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urations where this fiber delay line is replaced by a ultrahigh Q whispering-
gallery mode (WGM) resonator. So far, there has been no theoretical frame-
work enabling to understand the dynamical behavior of these new architec-
tures of OEOs. In this paper, we propose for the first time a deterministic
time-domain model to investigate the dynamics of these OEOs based on
WGM resonators. This model enables us to perform the stability analysis of
the microwave oscillations, and to determine rigorously their range of sta-
bility as the loop gain is varied. After building the model, we perform a full
stability analysis of the various stationary solutions for the microwave out-
put. We then perform extensive numerical simulations, which are in com-
plete agreement with the stability analysis. The theoretical analysis is also
found to be in excellent agreement with our experimental measurements.
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1 Introduction

The optoelectronic oscillator (OEO) is nowadays considered as one of the most promis-
ing ultra-stable microwave generator for applications in time-frequency metrology, fre-
quency synthesis, detection and navigation systems [1]. The first architecture of OEO,
proposed by Yao and Maleki [2–4], performed energy storage in the feedback loop by
using a few kilometer-long fiber-delay line instead of a high-finesse radio-frequency
(RF) filter. The idea to store laser light energy instead of microwave energy was a
conceptual breakthrough which provided a technological pathway towards improved
stability for RF signal generators. Another noteworthy feature of OEOs is their nearly
absolute frequency versatility, since the microwave can be arbitrarily set at any fre-
quency belonging to the band 0.1-100 GHz. The upper limit of this frequency band is
in fact imposed by currently available optoelectronics components, and nothing theo-
retically prevents OEOs to generate millimeter waves as well.

Despite their excellent stability performances, the original fiber-based OEOs un-
fortunately have the disadvantage to be bulky because of the temperature-stabilized
box containing the optical fiber delay line. Effectively, these fiber-based OEOs are not
very transportable, and their weight might affect negatively the payload of spacecrafts.
Their size (few dm3) also raises problems related to temperature stabilization, which
becomes overly energy-greedy in this case. In addition, despite active stabilization, the
long fiber delay line also induces an unavoidable phase drift that deteriorates the long-
term stability of the oscillator. The ring-cavity modes induced by the fiber delay line
are also arising as very strong (even though narrow) parasite peaks close to the carrier
in the phase noise spectrum. These spurious peaks are indeed very detrimental in most
applications.

In order to improve the features of this oscillator, many novel architectures have been
proposed in recent years. Some of them involve multiple loops in order to suppress the
spurious peaks [5,6]. Others lock the oscillator to atomic resonances [7], or enhance the
functionalities of the optical branch to improve the phase noise figure [8], the tunability
of the oscillator [9], or to mode-lock the optical modes [10,11] for ultra-low jitter pulse
generation.

However, one of the most interesting architecture to overcome the shortcomings of
fiber-based OEOs is undoubtedly the configuration which replaces the fiber delay-line
by an ultra-high Q WGM resonator (see, e. g., refs. [12–15]). Whispering gallery mode
resonators are low-loss dielectric disks or rings that perform optical energy storage
through trapping photons by total internal reflection [16, 17]. The optical Q factor of
these resonators can be defined as Q = ω0/∆ω, where ω0 is the central angular fre-
quency of the mode of interest, and ∆ω is the corresponding linewidth. When the
resonators are almost perfectly shaped (with sub-nanometer surface roughness) with a
ultra-low loss bulk material (fused silica, calcium or magnesium fluoride crystals, etc.),
they can achieve a quality factor that is typically above 108 at 1550 nm; they can even
exceptionally reach record values higher than 1011 [18]. The linewidth ∆ω = ω0/Q
of these WGMs is typically of the order of 100 kHz for Q ∼ 109 at 1550 nm. These
linewidths are at least two orders of magnitude narrower than typical RF filters. Al-
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Figure 1: Experimental setup. EDFA: Erbium-doped fiber amplifier; ESA: Electrical
spectrum analyzer; OSA: Optical spectrum analyzer. The optical path is in
thin red, while the electric path is in thick black. The spectral lines are sep-
arated by the frequency ΩM which corresponds to the FSR of the resonator.
The “through" port of the coupling fibers is used to monitor the optical spec-
tra with the OSA, in both the transient and stationary regimes. In the electric
branch, a fast oscilloscope enables to resolve the temporal dynamics of the
microwave V(t), whose complex envelope is V (t) (or A(t) in the dimension-
less form). An ESA also enables to monitor the corresponding RF spectrum.
In the open-loop configuration (no oscillations), the “through” port is also
used to perform the cavity-ring down measurement using an oscilloscope,
thereby enabling the determination of the intrinsic and in-coupling quality
factors.

ternatively, the optical storage properties of WGM resonators can also be understood
in terms of photon lifetime τph = Q/ω0, which is of the order of 1 µs for Q ∼ 109 at
1550 nm.

The modal structure of these resonators is such that their eigenmodes are grouped
within families where WGMs are nearly equidistant when dispersion is neglected. For
WGMs belonging to the same family, the intermodal frequency (which is sometimes
referred to as free spectral range, or FSR) is a free parameter that depends on the
resonator’s principal radius. It may vary from GHz (millimeter-size disks) to THz
(micrometer-size) frequencies. Therefore, in the case of OEOs based on WGM res-
onators, we can obtain a microwave oscillation by extracting the intermodal frequency
of an optically pumped WGM resonator, while the energy storage would be performed
by trapping photons in the long-lifetime WGM cavity. This architecture solves almost
all the problems raised by fiber-based OEOs, and yields an oscillator that is versatile,
compact, energy efficient, and free from parasite spurious peaks (see, e. g., ref. [19]).
Most importantly, it is expected that these WGM-based architectures would enable us
to downsize the OEO from a shoe-box (fiber based OEO) to a smartphone (WGM-based
OEO), and ultimately, to a match-box (integrated WGM-based OEO), without deterio-
rating the phase noise performance in the most favorable case.

Even though it appears clearly that WGM-based OEOs will play an increasingly im-
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portant role in microwave photonics, there is currently no dynamical framework to
study their dynamics. This lack of analytical insight into the dynamical properties of
this oscillator does not enable us to optimize its properties. In particular, it is impos-
sible to know under which conditions the oscillator is merely stable, and it is worth
reminding that this stability problem is far from being trivial.

Our aim in this paper is, therefore, to propose a deterministic model to understand
and analyze the time-domain dynamics of WGM-based OEOs. Using this model, we
will study the stability of the various solutions, and perform numerical simulations to
confirm the stability analysis study. We have also built a new architecture of WGM-
based OEO, and have performed experimental measurements to check the validity of
the model. Both the theoretical and experimental studies agree with excellent preci-
sion, thereby confirming the validity of the nonlinear dynamics framework of analysis.

This paper is organized as follows. The next section is devoted to the description
of the experimental system under study, which is an architecture of WGM-based OEO
with amplitude modulation and add-drop coupling. In Section 3, we present the main
lines of our theoretical approach for OEOs, which is based on the nonlinear dynamics of
the slowly-varying microwave envelope, while Section 4 is focused on the construction
of the theoretical model for this WGM-based OEO. Then, we determine the stationary
states of the oscillator in Section 5, while their stability is investigated in Sections 6
and 7. Hence, we perform numerical simulations that are compared to experimental
measurements in Section 8. The last section concludes this paper with a resume of our
work and perspectives of future research.

2 The experimental system

The WGM-based OEO under study is displayed in Fig. 1. The various elements of this
single-loop architecture are as follows.

• A continuous-wave (CW) distributed feedback (DFB) semiconductor laser of op-
tical power PL and whose central wavelength is λL = 1552.2nm, corresponding to
an angular frequency ωL = 2πc/λL, where c is the velocity of light in vacuum.

• An erbium-doped fiber amplifier (EDFA) delivering a maximal optical power of
30 dBm, and of optical gain Go when driven by the input laser.

• A wideband integrated optics LiNbO3 Mach-Zehnder (MZ) intensity modulator
characterized by the half-wave voltages VπDC

= 4V and VπRF
= 4.7V.

• A polarization controller to tune the polarization at the input of the MZ intensity
modulator and the WGM resonator.

• A crystalline calcium fluoride (CaF2) WGM resonator coupled in the add-drop
configuration. The intrinsic, excitation and drop Q factors are respectively Qi,
Qe and Qd. They respectively correspond to photon lifetimes Qi,e,d/ωL = τi,e,d/2,
where ωL is the angular frequency of the laser while the τ parameters are the
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laser field decay times. The internal quality factor Qi is fixed and equal to 4× 108,
while the coupling quality factors Qe and Qd can be varied by changing the po-
sition of the coupling tapered fibers relatively to the resonator; in all case, these
coupling Q-factors are of the order of 108. The WGM disk has a refractive index
equal to ng = 1.43 and a principal radius a = 3.2mm. In consequence, its free
spectral range is a microwave frequency equal to ΩM = c/ang = 2π × 10.4GHz.

• A fast photodiode with a conversion factor S = 50 Ω× 0.75A/W = 37.5V/W, and
bandwidth 0-12 GHz.

• A narrow-band microwave RF filter of central frequency at 10.5 GHz and a band-
width of 1 GHz, intended to reject the RF noise outside the frequency band of
interest.

• Cascaded microwave amplifiers with overall gain Ge are used to close the loop
and drive the intensity modulator.

The principle of operation of this WGM-based OEO is, therefore, the following: noise
in the microwave branch of the loop modulates a laser light beam, and generates a
broadband optical spectrum at the output of the MZ modulator. This broadband, ini-
tially noisy optical spectrum is narrowly filtered by the WGM resonator. At the output,
the optical spectrum is now a set of equidistant spectral lines, separated by the FSR of
the resonator (that is, ' 10GHz). The photodiode detects the various beating frequen-
cies kΩM (k being an integer), but because of its limited bandwidth, it filters them out
except the fundamental frequency ΩM and the dc component of the field. The RF filter
rejects this dc component. Then, the microwave signal at kΩM is finally amplified and
sent as a driving signal to the MZ in order to close the feedback loop and the same cycle
is started again.

It is known from oscillator engineering theory that the oscillation might be sustained
when the Barkhausen conditions are fulfilled, that is, when 1) the loop gain overcomes
the loop losses and 2) the round-trip phase of the microwave signal is null modulo
2π. However, the Berkhausen theory can not describe what might occur above thresh-
old (amplitude of the oscillations, multi-stability, hysteresis, higher-order bifurcations,
chaos, etc.), nor does it enable the stability study of the oscillating solutions. The pur-
pose of the nonlinear dynamics approach is to shed the light on all these blind spots,
as it provides a complete understanding of the oscillator behavior below and above
threshold. We will explain in the next section how this nonlinear dynamics is used in
the context of OEOs in general, and WGM-based OEOs in particular.

3 Modelling OEOs: a microwave envelope approach

A microwave oscillator whose output angular frequency is around Ω0 is always ex-
pected to have an output of the form

V(t) = A(t)cos[Ω0t +ψ(t)], (1)
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where A(t) and ψ(t) are, respectively, the amplitude and the phase of the microwave. In
the case where A and ψ are constant, the microwave output V(t) is perfectly sinusoidal.
The microwave is still sinusoidal as well if ψ = ψ0 + σt, even though the oscillation
frequency is shifted toΩ0+σ. In the general case, both A and ψwill be time-dependent,
but their time variation will be significantly slower than the period of the oscillation.
More concretely, A(t) and ψ(t) will vary at a slow time-scale comparable to the inverse
RF bandwidth 1/∆Ω of the oscillation loop, while the full microwave V(t) will vary
at a fast time-scale of 1/Ω0. Therefore, the slow and fast dynamics are split in by a
factor QRF = Ω0/∆Ω corresponding to the RF quality factor of the oscillator. This is
why A(t) and ψ(t) are referred to as slowly varying amplitude and slowly-varying phase,
respectively.

In general, the only variables of interest are A and ψ sinceΩ0 is known. Equation (1)
can be rewritten under the useful form

V(t) =
1
2
V (t)eiΩ0t +

1
2
V ∗(t)e−iΩ0t , (2)

where V (t) = A(t)eiψ(t), and the star denotes the complex conjugation. Here, the com-
plex valued variable V (t) synthetically gathers all the information about the amplitude
and the phase of the microwave: it is referred to as the complex slowly varying enve-
lope of the microwave. Hence, it is the idoneous variable to investigate the dynamics of
the RF output of a microwave oscillator. It is interesting to note that complex slowly
varying envelopes are routinely used in optics and laser theory, where the nominal
frequencies (from the lasers, optical cavities, etc.) are generally known, while the opti-
cal amplitudes and phases are the variables of interest. It is also worth noting that the
complex envelope takes into account eventual frequency detunings σ from the nominal
frequency Ω0 through ψ(t).

The microwave envelope approach has already been used with great success in fiber-
based OEOs. In fact, fiber-based OEOs belong to the large family of electro-optic sys-
tems with delayed feedback, which can be described by Ikeda-like delay differential
equations where the main variable is the real-valued voltage at the input of the mod-
ulator (see [20]). In the particular case of fiber-based OEOs, the narrowband filtering
around the frequency Ω0 of interest enables us to rewrite this voltage under the form
of (2). A nonlinear delay differential equation ruling the dynamics of the complex mi-
crowave envelope had, therefore, been obtained, thereby enabling to demonstrate many
fundamental results. Just to name a few, this nonlinear dynamics approach enables us
to prove that fiber-based OEOs can turn unstable if the feedback gain exceeds a pre-
cise bifurcation value [21, 22]. The same approach also enabled to show that under
certain conditions, the abrupt switch-on behavior of the fiber-based OEOs leads to ro-
bust multimode oscillations instead of an ultrastable single-tone microwave [23]. The
time-domain deterministic model was also an essential prerequisite that enabled to
perform a phase noise analysis based on stochastic differential equations (or Langevin
equations) and which enabled to predict phase noise characteristics with remarkable
precision [24, 25]. The same formalism also enabled us to analyze more complex OEO
architectures, like dual-loop OEOs [26], or hybrid configurations whose outputs are an

6



ultra-stable microwave in the RF domain and an ultralow jitter picosecond pulse train
in the optical domain [27].

We show in the next section that a complex envelope formalism can be developed as
well for WGM-based OEOs.

4 Model

The dynamics of this system is essentially defined by two variables. The first variable
is the laser electric field E(t) at the input of the resonator and the second variable is the
input microwave voltage V(t) of the integrated modulator.

Instead of working directly with the real-valued E(t) and V(t), we use their complex
slowly varying amplitudes E(t) = |E(t)|eiϕ(t) and V (t) = |V (t)|eiψ(t) defined through

E(t) =
1
2
E(t)eiωLt +

1
2
E∗(t)e−iωLt

V(t) =
1
2
V (t)eiΩMt +

1
2
V ∗(t)e−iΩMt , (3)

where ωL and ΩM are the angular frequencies associated with the 1550 nm infrared
laser beam, and to the 10 GHz microwave signal, respectively.

The slowly varying amplitude of the optical beam at the input of the MZ modulator
simply reads Ecw =

√
P0, where P0 = GoPL is the optical power at the output of the

EDFA. This pumping field sets the optical phase reference, and as a consequence is
real (its phase is null). This beam is amplitude-modulated with a driving RF signal
V(t) = |V (t)|cos[ΩMt +ψ(t)], so that the slowly varying amplitude of the optical field at
the input of the optical fiber is

E(t) = Ecw cos
{
πV(t)
2VπRF

+
πVB(t)
2VπDC

}
(4)

=
√

P0 cos
{
π|V (t)|
2VπRF

cos[ΩMt +ψ(t)] +
πVB

2VπDC

}
.

The Jacobi-Anger expansion gives

eiz cosα =
+∞∑

n=−∞
inJn(z)einα (5)

where Jn is the n-th order Bessel function of the first kind. Therefore, we have

E(t) =
√

P0

+∞∑
n=−∞

En(t)einΩMt (6)

where

En(t) = εn(φ) Jn

[
π|V (t)|
2VπRF

]
einψ(t), (7)
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and

εn(φ) =
1
2

[eiφ + (−1)ne−iφ]in (8)

=
{

(−1)
n
2 cosφ if n is even

(−1)
n+1

2 sinφ if n is odd
.

The parameter

φ =
πVB

2VπDC

(9)

is the offset phase due to the bias voltage of the integrated MZ modulator. The intra-
cavity field F (t) inside the resonator can also be spectrally decomposed as F (t) =∑+∞

n=−∞Fn(t)einΩMt. According to the Haus formalism [28], the dimensionless compo-
nents Fn obey

dFn
dt

= −1
τ
Fn − iσFn +

√
2
τe
En, (10)

where τ is defined as

1
τ

=
1
τi

+
1
τe

+
1
τd

, (11)

and stands for the overall loss-induced decay time for the electric fields inside the res-
onator, while σ = ωL − ω0 is the laser detuning relatively to the central frequency of
the pumped mode. On the other hand, the dimensionless components Gn of the output
field G(t) =

∑+∞
n=−∞Gn(t)einΩMt can simply be recovered as

Gn =

√
2
τd
Fn . (12)

The spectra of the three optical fields E(t), F (t), and G(t) have been schematically rep-
resented in Fig. 1.

The optical power at the input of the photodiode is equal to

P0|G(t)|2 = P0

∣∣∣∣∣∣∣
+∞∑

n=−∞
Gn(t)einΩMt

∣∣∣∣∣∣∣
2

(13)

=
1
2
C0(t) +

+∞∑
k=1

{1
2
Ck(t)eikΩMt + c.c.

}
,

where the slowly varying Fourier coefficients Ck express the multifrequency nature of
the input optical power. The photodiode has an inbuilt filter that rejects the harmonics
at kΩM with k ≥ 2. On the other hand, the dc component is rejected by the RF bandpass
filter. Hence, only the spectral component at frequency ΩM (that is, C±1(t)) is allowed
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to pass through. The slowly varying amplitude V of the voltage at the output of the
photodiode is, therefore, SC1(t), where S stands for the photodiode sensitivity. We can
multiply this output by the overall gain G = GeGo and the overall losses κ to obtain the
slowly-varying voltage at the input of the modulator as

V (t) = κGSeiςC1(t) = κGSP0

+∞∑
n=−∞

2Gn+1G∗n, (14)

where the phase factor eiς accounts for the effect of the microwave round-trip phase
shift ς. If necessary, it can be tuned to any desired value (modulo 2π) using a RF phase
shifter.

We define the dimensionless microwave voltage as

A(t) =
π

2VπRF

V (t), (15)

and the optoelectronic gain as

β =
πκGSP0

2VπRF

. (16)

It is very important to note that since the loss parameter κ does not consider the losses
associated with the WGM resonator, the gain coefficient β is not a loop-gain parameter
as it is the case for fiber-based OEO studies, where κ also takes into account the losses
induced by the fiber.

We therefore have the following three-step model for numerical simulation:

En = εn(φ) Jcn [|A|]An (17)

Ġn = −
[1
τ

+ iσ
]
Gn +

2√
τeτd

En (18)

A = 2βeiς
+∞∑

n=−∞
Gn+1G∗n , (19)

where the overdot stands for time derivative. Note that in (17), we introduced the
Bessel cardinal functions to simplify the expression. Their definition and properties
are further developed in the Appendix.

The model describes the following phenomenology. Small noise in A generates the
fields En, which are fed in the WGM resonator and yield the output fields Gn. The
photodiode extracts the intermodal frequency and the bandpass RF filter outputs a
microwave of complex envelopeA, which is plugged back to the modulator to generate
new fields En, and the previous sequence of events takes place again.

It is interesting to note that fiber-based OEOs have an optical delay line that performs
the optical energy storage, and a RF filter to select the microwave oscillation frequency.
On the other hand, WGM-based OEOs rather have a WGM disk that performs at the
same time the optical storage and filtering functions. The physics is intrinsically differ-
ent, and so are the corresponding models: this explains why the former models built
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Figure 2: Geometrical interpretation of the stationary states Ast, which are given by
the intersection of the functions J1(2Ast) and Ast/Γ . When Γ = 0.8, both
curves only intersect for Ast = 0, which is therefore the unique fixed point.
This will be the case whenever Γ < 1. For Γ > 1, both functions will intersect
for other points than 0, thereby generating non-trivial equilibria. For Γ2 = 1.4,
the non-trivial solution is Ast2 = 0.79, and it will be equal to Ast3 = 1.46 for
Γ3 = 4. When the gain is increased to Γ4 = 15.52, the same branch yields
a non-trivial solution Ast4 = 1.77, while a pair of new solutions are created
around 4.21. An infinity of other pairs of solutions are sequentially created
as Γ increases to infinity.

for fiber-based OEOs are not valid anymore in this context. Fiber-based OEO models
relied on delay-differential equations, with the de- lay being induced by the fiber delay
line, and the dynamics (i. e., the derivative term) was on the microwave variable A(t).
For WGM-based OEOs, we rather have a modal expansion model, in the sense that we
have one equation per optical mode, and the dynamics is on the optical modes Gn(t).
It is also important to note that this model is nonlinear and continuous. Hence, we can
analytically and numerically determine the various dynamical behaviors of the system,
and investigate their stability.

5 Stationary states

The equilibria (or fixed points) of autonomous oscillators are obtained by setting all
the derivatives to zero. In the complex envelope formalism, a trivial equilibrium corre-
sponds to the absence of oscillation, while nontrivial equilibria correspond to a steady-
state oscillation (because of the amplitudes are constant and not null). The aim of this
section is to determine the fixed points of the OEO.
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The stationarity conditions Ġn ≡ 0 yield

Gn = T En, (20)

where

T =
2√
τeτd

1
τ + iσ

(21)

is the transmission coefficient of the WGM resonator at the drop port. It is interesting
to note that we always have |T | ≤ 1, and ideal transmission (T = 1) only occurs when
a resonant laser radiation (σ = 0) is coupled to a lossless resonator (τi → +∞) with
coupling photon lifetimes that are matched (τe = τd).

According to (19) and (20), we have

Ast = 2βeiς
+∞∑

n=−∞
Gn+1G∗n = 2βeiς|T |2

+∞∑
n=−∞

En+1E∗n. (22)

Hence, using (17), the stationary amplitude Ast = |Ast| obeys

Ast = −βsin(2φ) |T |2eiς
+∞∑

n=−∞
(−1)nJn+1(Ast)Jn(Ast), (23)

and using successively the Bessel equalities

J−n(x) = (−1)nJn(x) (24)

Jm(x+ y) =
+∞∑

n=−∞
Jn(x)Jm−n(y), (25)

we are finally led to the transcendental equation

Ast = Γ J1(2Ast), (26)

where
Γ = −βsin(2φ) |T |2eiς (27)

is the overall loop gain, which is essentially the product of the optoelectronic gain and
the power transmission factor of the coupled WGM resonator. Existence of a stationary
state requires the phase factor eiς to be real, and equal to ±1 such that Γ is real and posi-
tive. Effectively, this round-trip phase matching condition corresponds to the necessity
of a constructive interference between successive round-trip replicas of the microwave
(Barkhausen condition for the phase).

The possible solutions of the transcendental (26) are therefore

Ast =
{

Atr = 0 valid for all Γ
Aosc = 1

2 Jc−1
1

[
1

2Γ

]
valid for all Γ ≥ 1

, (28)
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Figure 3: Variation of the non-trivial solutions of (26) as Γ is increased. Only the trivial
solution exists for Γ < 1. Then, the primary branch is the unique non-trivial
solution for 1 < Γ < 15.52. This primary branch of solutions, which exists for
all Γ > 1, increases monotonously but has an horizontal asymptote Amax1

st =
1.91. New non-trivial solutions (secondary branch) emerge for Γ > 15.52.
The bifurcation analysis shows that the microwave envelope A undergoes
a pitchfork bifurcation at Γ = 1, which corresponds to a Hopf bifurcation for
the microwave voltage variable V. The same analysis also shows that A
undergoes a saddle-node bifurcation at Γ = 15.52 (emergence of two new
fixed points, one being stable and the other one unstable). As Γ is further
increased, the system undergoes saddle-node bifurcations any time a new
branch of paired solutions emerges.

where Jc−1
1 is the inverse Bessel-cardinal function. The trivial equilibrium is therefore

a solution for all values of Γ , while nontrivial (oscillatory) solutions Aosc can only exist
for Γ > 1.

As explained in Fig. 2, the stationary solutions of the transcendental equation (26) are
given by the intersection of the functions J1(2Ast) and A st/Γ . When Γ < 1, there is only
one solution (the trivial one), while for Γ > 1, both functions will intersect for other
points than 0, thereby generating nontrivial equilibria. When 1 < Γ < 15.52, there is
only one oscillatory solution. However, at Γ = 15.52, a new pair of nontrivial solutions
emerges and coexists with the previous oscillatory state. As Γ increases to infinity, an
infinity of branches generating paired solutions are created; it appears very clearly that
all of them are converging to the zeros of the Bessel function J1(2x) when Γ → +∞.

It is important to note that realistic values for the normalized gain Γ are generally
not as high as 15. That is why in all the experiments of OEOs, the oscillator is generally
operated in the first branch of non-trivial solutions, whose maximal value is the first
zero of J1(2A st), yielding Amax1

st = 1.91. This asymptotic saturation can be observed in
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Fig. 3. In this paper, we will refer to this branch of nontrivial solution as the primary
branch of oscillatory solutions. Figure 3 also displays the emergence of the secondary
branch of paired solutions above Γ = 15.52.

After the determination of the various stationary states of the system, we will per-
form in the next two sections their stability analysis.

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

Rup

Rdown

Γ = 15.52

1
4

Γ

R

Figure 4: Variations of the function R expressed in (51). This function is inferior to
1/4 for the primary branch of nontrivial solutions (starting at Γ = 1). For the
secondary branch (starting at Γ = 15.52), one solution is stable (R < 1/4)
while the other one is unstable (R > 1/4).

6 Stability of the trivial equilibrium

The onset of oscillations generally occurs when the trivial fixed point Atr = 0 loses its
stability. In this section, we perform the stability analysis of this fixed point in order to
determine the conditions leading to oscillations.

Let us consider a perturbation δA around the trivial equilibrium Atr = 0. If that
perturbation decreases with time, the trivial equilibrium is stable; otherwise, if it in-
creases, the rest point is unstable and oscillations are triggered. The optical spectral
components En excited by the perturbation δA explicitly read

En ' εn(φ)×
 1

2nn! (δA)n if n ≥ 0
(−1)−n

2−n(−n)! (δA−n)∗ if n < 0
. (29)

It appears that whenever |n| > 1, the fields En are of higher order of perturbation, and
can therefore be neglected in a linear stability analysis. On the other hand, the induced
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fields at orders n = 0,± 1 are explicitly given by

E1 = −1
2

sin(φ)δA (30)

E0 = cosφ (31)

E−1 = −1
2

sin(φ)δA∗, (32)

In other words, the mode n = 0 is of zeroth order and is not influenced by the mi-
crowave perturbation δA in the linear approximation, while the modes n = ±1 are of
first order and are directly proportional to |δA|. For the sake of mathematical clarity,
we will then rewrite the fields E±1 as δE±1 since they are first order perturbations. It
straightforwardly appears that the modal output variables related to G will have the
same order of magnitude as their input counterpart E. Hence, we will have to consider
only the variables G0 and δG±1, and neglect all the remaining ones.
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Figure 5: Cavity ring down measurement. The thick gray curve is the experimental
optical power at the output of the “through” port of the resonator when the
input wavelength is rapidly swept. The optical signal at resonance decays
exponentially and interferes with the next wavelengths coming from the in-
put laser. The theoretical fit that enables to extract the intrinsic and exci-
tation photon lifetimes is derived in [29]. Here, the intrinsic and excitation
photon lifetimes are measured at 0.65 µs and 2.9 µs, respectively.

Using (19) the microwave perturbation can be rewritten as

δA = 2βeiς[G0δG∗−1 +G∗0δG1], (33)
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while according to (18), the output field perturbations G±1 obey

δĠ1 = −
[1
τ

+ iσ
]
δG1 +

2√
τeτd

δE1 (34)

δĠ−1 = −
[1
τ

+ iσ
]
δG−1 +

2√
τeτd

δE−1. (35)

In the matrix form, the above equation can be rewritten as[
δĠ1
δĠ∗−1

]
= [Str]

[
δG1
δG∗−1

]
, (36)

where

[Str] =
2√
τeτd

 1
T
(
Γ
2 − 1

)
Γ

2T ∗
Γ

2T
1
T ∗

(
Γ
2 − 1

)  (37)

is a 2 × 2 matrix ruling the dynamics of the perturbation flow (Jacobian). The trivial
fixed point will be stable whenever the eigenvalues of this Jacobian matrix have strictly
negative real parts. The determination of these eigenvalues is straightforward and it is
found that the trivial equilibrium is stable only when Γ < 1, and unstable otherwise.

We will show in the next section that crossing that threshold value triggers uncon-
ditionally stable microwave oscillations in the primary branch of nontrivial equilibria,
while for the higher order branches of paired solutions, some solutions are stable while
others are not.

7 Stability of the oscillatory solution

So far, the theoretical analysis has shown that there are two types of stationary solu-
tions. The trivial equilibrium exists for all Γ but is stable only for Γ < 1. The oscillatory
solutions only exist for Γ > 1, and the purpose of this section is to demonstrate that
they might be stable or unstable. Once again, to demonstrate that this solution is sta-
ble, we have to show that any perturbation δA of the oscillatory solution Aosc of interest
exponentially decays to zero. Otherwise, the oscillatory solution is unstable.

According to (19), the perturbation of the steady state microwave solution Aosc obeys

δA = 2βeiς
+∞∑

n=−∞
Gn+1 δG∗n +G∗n δGn+1. (38)

On the other hand, the steady-state input and output electric fields obey

En = ε(φ) Jn(Aosc) (39)

Gn = T En. (40)

In the demonstration we have made to investigate the stability of the trivial fixed
point, it appeared that the Jacobian matrix [Str] had to be expressed relatively to the
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Figure 6: Optical spectrum of the signal at the through-port of the resonator. The
central frequency fL = 193276.6GHz is the optical frequency of the input
laser. The sidemodes created by the MZ intensity modulator driven by the
microwave oscillation are clearly visible on each side of the input frequency.
The microwave noise from the amplifier is visible as a plateau on each side-
mode, on top of which the oscillation at the FSR frequency stands. It is ap-
parent on this figure that the amplitudes of the sidemodes decreases very
rapidly, so that only few of them are necessary to describe the behavior of
the oscillator in the numerical simulations.

variables δG1 and δG∗−1. In the case of the nontrivial solutions, (38) shows that we have
an infinity of perturbations to consider, but however, we will decompose by analogy
the microwave perturbation as

δA = δA
+

+ δA− (41)

where

δA
+

= 2βeiς
+∞∑

n=−∞
T ∗E∗n−1 δGn (42)

δA− = 2βeiς
+∞∑

n=−∞
T E1−n δG∗−n (43)

are global variables associated to the output field perturbations δGn and their counter-
parts δG∗−n (complex conjugate, opposite sidemode), respectively. We will hereafter use
these variables to obtain a Jacobian matrix whose eigenvalues will decide the stability
of the nontrivial stationary states.

In the feedback loop, the perturbation δA will first induce perturbations δEn. The
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Figure 7: RF spectrum of the generated microwave. The 10.41 GHz oscillation corre-
sponding to the FSR of the resonator. This microwave signal is strong, and
stands 50 dB above the filtered noise of the RF amplifier.

first-order Taylor expansion of a perturbation of the amplitude can be determined as

|Aosc + δA| ' Aosc +
1
2

[δA+ δA∗]. (44)

Hence, using (39), the input field perturbations can be calculated as

δEn =
1
2
εn(φ)J’n(Aosc) [δA+ δA∗], (45)

where the prime denotes the derivative of the Bessel function relatively to its argument
Aosc. The input field perturbations δEn do induce output field perturbations δGn, which
obey

δĠn = −
[1
τ

+ iσ
]
δGn +

2√
τeτd

δEn (46)

By multiplying the aforementioned equation by 2βeiςT ∗E∗n−1 and summing over all
modal indices n, we are led to the following equation for δA

+
:

δȦ
+

= −
[1
τ

+ iσ
]
δA

+
+

4βeiςT ∗√
τeτd

+∞∑
n=−∞

E∗n−1 δEn, (47)

and analogously, it can be found that δA− obeys

δȦ− = −
[1
τ
− iσ

]
δA− +

4βeiςT√
τeτd

+∞∑
n=−∞

E1−n δE∗−n. (48)
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Figure 8: Experimental time-domain dynamics. The (light gray) experimental trace
of the microwave signal is obtained with a ultra-fast oscilloscope, just after
abruptly switching-on the laser. At the very beginning, the signal consists of
noise from the RF amplifier. The RF oscillation at the FSR frequency rapidly
grows above the noise level, and its amplitude reaches the stationary state
with a time-scale in the µs range. The inset is a zoom-in presenting the fast-
scale dynamics of the same curve. It shows that the microwave frequency
is indeed around 10 GHz. The apparent amplitude noise is an artefact orig-
inating from the fact that albeit ultra-fast, the 30 GHz sampling rate only
provides 6 points for every period of our 10 GHz signal. The experimental
microwave envelope signal (thick blue line) is in very good agreement with
the envelopesA(t) obtained numerically in Fig. 9.

We demonstrate in the Appendix that the perturbation (47) and (48) can be rewritten
as

δȦ
+

= −
[1
τ

+ iσ
] {
δA

+
−R[δA+ δA∗]

}
(49)

δȦ− = −
[1
τ
− iσ

] {
δA− −R[δA+ δA∗]

}
, (50)

where R is a function of the gain Γ :

R =
1
4
Γ [J0(2Aosc)− J2(2Aosc)] . (51)

Since δA = δA
+

+ δA− , we can finally rewrite (49) and (50) under the form of a four-
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dimensional autonomous flow 
δȦ+
δȦ−
δȦ∗+
δȦ∗−

 = [Sosc]


δA+
δA−
δA∗+
δA∗−

 , (52)

where the Jacobian matrix [Sosc] can be written under the synthetic block matrix form

[Sosc] =
[

[U] [V]
[V∗] [U∗]

]
(53)

with

[U] =
2√
τeτd

[
R−1
T

R
T

R
T ∗

R−1
T ∗

]
(54)

[V] =
2√
τeτd

[
R
T

R
T

R
T ∗

R
T ∗

]
. (55)

The oscillatory solution Aosc is therefore stable if all the eigenvalues of the constant
and complex-valued matrix [Sosc] have a strictly negative real part. A straightforward
method would be to actually compute the eigenvalues of this four-dimensional matrix
and evaluate the sign of their respective real parts. However, we can circumvent that
tedious task by noting due to the particular structure of [Sosc], the set of its eigenvalues
is the union of the eigenvalues of the two-dimensional matrices [U+V] and [U−V].
Hence, the stability of the oscillations is guaranteed as long as the eigenvalues of the
2 × 2 matrices [U±V] have strictly negative real parts. This stability condition is triv-
ially satisfied for [U−V] which is a diagonal matrix whose diagonal elements (i. e.,
eigenvalues) are −1/τ± iσ. On the other hand, as far as the matrix [U+V] is concerned,
the above conditions respectively yield R < 1

4 .
According to Fig. 4, this inequality is indeed satisfied whenever Γ > 1 for the branch

of primary solutions, since R has an absolute maximum value equal to 1
4 for Γ = 1, and

decreases monotonously afterwards. On the other hand, the higher-order branches of
paired solutions have the typical stability pattern of saddle-node fixed points, as one
solution remains stable while the other is unstable.

We recall again that experimentally, it is extremely difficult to reach Γ values of the
order of 15. Most experimental studies can in fact hardly achieve gain values superior
to 3. Therefore, the solution of practical interest belongs to the primary branch: our
analysis has demonstrated that this oscillating solution is unique in the range 1 < Γ <
15.52, and is always exponentially stable for any Γ > 1. It is interesting to note that
in the case of fiber-based OEOs, we proved that the microwave oscillation was stable
only at up to Γ = 2.31, in agreement with experiments [21, 22]. Here, we prove that
the oscillator is unconditionally stable at up to a much higher value (15.52), thereby
demonstrating that this WGM-based OEO is significantly more stable than its fiber-
based counterpart.
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Figure 9: Numerical simulation of the microwave envelope dynamics, and compari-
son with experiments. The continuous black (down) and dashed blue (top)
curves are numerical simulations obtained for Γ = 1.18 and 1.55, respec-
tively. The other parameters are τi = 0.65µs, τe = 2.9µs (same as the ex-
perimental values), τd = 0.1µs, σ = 0 (at resonance), and φ = π/4. The
initial condition is a random value taken in a gaussian distribution with av-
erage value and standard deviation of 0.01. The envelopes of experimen-
tal time traces are plotted in thick lighter lines on top of the continuous
black and dashed blue curves (the photodiode and artefact noise have been
substracted).

8 Comparison between numerical and experimental results

The experimental setup is presented in detail in Fig. 1.
A preliminary measurement is the evaluation of the intrinsic and coupling Q factors

of the cavity. This measure, presented in Fig. 5 is performed in the open loop con-
figuration and is mathematically explained in ref. [29]. It enables to confirm that all
our quality factors are of the order of 108, yielding characteristic time scales of the or-
der of 1 µs. When the oscillation loop is closed, we can monitor different optical and
microwave variables of interest.

The optical output of the coupled resonator’s through-port is used to control the
detuning σ between the input laser and the resonance. Once the detuning is set and
the gain is above threshold, oscillations are sustained in the optical branch. Figure 6
shows the optical spectrum taken at the “through” output of the resonator (as drawn
in Fig. 1). The spectral line due to the laser is in the center at fL = 193276.6GHz, and
two pairs of sidemodes are visible in this case, separated by the FSR fM = 10.4GHz.
As we can see on this 75 dB dynamic-range figure, the amplitude of these sidemodes
decreases very rapidly decreases with their order |n|.
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In the RF branch, the spectrum of the microwave oscillation is measured using a
22 GHz RF spectrum analyzer. A typical RF spectrum is presented in Fig. 7 and demon-
strates that the oscillation arises at a fixed frequency given by the FSR fM of the res-
onator. A plateau is visible below the oscillation spectral line and is due to the noise of
the RF amplifier filtered between 10 and 11 GHz.

Simultaneously, the temporal dynamics of the microwave signal is monitored using
a 40 GHz-bandwidth oscilloscope. To investigate this time-domain dynamics, another
MZ modulator driven by a square signal is used to switch the input laser light on and
off. Therefore, the gain Γ of the oscillator is abruptly changed from 0 to a value that is
higher than 1, and the transient dynamics can be monitored using a photodiode and a
fast oscilloscope. The resulting signal is displayed in Fig. 8. The actual signal V(t) is
shown in light gray while the envelope V (t) is the thick blue curve. The inset of this
figure is provided to show the oscillation occurring at a faster time scale (in the range
of 100 ps, which corresponds to the period TM = 1/fM), while the envelope time scale
is in the µs range. It is worth noting that the apparent amplitude noise in this inset
is an artefact due to the barely sufficient sampling rate of the oscilloscope (30 GHz)
compared to the oscillation frequency (10 GHz).

The envelope curve of Fig. 8 can be compared to the numerical simulations presented
on Fig. 9. These simulations were obtained using a fourth-order Runge-Kutta algorithm
for the (17), (18) and (19). The initial conditions where random complex value for A,
taken in a gaussian distribution centered around 0.01 with standard deviation of 0.01.
Both numerical and experimental curves feature the same characteristics, and the tran-
sition from the initial state to the stationary solution occurs in similar duration, of the
order of 1 µs. This very good agreement between the simulation and the experimental
result validates the experimental interest of this model.

It is interesting to note that from a purely theoretical point of view, the model is in-
finite dimensional because there is an infinity of fields Gn to consider. However, only
a few of them are necessary to yield accurate results, as foreshadowed by the experi-
mental spectrum of Fig. 6. In practice, our simulations were performed with 10 pairs
of sidemodes, even though considering 5 pairs would have already been very accurate.

9 Conclusion

In this article, we have proposed a nonlinear dynamics approach to study WGM-Based
OEOs. We have used a complex microwave envelope variable to investigate the time-
domain behavior and stability properties of this oscillator. Our study has enabled to
determine the various stationary states and their stability. It was shown that above
threshold, the principal branch of the oscillations, which is the only one experimen-
tally accessible so far, is always exponentially stable regardless of the gain. However,
the analysis has also evidenced higher order branches of solutions whose stability prop-
erties are more complex, with some states being stable while the others are not. Both
the analytical and numerical analysis have been confirmed by the experimental mea-
surements.
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Future work will consist in using the model to optimize the metrics of the oscillator.
In particular, we aim to investigate the phase noise performance of this WGM-based
OEO by adding calibrated noise terms in our dynamical equations. We would then
obtain stochastic differential equations that would enable to predict the phase noise
the spectra and the Allan deviation of the oscillator.

It is already known that very high microwave frequencies, at the edge of the millimeter-
waves band (' 100GHz), can be generated by selecting a higher harmonic of the beat-
note signal detected by the photodetector. Our model enables to analyze the microwave
envelope of such harmonics kΩM by summing the quadratic terms Gn+kG∗n in (14).

Another prospective work would be to extend this formalism in order to account
for nonlinear phenomena in the WGM resonator. Some research works (see e. g. [30])
have already demonstrated that scattering has a measurable effect on the phase noise
performance of OEOs, particularly when the optical cavity has a high Q factor. Vari-
ous nonlinear phenomena (Kerr, Raman, Brillouin) have an effect on the phase noise
performance, as well as the chromatic dispersion which converts laser frequency noise
into phase fluctuations. We expect this theoretical approach to be able to give both a
quantitative and qualitative insight into all into these phenomenologies.

Appendix

A. Bessel-cardinal functions

We define the Bessel-cardinal function of order n as

Jcn(x) =
Jn(x)
xn

with x ∈R and n ∈Z, (56)

where Jn is the n-th order Bessel function of the first kind. From a qualitative point
of view, Bessel-cardinal functions look like the sine-cardinal function sinc(x) = sinx/x
when n > 0., with an absolute maximum centered at x = 0, and an oscillatory behavior
converging to zero as x→±∞. On the other hand, the Bessel-cardinal function diverges
to infinity as x→±∞ with an oscillatory behavior when n < 0. Since Jn(r)einθ can be re-
witten under the analytical form znJcn(|z|) with z = reiθ, the Bessel-cardinal formalism
is very useful to carry out some of the mathematical calculations.

B. Demonstration of (49) and (50)

This demonstration relies on the explicit calculation of the infinite sums in the right-
hand side of (47) and (48).

Let’s fist calculate the sum in (49). Using (39) and (44) and the recurrence relation-
ship

J’n(x) =
1
2

[Jn−1(x)− Jn+1(x)] (57)
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we explicitly have:

+∞∑
n=−∞

E∗n−1 δEn =
1
4

[δA+ δA∗] (58)

×
+∞∑

n=−∞

{
εn(φ)εn−1(φ) Jn−1(Aosc)

× [Jn−1(Aosc)− Jn+1(Aosc)]
}

However, we have εn(φ)εn−1(φ) = (−1)n sinφcosφ, while (24) and (25) yield the follow-
ing Bessel relationships:

+∞∑
n=−∞

(−1)nJ2
n−1(x) = −

+∞∑
n=−∞

J1−n(x)Jn−1(x)

= −J0(2x) (59)
+∞∑

n=−∞
(−1)nJn−1(x)Jn+1(x) = −

+∞∑
n=−∞

J1−n(x)Jn+1(x)

= −J2(2x). (60)

Hence, (59) can be finally simplified to

+∞∑
n=−∞

E∗n−1 δEn = −1
4

sinφcosφ (δA+ δA∗)

× [J0(2Aosc)− J2(2Aosc)]. (61)

Since ε−n(φ) = (−1)nεn(φ), it can also be shown that in the non-trivial stationary states,
E∗−n = En and δE∗−n = δEn, so that the infinite sums in the right-hand sides of (47) and (48)
are identical. Then, using (27) and (61) the demonstration of (49) and (50) is straight-
forward.
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