the time
derivative

dHdðxÞ
dt

¼ � @HdðxÞ
@x

� �T

RdðxÞ
@HdðxÞ
@x

� �
ð5Þ

is always negative and the Hamiltonian HdðxÞ is bounded from be-
low (Brogliato et al., 2007; van der Schaft, 2000a). Consequently, it
plays role of Lyapunov function for stabilization at the desired equi-
librium xd. The following matching equation1 that follows from Eqs.
(1) and (2) has to be solved to find u = b(x):

f ðxÞ þ gðxÞbðxÞ ¼ Q dðxÞ
@HdðxÞ
@x

ð6Þ

We assume that there exists a full rank left annihilator of g(x)
denoted g(x)\ such that g(x)\g(x) = 0. If Jd(x), Rd(x) and HdðxÞ are
chosen such that:

gðxÞ?f ðxÞ ¼ gðxÞ?Q dðxÞ
@HdðxÞ
@x

ð7Þ

then the control variable is deduced from the state feedback b(x) gi-
ven by Ortega et al. (2002):

bðxÞ ¼ gðxÞTðgðxÞgðxÞTÞ
�1

QdðxÞ
@HdðxÞ
@x

� f ðxÞ
� �

ð8Þ

Thus, a general methodology for the PBA in the port Hamilto-
nian framework is derived from Eqs. (3), (4), (6), (7) and (8). Three
different guidelines can be considered:

(i) We first choose an appropriate Hamiltonian storage function
HdðxÞ. The matrix Qd(x) fulfilling (3) and (4) has to be found
by considering (7). The feedback u is then synthesized using
(8) (Hoang, Couenne, Le Gorrec, Chen, & Ydstie, 2012; Ramí-
rez et al., 2009).

(ii) We choose an appropriate matrix Qd(x) fulfilling (3) and (4).
The Hamiltonian storage function HdðxÞ remains to be found
by considering (7). From this the feedback u is obtained
using (8) (Hoang et al., 2011).

(iii) The matrix Qd(x) fulfilling (3) and (4) and the Hamiltonian
storage function HdðxÞ are simultaneously solved by consid-
ering (7). The feedback u is then given by (8) (Dörfler et al.,
2009). This guideline becomes quite difficult to implement
as degrees of freedom increase (Ortega et al., 2002).

In what follows, we shall show that the PBA is useful, not only
for controller synthesis but also asymptotic observers design of a
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class of the nonisothermal CSTR with chemical reactions. The use
of the PBA with the guideline (i) is applied.

3. The CSTR case study with chemical transformation

3.1. The CSTR modeling

Consider a CSTR with nr chemical reactions2 with nc active com-
ponents Ci of molar mass Mi (i = 1, 2, . . ., nc). Such a reaction network
is characterized by the following reaction invariant:Xnc

i¼1

mijMi ¼ 0; j ¼ 1;2; . . . ;nr ð9Þ

where mij is the signed stoichiometric coefficient of species i as it en-
ters in reaction j (Hoang et al., 2011; Srinivasan, Amrhein, & Bonvin,
1998). For modeling purposes, we make the following hypotheses:

(H1) The fluid mixture is isobaric, ideal and incompressible.
(H2) The heat flow from the jacket to the reactor is given by:
2 Wit
irrevers
_QJ ¼ kðTJ � TÞ ð10Þ
where k > 0 is the heat exchange coefficient. The jacket temperature
TJ is the only control variable.
(H3) The reactor is fed by the species k (k = 1, 2, . . .) at a fixed

temperature TI and dilution rate d. The specific heat capaci-
ties cpk (k = 1, 2, . . .) are assumed to be constant.
Remark 1. Any reversible reaction l(l 2 {1, . . ., nr}) of the network
(9) can be considered to be irreversible (Couenne, Jallut, Maschke,
Breedveld, & Tayakout, 2006) when we define the reduced reaction
rate:

rl ¼ ðrlÞðf Þ � ðrlÞðrÞ ð11Þ

where (rl)(f) and (rl)(r) are the forward and reserve reaction rates
respectively.

Under (H1), the energy balance is written using the enthalpy H.
Hence the material and energy balances are finally given as follows
(Favache et al., 2011; Favache & Dochain, 2010; Hoang et al., 2012;
Luyben, 1990):

dN1
dt ¼ dðN1I � N1Þ þ

Xnr

j¼1

m1jrj

dN2
dt ¼ dðN2I � N2Þ þ

Xnr

j¼1

m2jrj

..

.

dNn
dt ¼ dðNncI � Nnc Þ þ

Xnr

j¼1

mnjrj

dH
dt ¼ dðHI � HÞ þ _Q J

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð12Þ

where:

� Ni is mole number of species i (i = 1, . . ., nc);
� H and rj represent the total enthalpy and the reaction rate of the

reaction j (j = 1, . . ., nr);
� d stands for the dilution rate which is assumed to be constant.

The subscript I written in Eq. (12) denotes ‘‘Inlet’’.
Remark 2. Species Not that are Inert and/or Catalyst can be added
to the dynamics by setting:
hout loss of generality, we assume that all considered reactions are
ible.
dNot

dt
¼ dðNotI � NotÞ ð13Þ

where Not is a vector containing all these species. But we can easily
check that the differential Eq. (13) is stable and the state converges
to NotI. We shall therefore only consider the dynamics of nc active
species (12) from the point of view of chemical reaction. However,
the presence of Inert and/or Catalyst should be considered in the en-
ergy balance since the total enthalpy H in definition (14), the total
heat capacity Cp in definition (17) and the total mass mt depend
not only on ðN1; . . . ;Nnc Þ but also Not.
Remark 3. The total enthalpy H of the reaction system is given by:

H ¼
X

i

hiðTÞNi ð14Þ

with hi(T) = cpi(T � Tref) + hiref where Tref and hiref are the reference
values. By using the local equilibrium hypothesis, the energy bal-
ance dH

dt in (12) can be rewritten in terms of temperature (Hoang
et al., 2012) so that:

dT
dt
¼

Xr

j¼1

ð�DHRjÞrj

Cp
þ dðTI � TÞCpI

Cp
þ 1

Cp

_Q J ð15Þ

where

DHRj ¼
Xnc

i¼1

mijhiðTÞ ð16Þ

represents the enthalpy of the chemical reaction j (j = 1, . . ., nr) and,

Cp ¼
X

i

cpiNi ð17Þ

is the total heat capacity.
The system dynamics with state variables ðH;N1; . . . ;Nnc Þ given

by Eq. (12) or ðT;N1; . . . ;Nnc Þ defined by Eqs. (15) and (12) are
mathematically equivalent due to definition (14). The dynamical
representation corresponding to the state vector ðT;N1; . . . ;Nnc Þ gi-
ven by ODEs (12) and (15) will be used for controller synthesis.
Asymptotic observer design will be solved with the dynamics cor-
responding to the state vector ðH;N1; . . . ;Nnc Þ in Eq. (12). The tran-
sient behavior of the differential Eq. (13) is considered for the
energy balance in both cases.

Example 1. We consider the production of cyclopentenol C5H7 OH
from cyclopentadiene C5H6 by sulfuric acid-catalyzed addition of
water in a dilute solution (Niemiec & Kravaris, 2003). The total
mass of the liquid phase mixture mt is assumed to be constant. The
process is described by the Van de Vusse reaction system (van de
Vusse, 1964). The stoichiometry is written as in (9) with nr = 3 and
nc = 5:

C5H6|fflffl{zfflffl}
M1

þ H2O|ffl{zffl}
M5

!H
þ

C5H7OH|fflfflfflfflffl{zfflfflfflfflffl}
M2

þ H2O|ffl{zffl}
M5

!H
þ

C5H8ðOHÞ2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
M3

2 C5H6|fflffl{zfflffl}
M1

! C10H12|fflfflffl{zfflfflffl}
M4

ð18Þ

The system dynamics (12) with 5 active species is given by:

dN1
dt ¼ dðN1I � N1Þ � r1 � 2r3

dN2
dt ¼ dðN2I � N2Þ þ r1 � r2

dN3
dt ¼ dðN3I � N3Þ þ r2

dN4
dt ¼ dðN4I � N4Þ þ r3

dN5
dt ¼ dðN5I � N5Þ � r1 � r2

dH
dt ¼ dðHI � HÞ þ _Q J

8>>>>>>>>>><>>>>>>>>>>:
ð19Þ
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Note that sulfuric acid is present as a catalyst. From Remark 2, we
therefore have:

dNot

dt
¼ dðNotI � NotÞ ð20Þ

In differential Eqs. (19) and (20), we have d ¼ qm
mt

and NiI ¼ xiI
mt
Mi

where
P

ixiI ¼ 1 and qm is the mass flow rate. Finally, the energy
balance dH

dt in Eq. (19) is written in terms of the temperature T
(see Remark 3) so that:

dT
dt
¼
P3

j¼1ð�DHRjÞrj

Cp
þ dðTI � TÞCpI

Cp
þ 1

Cp

_Q J ð21Þ

where:

DHR1 ¼ �h1 � h5 þ h2 > 0
DHR2 ¼ �h2 � h5 þ h3 < 0
DHR3 ¼ �2h1 þ h4 < 0

8><>: ð22Þ

and,

Cp ¼ cp1N1 þ cp2N2 þ cp3N3 þ cp4N4 þ cp5N5 þ cpotNot ð23Þ
3.2. Preliminaries

The following assumptions are now made to characterize the
dynamical behavior of the system (12):

(A1) The reaction rates rj (j = 1, . . ., nr) are described by the mass
action laws,
rj ¼ kjðTÞFjðN
jm1j j
1 ;N

jm2j j
2 ; . . .Þ; j ¼ 1; . . . ;nr ð24Þ
where Fj (j = 1, . . ., nr) are nonlinear functions with respect to their
arguments and kj(T) (j = 1, . . ., nr) are reaction rate constants fulfill-
ing the condition that kj(T) is monotone, nonnegative and bounded
in accordance to thermodynamic principles (Favache & Dochain,
2010; Hoang et al., 2012; Luyben, 1990) so that:
lim
T!0

kjðTÞ ¼ 0 and lim
T!þ1

kjðTÞ ¼ kj max ð25Þ
The Arrhenius law
kjðTÞ ¼ k0j exp
�k1j

T

� �
ð26Þ
where k0j is the kinetic constant and k1j is the activation tempera-
ture, is compatible with the limits in Eq. (25).
(A2) The temperature and mole numbers are nonnegative.

Assumption (A2) describes measurable physical quantities
(Antonelli & Astolfi, 2003) and implies that the CSTR is a positive
system. In what follows, we first present the following results
which are instrumental in proving the main results of this work.

3.2.1. Boundedness of material dynamics
Lemma 1 generalizes the results of Theorem 2.1 (i) presented in

Viel et al. (1997) by considering multi-component homogeneous
mixtures.

Lemma 1. The domain X ¼ N1; . . . ;Nnc j0 6
Pnc

i¼1MiNi 6
�Pnc

i¼1MiNiIg is positively invariant.
Proof. Define g ¼
Pnc

i¼1MiNi. By using the mass conservation prop-
erty given by Eq. (9), we obtain from Eq. (12):

dg
dt
¼ d

Xnc

i¼1

MiNiI � g

 !
gðtÞ 6
Pnc

i¼1MiNiI for all gðt ¼ 0Þ 6
Pnc

i¼1MiNiI since d > 0. Using (A2),
one gets g(t) P 0. The latter completes the proof. h
3.2.2. Stability of the isothermal dynamics
Let (N1d, N2d, . . ., NNd, Td) be the steady state of the reaction sys-

tem defined by Eqs. (12) and (15). Let us note that possible steady
states are calculated by considering that all time derivatives vanish
and that there may be more than one stationary solution to the
problem (Favache & Dochain, 2010). An additional assumption
(used in Viel et al. (1997), Alvarez-Ramírez & Morales (2000),
Antonelli & Astolfi (2003) or recently Favache & Dochain, 2010)
is considered:

(A3) For the isothermal conditions (T = Td), the system dynamics
(12) admits a single equilibrium point (N1d, . . ., Nnd) which
is globally asymptotically stable.

From a control point of view, we can show by means of Lyapu-
nov converse theorems (Khalil, 2002) together with the above
assumption, that there exists a positive function VðN1; . . . ;Nnc Þ
with dV

dt < 0 along the isothermal dynamics. Several industrial
chemical reaction processes verify this assumption. Let us illus-
trate with the Van de Vusse reaction system in Example 1.

Example 2. We rewrite the isothermal dynamics derived from Eq.
(19) into the explicit form using (A1) so that:

dN1
dt ¼ dðN1I � N1Þ � k1ðTdÞN1 � 2k3ðTdÞN2

1

dN2
dt ¼ dðN2I � N2Þ þ k1ðTdÞN1 � k2ðTdÞN2

dN3
dt ¼ dðN3I � N3Þ þ k2ðTdÞN2

dN4
dt ¼ dðN4I � N4Þ þ k3ðTdÞN2

1

dN5
dt ¼ dðN5I � N5Þ � k1ðTdÞN1 � k2ðTdÞN2

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð27Þ

The existence of the positive-definite function VðN1; . . . ;Nnc Þ is de-
rived by considering the separable dynamics of (27). Indeed the
dynamics on N1 (27) can be rewritten as follows:

dN1

dt
¼ �2k3ðTdÞðN1 � N1dÞðN1 � N1dÞ ð28Þ

where N1d > 0 and N1d < 0 are roots of the second-order polynomial
equation that follow by setting dN1

dt ¼ 0 in Eq. (27):

N1d ¼ ðdþk1ðTdÞÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþk1ðTdÞÞ

2þ8dk3ðTdÞN1I

p
�4k3ðTdÞ

N1d ¼ ðdþk1ðTdÞÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþk1ðTdÞÞ

2þ8dk3ðTdÞN1I

p
�4k3ðTdÞ

8><>: ð29Þ

Lemma 1 shows that there exits a positive constant . > 0 so that
(28) can be rewritten as follows:

dN1

dt
6 �2.k3ðTdÞðN1 � N1dÞ ð30Þ

It is now clear that the positive-definite function
V1ðN1Þ ¼ 1

2 ðN1 � N1dÞ2 is a Lyapunov function candidate for the sta-
bilization of (30) at N1d. The same argument sequentially applies to
N2, N3, N4 and N5. Finally, the (global) Lyapunov function of the iso-
thermal dynamics (27) is defined so that:

VðN1; . . . ;Nnc Þ ¼
X5

k¼1

VkðNkÞ ð31Þ

In the following we focus our attention on nonlinear control and
state estimation problems of nonisothermal CSTR (27). These two
problems will be effectively solved in the framework of the passiv-
ity theory.
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4. Main results

4.1. Controller design

For controller synthesis, it is convenient to let the state vector
x ¼ ðN1; . . . ;Nnc ; TÞ represent the reaction system dynamics (15)
and (12). The dynamics (1) is then obtained with:

f ðxÞ ¼

dðN1I �N1Þ þ
Xnr

j¼1

m1jrj

dðN2I �N2Þ þ
Xnr

j¼1

m2jrj

..

.

dðNncI �Nnc Þ þ
Xnr

j¼1

mnjrjV

Xnr

j¼1

ð�DHRjÞrj�kT

Cp
þ dðTI � TÞ CpI

Cp

0BBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCA

; gðxÞ ¼

0
0
..
.

0
k

Cp

0BBBBBBB@

1CCCCCCCA and u ¼ TJ

ð32Þ

The PBA with the guideline (i) (in Section 2) will be used to design a
passive nonlinear controller for the stabilization of the reaction sys-
tem (1) with (32) at a given desired state xd. The problem first con-
sists of choosing an appropriate closed loop Hamiltonian storage
function HdðxÞ. Let us note that in previous works (Alvarez-Ramírez
& Morales, 2000; Viel et al., 1997), a Lyapunov function candidate
based on thermal deviation 1

2 ðT � TdÞ2 is considered for the temper-
ature stabilization problem. Farschman and coworkers in Farschman
et al. (1998) have proposed an inventory-based quadratic storage
function 1

2 ðx� xdÞ2 for control of chemical process systems. In
Hoang et al. (2011), Hoang et al. (2012), the thermodynamic
availability and its individual contributions have been used as the
desired closed loop storage functions. We now show that the matrix
Qd(x) can be found using the PBA with the Hamiltonian function:

HdðxÞ ¼ HdðT;N1; . . . ;Nnc Þ

¼ ðT � TdÞ2

2
1þ

Xnc

i¼1

KiðNi � NidÞ2
 !

ð33Þ

where Ki P 0. One consequence of definition (33) is that sufficient
damping is introduced to allow the stabilization problem to be
accomplished with a smooth control law in terms of the amplitude
and variation rate. The proposed controller therefore generalizes
the one obtained from Viel et al. (1997) which uses input con-
straints and nonsmooth controls. It also allows us to rewrite the
closed loop dynamics (1) with (32) in a port Hamiltonian represen-
tation as seen in Proposition 1 below.

Proposition 1. The reaction system described by Eqs. (1) and (32) is
exponentially stabilized at the desired state xd = (N1d, . . ., Nnd, Td) with
the following state feedback control law:

TJ ¼ T þ 1
k

Cp �
@Hd

@T

� ��1Xnc

i¼1

@Hd

@Ni

dNi

dt
� KT

@Hd

@T

" #(

�
Xnr

j¼1

ð�DHRjÞrj þ dðTI � TÞCpI

 !)
ð34Þ

where KT > 0 is a tuning parameter. Furthermore, the closed loop
dynamics are represented in the passive Hamiltonian format so that:

dx
dt
¼ ½JdðxÞ � RdðxÞ�

@HdðxÞ
@x

ð35Þ

where:
JdðxÞ ¼

0 . . . 0 @Hd
@T

	 
�1 dN1
dt

..

. . .
. ..

. ..
.

0 . . . 0 @Hd
@T

	 
�1 dNnc
dt

� @Hd
@T

	 
�1 dN1
dt . . . � @Hd

@T

	 
�1 dNnc
dt 0

0BBBBBB@

1CCCCCCA ð36Þ

RdðxÞ ¼

0 . . . 0 0
..
. . .

. ..
. ..

.

0 . . . 0 0
0 . . . 0 KT

0BBBB@
1CCCCA ð37Þ

and HdðxÞ is given by (33).
Proof. By using the PBA as described in Section 2, we have
QdðxÞ ¼ qijðxÞ

	 

i;j¼1...ðncþ1Þ and

g?ðxÞ ¼ diag 1; . . . ; 1; 0ð Þ 2 Rðncþ1Þ�ðncþ1Þ. The matching equa-
tions from (7) give the following partial differential equations:

q11ðxÞ @Hd
@N1
þ . . .þ q1nc

ðxÞ @Hd
@Nnc
þ q1ðncþ1ÞðxÞ @Hd

@T ¼
dN1
dt

..

.

qnc1ðxÞ
@Hd
@N1
þ . . .þ qnnðxÞ

@Hd
@Nnc
þ qncðncþ1ÞðxÞ

@Hd
@T ¼

dNnc
dt

8>>><>>>:
The number of equations equals nc with nc � (nc + 1) unknown vari-
ables qij(x). Hence this system has an infinite number of solutions. A
simple solution is found using the negative definiteness of the ma-
trix Qd(x) as follows:

(a) set qij(x) = qji(x) = 0 for i, j = 1 . . . nc;
(b) then set qiðncþ1ÞðxÞ ¼ �qðncþ1ÞiðxÞ ¼

@Hd
@T

	 
�1 dNi
dt for i = 1 . . . nc;

(c) and finally choose qðncþ1Þðncþ1ÞðxÞ ¼ �KT .

It follows that qiðncþ1ÞðxÞ; i ¼ 1 . . . nc is well defined in the limit
@Hd
@T ! 0 (refer to Eq. (41) below). The structure matrices Jd(x) (36)

and Rd(x) (37) are computed by using (3). Finally, the feedback law
is derived from (8) with Jd(x) defined in Eq. (36), Rd(x) defined in Eq.
(37) and HdðxÞ given in Eq. (33):

Cp �
@Hd

@T

� ��1
@Hd

@N1

dN1

dt
� . . .� @Hd

@T

� ��1
@Hd

@Nnc

dNnc

dt
� KT

@Hd

@T

" #

�
Xnr

j¼1

ð�DHRjÞrj þ dðTI � TÞCpI

 !
¼ _Q J

Using (H2) with u = TJ leads to the feedback law (34). Let us note
that the feedback law (34) is well-defined when HdðxÞ is defined
by Eq. (33). The function HdðxÞ is positive definite and its time
derivative satisfies

dHdðxÞ
dt

¼ �KT
@Hd

@T

� �2

< 0;8T–Td ð38Þ

It immediately follows by considering the partial derivative of the
desired storage function Hd with respect to T from (33) and the
boundedness of the concentrations with the help of Lemma 1, that
there exists 1 > 0 so that:

dHdðxÞ
dt

6 �1HdðxÞ ð39Þ

The stability proof immediately follows invoking La Salle’s invari-
ance principle (Khalil, 2002) and (A3). We now develop some
important limiting properties of the closed loop system to show
that the control law proposed in Eq. (34) is well-defined. First, it fol-
lows from the development above that the closed loop dynamics of
the temperature T with the feedback law given in Eq. (34) can be
rewritten as follows:
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dT
dt
¼ � @Hd

@T

� ��1 dN1

dt
@Hd

@N1
� � � � � @Hd

@T

� ��1 dNnc

dt
@Hd

@Nnc

� KT
@Hd

@T
ð40Þ

Second, we note that it follows from the definition of HdðxÞ in Eq.
(33) that:

@Hd

@T
! 0() T ! Td

and,

lim
T!Td

@Hd

@Ni
! 0; i ¼ 1; . . . ; nc

From (33) we also have:

HdðT ¼ Td;N1; . . . ;Nnc Þ ¼ 0

and

dHd

dt
jðT¼Td ;N1 ;...;Nnc Þ ¼ 0

We have shown that HdðxÞ is a Lyapunov function with (38) for the
stabilization of the reactor temperature T. As a consequence, we
obtain limT!Td

dT
dt ¼ lim@Hd

@T !0
dT
dt ¼ 0 and thus we deduce from (40):

lim
@Hd
@T !0

@Hd
@T

	 
�1 dN1
dt <1

..

.

lim
@Hd
@T !0

@Hd
@T

	 
�1 dNnc
dt <1

8>>>>>><>>>>>>:
ð41Þ

The latter completes the proof. h
Remark 4. The feedback law (34) becomes similar to the one
proposed by Viel and coworkers (Viel et al., 1997) when the
constraints are ignored and K1 ¼ . . . ¼ Knc ¼ 0 in HdðxÞ as defined
by Eq. (33). In this case, the stabilization is dominated by the reg-
ulation of the thermal part in accordance with the Assumption
(A3). In the general case ð

Qnc
i¼1Ki–0Þ, we may use the gains to

shape the amplitude and variation rate of the control input
through the presence of the material balances given by equations
(33) and (34).
3

4.2. Asymptotic observers

We now consider a situation where only the reactor tempera-
ture T and a subset of the concentrations are measured. In this case
we have to design an observer to reconstruct other missing vari-
ables within the mixture. We also need to find a method to deter-
mine how many and which concentrations need to be measured.
The main feature of the proposed observer is that it is independent
of the system kinetics and is called asymptotic observers. These
asymptotic observers were first proposed in Dochain et al. (1992)
for simplified CSTR models and developed further in Dochain
et al. (2009) for more general CSTR models. However, feedback
law was not considered in these contributions and there is a ques-
tion whether the use of the estimated states in feedback gives sta-
ble control. In what follows we show, analytically and/or
simulations, that the estimated state variables exponentially con-
verge to their exact values with and without feedback. Let us
reconsider the original system (12) and rewrite it into the follow-
ing form:

ðRÞ
dH
dt ¼ dðHI � HÞ þ _Q J

dN
dt ¼ dðN I � NÞ þ mr

(
ð42Þ
where N ¼ ðN1; . . . ;Nnc Þ
T is the vector of mole numbers.

m ¼ ðmijÞi¼1...nc ;j¼1...nr
is the matrix of stoichiometric coefficients and

r ¼ ðr1; . . . ; rnr Þ
T is the vector composed of chemical reaction rates.

The following additional assumption is made (Dochain et al.,
1992; Dochain et al., 2009):

(A4) The reaction network (9) with nr < nc is independent so that,
Tha
rankðmÞ ¼ nr
And (nr � 1) concentrations and the reactor temperature T are as-
sumed to be available for the online measurement.3

We have the following lemma.

Lemma 2. There exists an nc � nc matrix H so that:

H ¼
tnr�nc

m?ðnc�nrÞ�nc

 !
nc�nc

ð43Þ

where the following equalities hold:

tm ¼ Inr�nr ð44Þ

and

m?m ¼ 0ðnc�nrÞ�nr ð45Þ

where Inr�nr and 0ðnc�nr Þ�nr are the identity and the zero matrices
respectively.
Proof. The proof immediately follows using Assumption A4.
Indeed it can be shown that the matrix H is directly derived by
Gauss elimination. h
Example 3. Let us consider the Van de Vusse reaction system
given in Example 1. Its dynamics (19) can be re-expressed as
(42), where:

m ¼

�1 0 �2
1 �1 0
0 1 0
0 0 1
�1 �1 0

0BBBBBB@

1CCCCCCA and r ¼ ðr1; r2; r3ÞT

After some manipulation we have:

and H verifies Eqs. (44) and (45).
As a consequence of Lemma 2, we state Proposition 2.

Proposition 2. The map from Rnc to Rnc�nr , Z = m\N, reduces the
dynamics for N defined by Eq. (42) to:

dZ
dt
¼ dðZI � ZÞ ð46Þ

where ZI = m\NI and m\ are given in Eq. (43). Furthermore, the reduced
dynamics are independent of the chemical reaction kinetics.
Proof. The proof immediately follows by multiplying Eq. (42) with
m\ defined by Eq. (43) (see also Dochain et al., 1992; Dochain et al.,
2009). h
t means that nr values are assumed to be measured.



Table 1
Parameters of CSTR.

Numerical value
cpA 221.9 (J K�1 mol�1) Heat capacity of species A
cpB 128.464 (J K�1 mol�1) Heat capacity of species B
cpInert 21.694 (J K�1 mol�1) Heat capacity of Inert
Ea 73.35 (K J mol�1) Activation energy
hAref �5.8085 � 105 (J mol�1) Reference enthalpy of A
hBref �6.6884 � 105 (J mol�1) Reference enthalpy of B
hInertref �3.3 � 105 (J mol�1) Reference enthalpy of Inert
k0 2.58 � 109 (s�1) Kinetic constant
R 8.314 (J K�1 mol�1) Gas constant
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In the remaining of the paper, we let N ¼ f1; . . . ;ncg be the set
of indices for chemical species of the mixture described by the
invariant (9) and the differential equations (42). It is worth noting
that there exists a disjoint partitioning I ;J � N with (nr � 1) and
(nc � nr + 1) elements respectively so that:

I \ J ¼ ;
I [ J ¼ N

ð47Þ

where I and J refer to the subsets of (nr � 1) measured mole num-
bers4 and (nc � nr + 1) remaining mole numbers to be estimated
respectively. As a consequence, we can write from definition (14)
and Proposition 2:

H ¼ hT
INI þ hT

JNJ þ hT
otNot

Z ¼ ðm?ÞINI þ ðm?ÞJNJ

(
ð48Þ

where ðm?ÞI and ðm?ÞJ are submatrices of the matrix m\ formed by
selecting columns corresponding to the marked mole numbers. The

convergence of the estimates bNj;8j 2 J to their exact values is
shown in Proposition 3.

Proposition 3. If the square matrix defined by

O ¼ hT
J

ðm?ÞJ

 !
ðnc�nrþ1Þ�ðnc�nrþ1Þ

ð49Þ

fulfills the following condition,

rankðOÞ ¼ nc � nr þ 1 ð50Þ

then the states of the system (R) defined by Eq. (42) are asymptotically
reconstructed with the asymptotic observer ðbRÞ:
bR� � dbH

dt ¼ dðHI � bHÞ þ _Q J

dbZ
dt ¼ dðZI � bZÞ

8<: ð51Þ

The convergence rate of each bNj;8j 2 J defined from ðbRÞ to the
exact value is exponential with the time constant s ¼ 1

2d. Furthermore,
the results above hold whether the system is operated in open or closed
loop.

Proof. Let us define �ðtÞ ¼
�eH
�eZ

� �
¼

bH � HbZ � Z

� �
2 Rðnc�nrþ1Þ. By sub-

tracting (51) and (42), we get:

d�
dt
¼ �dIðnc�nrþ1Þ�ðnc�nrþ1Þ

�eH
�eZ

 !
ð52Þ

with d > 0. The dynamics of � is then presented in the port Hamil-
tonian format (2) where J (�) = 0, Rð�Þ ¼ dIðnc�nrþ1Þ�ðnc�nrþ1Þ and the
Hamiltonian storage function Hð�Þ ¼ 1

2�
T�P 0. Hð�Þ plays a role

of a Lyapunov function for the stability of the zero dynamics of �
because:

dHð�Þ
dt

¼ � @Hð�Þ
@�

� �T

Rð�Þ @Hð�Þ
@�

� �
< 0

Furthermore, it can be rewritten as follows:

dHð�Þ
dt

¼ �d�T� ¼ �2dHð�Þ ) Hð�ðtÞÞ ¼ Hð�ðt ¼ 0ÞÞexp
� t

1
2d

Hð�ðtÞÞ exponentially converges to 0 with the time constant s ¼ 1
2d

since d > 0. As a consequence, we have �(t) ? 0, e.g. bH ! H andbZ ! Z. Using Eq. (48) together with Eq. (13), we obtain:

OðbNJ � NJ Þ ¼ 0
4 It does not include the temperature.
where the matrix O is defined by Eq. (49). With condition (50), we
conclude:bNJ ¼ NJ

The estimated values bNJ are then calculated from the asymptotic
observer ðbRÞ defined in Eq. (51) using Eqs. (48) and (13):

bNJ ¼ O�1
bH � hT

INI � hT
ot
bN otbZ � ðm?ÞINI

 !
ð53Þ

It is important to notice that the convergence does not depend on
the feedback strategy. The latter completes the proof. h
Remark 5. The estimates bN ot of the states Not used in Eq. (53) are
derived by using the differential Eq. (13) so that:

dbN ot

dt
¼ dðNotI � bN otÞ ð54Þ

We note that the observability matrix (49) and the full rank
condition (50) can be regarded as feasibility conditions for the
asymptotic observer (Moreno & Dochain, 2007). The condition
(50) is fulfilled only if the reactions are independent (Dochain
et al., 1992; Dochain et al., 2009), and more precisely if the states
to be estimated in J have intrinsically been involved in the same
reactions. Hence the proposed result generalizes and completes
the analysis given in Dochain et al. (1992), Dochain et al. (2009).
Let us illustrate this statement via the following example.
Example 4. Example 3 showed that N ¼ f1;2;3;4;5g and

m? ¼
1
2

1
2

1
2 1 0

0 1 2 0 1

 !
If we choose I ¼ f1;3g and J ¼ f2;4;5g then we get

O ¼
h2 h4 h5
1
2 1 0
1 0 1

0@ 1A. We can easily check that O is not full rank be-

cause it is not necessarily true that detðOÞ ¼ h2 � 1
2 h4 þ 1

2 h5–0 for
nonisothermal reactors. Otherwise, if we choose

I ¼ f3;4g;J ¼ f1;2;5g then we get O ¼
h1 h2 h5
1
2

1
2 0

0 1 1

0@ 1A. The latter

is full rank because the species N1, N2 and N5 are effectively in-
volved in the first chemical reaction of the network (18) and thus
detðOÞ ¼ 1

2 ðh1 � h2 þ h5Þ ¼ � 1
2 DHR1 < 0 as seen from Eq. (22).
5. Illustrative example

Let us consider a CSTR with one exothermic reaction involving 2
active chemical species A and B (e.g. nc = 2 and nr = 1) with the
stoichiometry:
Tref 298 (K) Reference temperature
k 0.75 (W K�1) Heat transfer coefficient
d 0.0070 (s�1) Dilution rate
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mAMA ! mBMB ð55Þ

The reactor is fed by species A, B and an inert with a fixed inlet tem-
perature TI. The balance equations are (see also (12)):

dNA
dt ¼ dðNAI � NAÞ þ mAr

dNB
dt ¼ dðNBI � NBÞ þ mBr

dH
dt ¼ d HI � Hð Þ þ _Q J

8>><>>: ð56Þ

As previously mentioned, the energy balance in Eq. (56) can be
rewritten in terms of temperature as follows:

Cp
dT
dt
¼ ð�DHRÞr þ dðTI � TÞCpI þ _Q J ð57Þ

where DHR = (mBhB(T) + mAhA(T)) < 0 is the heat of reaction and Cp = -
p = cpANA + cpBNB + cpInertNInert is the total heat capacity. Finally the
dynamics of inert is given by:

dNInert

dt
¼ dðNInertI � NInertÞ � 0 ð58Þ

The numerical values are given in Table 1 (Hoang et al., 2012).
The exothermic reaction (55) is considered with mA = �1 and

mB = 1. The open and closed loop simulations are carried out with
respect to two different initial conditions, (C1) with (T0 = 340 (K),
NA0 = 0.04 (mol), NB0 = 0.001 (mol)) and (C2) with (T0 = 300 (K),
NA0 = 0.15 (mol), NB0 = 0.03 (mol)).
290 300 310
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

T

N A (m
ol

)

P 1

0 500 1000 1
288

290

292

294

296

298

300

302

304

306

t

Ja
ck

et
 te

m
pe

ra
tu

re
 T

J (K
)

Fig. 2. Representation of the closed loop phase plane (the point P3 outside the fra
5.1. Open loop simulation

Fig. 1 shows that the system (56) has three steady states indi-
cated with P1, P2 and P3 under the input:

TI ¼ TJ ¼ 298ðKÞ;NAI ¼ 0:18 ðmolÞ;
NBI ¼ 0ðmolÞ;NInertI ¼ 3:57 ðmolÞ



ð59Þ

The intermediate steady state P2 is unstable whereas P1 and P3 are
(locally) stable. In the next subsection, we operate the reaction
system at the unstable state P2 using the feedback law defined by
Eq. (34) for the jacket temperature TJ.
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me) and the feedback law TJ for two different initial conditions (C1) and (C2).
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Fig. 4. NA, NB and their estimates in the open loop case – (a) for the initial
conditions (C2) and ðbC1Þ – (b) for initial conditions (C2) and ðbC2Þ.
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Fig. 5. NA and its estimate with the asymptotic observer in the closed loop case – (a)
for the initial conditions (C2) and ðbC1Þ – (b) the control input TJ with the asymptotic
observer.
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5.2. Closed loop simulation

In the first case we assume that all state variables are measured.
In this case we can use the state feedback law (34). We choose
KT = 0.001, KA = 0 and KB = 0 in the Hamiltonian function HdðxÞ
defined in Eq. (33). Fig. 2 shows the closed loop response with
phase plane. We see, for both of the considered initial conditions,
that the system converges to the desired operating point P2.
Fig. 2 also shows that the control variable input TJ (34) is admissi-
ble in terms of amplitude and dynamics.

The Hamiltonian HdðxÞ (33) plays the role of a global Lyapunov
function for any choice of admissible initial conditions and conse-
quently it converges to 0 as shown in Fig. 3.
5.3. Simulation with the asymptotic observer

First of all let us check that the feasibility conditions of Proposi-
tion 3 are satisfied. In our case, we have I ¼ ;;J ¼ fA;Bg and

m ¼ mA

mB

� �
. Thus ðm?ÞJ ¼ ðmB � mAÞ;hT

J ¼ ðhAðTÞ hBðTÞÞ and detðOÞ ¼

�mAhAðTÞ � mBhBðTÞ ¼ �DHR > 0. It follows that the observability
matrix O is full rank and the asymptotic observer is feasible.

For the sake of simplicity, the initial condition (C2) is used for
the system. The initial conditions of the asymptotic observer are
ðbC1Þ with ðbHð0Þ ¼ 0:98HðT0;NA0;NA0Þ; bNð0Þ ¼ 0:75NðNA0;NB0ÞÞ and
ðbC2Þ with ðbHð0Þ ¼ Hð0:85T0;NA0;NB0Þ; bNð0Þ ¼ 0:95NðNA0;NB0ÞÞ
where the numerical values of T0, NA0 and NB0 are given with the
initial condition (C2). The open loop convergence of the estimates
generated by the asymptotic observer (51) is illustrated in Fig. 4.
With the initial condition (C2), the system converges to the stable
point P1. The closed loop simulations are given in Figs. 5 and 6 with
the initial conditions, (C2) and ðbC1Þ, (C2) and ðbC2Þ respectively. The
stabilization at the unstable state P2 of the controlled reaction sys-
tem via the asymptotic observer is guaranteed. Furthermore, the
dynamics of the control input TJ remains admissible as seen in
Fig. 5(b) and Fig. 6(b).
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Fig. 6. NA and its estimate with the asymptotic observer in the closed loop case – (a)
for the initial conditions (C2) and ðbC2Þ – (b) the control input TJ with the asymptotic
observer.
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6. Conclusion

We have shown, by means of the passivity-based approach in
the port Hamiltonian framework, how to synthesize a nonlinear
controller for the stabilization and how to design an asymptotic
observer of a class of CSTRs. The results can be applied to noniso-
thermal CSTRs operated under multiple steady states. The resulting
state feedback developed in the paper generalizes the one
proposed by Viel et al. (1997) in the sense that we do not add a
constraint on the control input. The closed loop convergence of
the system is theoretically shown. The use of an asymptotic
observer provided the rank condition on the observability matrix.
This condition is fulfilled by appropriate choice of measured states.
Finally, numerical simulations show that convergence objective is
satisfied for a simple case study. The state feedback law on the
jacket temperature TJ is implementable and gives finite amplitude
and admissible rate of variation. Open questions concern the
structure of the observability matrix (with respect to traditional
definition for linear systems); and the performance/robustness of
the control law with respect to perturbations and parameters
uncertainty.
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