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Abstract.

We point out an explicit connection between graphs drawn on compact Riemann

surfaces defined over the field Q̄ of algebraic numbers — so-called Grothendieck’s

dessins d’enfants — and a wealth of distinguished point-line configurations. These

include simplices, cross-polytopes, several notable projective configurations, a number

of multipartite graphs and some ‘exotic’ geometries. Among them, remarkably, we

find not only those underlying Mermin’s magic square and magic pentagram, but also

those related to the geometry of two- and three-qubit Pauli groups. This finding seems

to indicate that dessins d’enfants may provide us with a new powerful tool for gaining

deeper insight into the nature of finite-dimensional Hilbert spaces and their associated

groups, with a special emphasis on contextuality.

PACS numbers: 03.65.Fd, 03.67.-a, 02.20.-a, 02.10.Ox

MSC codes: 11G32, 81P13 ,81P45, 14H57, 81Q35

1. Introduction

If one draws a (connected) graph — a particular set of vertices and edges — on a smooth

surface, then such graph inherits extra local/combinatorial and global/topological

features from the surface. If the latter is, for example, a (compact) complex

one-dimensional surface — a Riemann surface, then the combinatorics of edges is
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encapsulated by a two-generator permutation group and the Riemann surface happens

to be definable over the field Q̄ of algebraic numbers. This observation is central to the

concept of dessins d’enfants (or child’s drawings) as advocated by Grothendieck in his

Esquisse d’un programme (made available in 1984 following his Long March written in

1981) in the following words: In the form in which Belyi states it, his result essentially

says that every algebraic curve defined over a number field can be obtained as a covering

of the projective line ramified only over the points 0, 1 and ∞. The result seems to

have remained more or less unobserved. Yet it appears to me to have considerable

importance. To me, its essential message is that there is a profound identity between

the combinatorics of finite maps on the one hand, and the geometry of algebraic curves

defined over number fields on the other. This deep result, together with the algebraic

interpretation of maps, opens the door into a new, unexplored world - within reach of

all, who pass by without seeing it [1, Vol. 1], [2].

Our aim is to show that Grothendieck’s dessins d’enfants (see, e. g., [3, 4] as well

as [5]) have, as already envisaged in [6], great potential to become a proper language

for a deeper understanding of various types of sets of Hermitian operators/observables

that appear in finite-dimensional quantum mechanical settings and for furnishing a

natural explanation why eigenvalues of these operators are regarded as the only available

tracks in associated measurements. The main justification of our aim is provided by the

fact that dessins lead very naturally to already-discovered finite geometries underlying

quantum contextuality (like the grid, GQ(2, 1), behind Mermin’s magic square and/or

an ovoid of PG(3, 2) behind Mermin’s magic pentagram) and also to those underlying

commutation relations between elements of the two-qubit Pauli group (the generalized

quadrangle of order two, GQ(2, 2), its geometric hyperplanes and their complements,

see, e. g., [7]).

The paper is organized as follows. Section 2 gathers some basic knowledge

about dessins d’enfants, their permutation group and topology, their isomorphism

with conjugacy classes of the cartographic group C+
2 , as well as about associated

Belyi functions. Section 3 focuses on a rather elementary application of our ideas by

interpreting Bell’s theorem about non-locality in terms of the geometry as simple as

a square/quadrangle, which is found to be generated by four distinct dessins defined

over the field Q[
√
2]. Section 4, the core one, starts with a complete catalog of all

connected geometries induced by dessins having up to 12 edges. In the subsequent

subsections, we analyze in detail the non-trivial cases by selecting, whenever possible,

a dessin of genus zero and having the smallest number of faces. As in most cases the

edges of dessins dealt with admit labeling by two- or three-qubit observables, on our

way we not only encounter already recognized quantum-relevant finite geometries like

the Fano plane, the grid GQ(2, 1), the Petersen graph, the Desargues configuration

and the generalized quadrangle GQ(2, 2), but find a bunch of novel ones, some already

surmised from different contexts, like the Pappus 93-configuration, the Hesse (94, 123)-

configuration (aka the affine plane AG(2, 3)), the Reye (124, 163)-configuration and a

3 × 3 × 3-grid (aka a Segre variety of type S1,1,1). Section 5 is reserved for concluding
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remarks.

2. Dessins d’enfants and the Belyi theorem

Dessins d’enfants and their symmetry groups

A dessin d’enfant (child’s drawing) D is a graph drawn on a surface — a smooth compact

orientable variety of dimension two — such that its vertices are points, its edges are arcs

connecting the vertices, and its complement is homeomorphic to the disjoint union of

open disks of R2, called faces [2]–[11]. They may exist multiple edges as well as loops,

but the graph has to be connected. If edges do not intersect, then such a graph is called

a map. Denoting the number of vertices, edges and faces by V , E and F , respectively,

the genus g of the map follows from Euler’s formula V −E+F = 2−2g. A map can be

generalized to a bicolored map. The latter is a map whose vertices are colored in black

and white in such a way that the adjacent vertices have always the opposite color; the

corresponding segments are the edges of the bicolored map. The Euler characteristic

now reads 2− 2g = B +W + F − n, where B, W and n stands for the number of black

vertices, the number of white vertices and the number of edges, respectively. Given a

bicolored map with n edges labeled from 1 to n, one can associate with it a permutation

group P = 〈α, β〉 on the set of labels such that a cycle of α (resp. β) contains the

labels of the edges incident to a black vertex (resp. white vertex), taken, say, in the

clockwise direction around this vertex; thus, there are as many cycles in α (resp. β)

as there are black (resp. white vertices), and the degree of a vertex is equal to the

length of the corresponding cycle. An analogous cycle structure for the faces follows

from the permutation γ satisfying αβγ = 1. A dessin D can be ascribed a signature

s = (B,W, F, g) and the full information about it can be recovered from the structure

of the generators of its permutation group P (also named the passport in [4, 10]) in the

form [Cα, Cβ, Cγ], where the entry Ci, i ∈ {α, β, γ} has factors lni

i , with li denoting the

length of the cycle and ni the number of cycles of length li.

As already observed by Grothendieck himself, bicolored maps on connected oriented

surfaces are unique in the sense that they are in one-to-one correspondence with

conjugacy classes of subgroups of finite index of the triangle group, also called

cartographic group‡
C+

2 =
〈

ρ0, ρ1, ρ2|ρ21 = ρ0ρ1ρ2 = 1
〉

. (1)

The existence of associated dessins of prescribed properties can thus be straightforwardly

checked from a systematic enumeration of conjugacy classes of C+
2 ; with the increasing

‡ The bicolored maps we consider are hypermaps [12] of the so-called pre-clean type, where the valency

of white vertices is ≤ 2. General hypermaps are, of course, allowed to have any valency for their vertices.

They follow from the conjugacy classes of the free group on two generatorsH+

2 = 〈ρ0, ρ1, ρ2|ρ0ρ1ρ2 = 1〉.
The number of general hypermaps with n edges is given by the OEIS sequence number A057005:

see http://oeis.org/A057005. Only bicolored maps following from the conjugacy classes of the

cartographic group C+

2 (that Grothendieck calls dessins d’enfants) possess a Belyi function.

http://oeis.org/A057005
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n the number of such dessins grows quite rapidly

1, 3, 3, 10, 15, 56, 131, 482, 1551, 5916, 22171, 90033, 370199, · · ·

Belyi’s theorem

Given f(x), a rational function of the complex variable x, a critical point of f is a root

of its derivative and a critical value of f is the value of f at the critical point. Let

us define a so-called Belyi function corresponding to D as a rational function f(x) of

degree n embedded into the Riemann sphere Ĉ in such a way that (i) the black vertices

are the roots of the equation f(x) = 0 with the multiplicity of each root being equal to

the degree of the corresponding (black) vertex, (ii) the white vertices are the roots of

the equation f(x) = 1 with the multiplicity of each root being equal to the degree of

the corresponding (white) vertex, (iii) the bicolored map is the preimage of the segment

[0, 1], that is D = f−1([0, 1]), (iv) there exists a single pole of f(x), i. e. a root of the

equation f(x) = ∞, at each face, the multiplicity of the pole being equal to the degree

of the face, and (v) besides 0, 1 and ∞, there are no other critical values of f .

It can be shown that to every D there corresponds a Belyi function f(x) and that

this function is, up to a linear fractional transformation of the variable x, unique. It

is, however, a highly non-trivial task to find/calculate the Belyi function for a general

dessin.

Finite geometries from dessins d’enfants

An issue of central importance for us is the fact that one can associate with a dessin D
a point-line incidence geometry, GD, in the following way. A point of GD corresponds

to an edge of D. Given a dessin D, we want its permutation group P to preserve the

collineation of the geometry GD. Thus given S a subgroup of P which stabilizes a pair

of points, we define the point-line relation on GD such that two points will be adjacent

if their stabilizer is isomorphic to S. This construction allows to assign finite geometries

GDi to a dessin D, i = 1, · · · , m with m being the number of non-isomorphic subgroups

S of P that stabilize a pair of elements §. As a slight digression we mention that,

presumably, this action of the group P of a dessin D on the associated geometry GD

is intricately linked with the properties of the absolute Galois group Γ = Gal(Q̄/Q),

which is the group of automorphisms of the field Q̄ of algebraic numbers. Although

Γ is known to act faithfully on D [2, 11], its action on GD must be rather non-trivial

because the map from D to GD is non injective. Further work is necessary along this

line of thoughts to clarify the issue.

Using a computer program, we have been able to completely catalogize incidence

geometries associated with dessins featuring up to 12 edges, and also found a couple

§ Our definition follows an example of the action on the Fano plane of a permutation group of order

|PSL(2, 7| = 168 associated with a tree-like dessin (of the relevant cycle structure) given in [2, (a), vol.

2, p. 17 and p. 50].
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Figure 1. A simple observable proof of Bell’s theorem is embodied in the geometry

of a (properly labeled) square (a) and four associated dessins d’enfants, b1 to b4. For

each dessin an explicit labeling of its edges in terms of the four two-qubit observables

is given. The (real-valued) coordinates of black and white vertices stem from the

corresponding Belyi functions as explained in the main text.

of dessins of higher rank that produce distinguished geometries. The results of our

calculations are succinctly summarized in Table 1. The subsequent sections provide

a detailed account of a variety of dessins computed, their corresponding point-line

incidence geometries, and, what is perhaps most important, how these relate to the

physics of quantum observables of multiple-qubit Pauli groups and related quantum

paradoxes. In other words, we shall give a more exhaustive and rigorous elaboration of

the ideas first outlined in a short essay-like treatise [6].

3. The square geometry of Bell’s theorem and the corresponding dessins

In a theory in which parameters are added to quantum mechanics to determine the results

of individual measurements, without changing the statistical predictions, there must be

a mechanism whereby the setting of one measuring device can influence the reading of

another instrument, however remote [8].



6

The square geometry of Bell’s theorem

Suppose we have four observables σi, i = 1, 2, 3, 4, taking values in {−1, 1}, of which
Bob can measure (σ1, σ3) and Alice (σ2, σ4). The Bell-CHSH approach to quantum

contextuality/non-locality consists of defining the number

C = σ2(σ1 + σ3) + σ4(σ3 − σ1) = ±2

and observing the (so-called Bell-CHSH) inequality [16, p. 164]

| 〈σ1σ2〉+ 〈σ2σ3〉+ 〈σ3σ4〉 − 〈σ4σ1〉 | ≤ 2,

where 〈〉 here means that we are taking averages over many experiments. This inequality

holds for any dichotomic random variables σi that are governed by a joint probability

distribution. Bell’s theorem states that the aforementioned inequality is violated if one

considers quantum observables with dichotomic eigenvalues. An illustrative example is

the following set of two-qubit observables

σ1 = IX, σ2 = XI, σ3 = IZ, σ4 = ZI, (2)

where X , Y and Z are the ordinary Pauli spin matrices and where, e. g., IX is a short-

hand for I ⊗X (used also in the sequel). We find that

C2 = 4 ∗ I + [σ1, σ3][σ2, σ4] = 4











1 . . 1

. 1 1̄ .

. 1̄ 1 .

1 . . 1











has eigenvalues 0 and 8, both with multiplicity 2 (1̄ ≡ −1). Taking the norm of

the bounded linear operator A as ||A|| = sup(||Aψ||/||ψ||), ψ ∈ H (H being the

corresponding Hilbert space), one arrives at the maximal violation of the Bell-CHSH

inequality [16, p. 174], namely ||C|| = 2
√
2.

The point-line incidence geometry associated with our four observables is one of

the simplest, that of a square – Fig.1a; each observable is represented by a point and

two points are joined by a segment if the corresponding observables commute. It is

worth mentioning here that there are altogether 90 distinct squares among two-qubit

observables and as many as 30240 when three-qubit labeling is employed [14], each

yielding a maximal violation of the Bell-CHSH inequality.

Dessins d’enfants for the square and their Belyi functions

As it is depicted in Fig. 1, the geometry of square can be generated by four different

dessins, b1, · · · , b4, associated with permutations groups P isomorphic to the dihedral

group D4 of order 8.

The first dessin (b1) has the signature s = (B,W, F, g) = (3, 2, 1, 0) and the

symmetry group P = 〈(2, 3), (1, 2)(3, 4)〉 whose cycle structure reads [2112, 22, 41], i.e.



7

one black vertex is of degree two, two black vertices have degree one, the two white

vertices have degree two and the face has degree four. The corresponding Belyi

function reads f(x) = x2(2 − x2). Its critical points are x ∈ {−1, 1, 0} and the

corresponding critical values are {1, 1, 0}. The preimage of the value 0 (the solutions

of the equation f(x) = 0) corresponds to the black vertices of the dessin positioned

at x ∈ {−
√
2,
√
2, 0} and the preimage of the value 1 (the solutions of the equation

f(x) = 1) corresponds to the white vertices at x = ±1. The second dessin (b2) has

s = (2, 3, 1, 0), P = 〈(1, 2)(3, 4), (2, 3)〉 with [22, 2112, 41], and the Belyi function of the

form f(x) = (x2 − 1)2. The third dessin (b3) is characterized by s = (1, 2, 3, 0) and

its P = 〈(1, 2, 4, 3), (1, 2)(3, 4)〉 has the cycle structure [41, 22, 2112]. The Belyi function

may be written as f(x) = (x−1)4

4x(x−2)
. As f ′(x) = (x−1)3(x2

−2x−1)
2(x−2)2x2 , its critical points lie at

x = 1 (where f(1) = 0) and at x = 1±
√
2 (where f(1 ±

√
2) = 1). Finally, the fourth

dessin (b4) has P = 〈(1, 2, 4, 3), (2, 3)〉, the signature s = (1, 3, 2, 0) and cycle structure

[41, 2112, 22]. The Belyi function reads f(x) = (x−1)4

16x2 ; hence, f ′(x) = (x−1)3(x+1)
8x3 . The

critical points are at x = −1 (with critical value 1) and x = 1 (with critical value 0), the

preimage of 0 is the black vertex at x = 1 and the preimage of 1 consists of the white

vertices at x ∈ {−1, 3±
√
8}.

Summing up, one of the simplest observable proofs of Bell’s theorem is found to

rely on the geometry of a square and four distinct dessins associated with it. Although

we still do not know how these dessins are related to each other, it is quite intriguing

to see that all critical points live in the extension field Q(
√
2) ∈ Q̄ of the rational field

Q. Hence, a better understanding of the properties of the group of automorphisms of

this field (which is itself a subgroup of the absolute Galois group Γ) may lead to fresh

insights into the nature of this important theorem of quantum physics.

4. A wealth of other notable point-line geometries relevant to contextuality

It is also appealing to see the failure of the EPR reality criterion emerge quite directly

from the one crucial difference between the elements of reality (which, being ordinary

numbers, necessarily commute) and the precisely corresponding quantum mechanical

observables (which sometimes anti-commute) [13, (a)].

4.1. Two geometries of index six: the octahedron and the bipartite graph K(3, 3)

As the geometries of index five are only trivial simplices (see Table 1), we have to move

to index six in order to encounter non-trivial guys, namely the octahedron and the

bipartite graph of type K(3, 3).

The octahedron can be labeled by three-qubit observables, and one such labeling

is given in Fig. 2a. The figure also illustrates one of the associated dessins (b), whose

Belyi function of is f(x) = 27
32
x2(2 − x2)2. The function has critical points at x = 0

and x = ±
√
2 (these being also the preimage of 0), and the white vertices of the dessin

correspond to x = ±
√

2/3 and x = ±
√

8/3 (the preimage of 1).
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Figure 2. The octahedron with vertices labeled by three-qubit observables (a) and

an associated dessin (b).

A remarkable property of the graph K(3, 3) is that it lives in the generalized

quadrangle GQ(2, 2), disguised there as a generalized quadrangle of type GQ(1, 2) [17].

And since GQ(2, 2) was found to mimic the commutation relations between elements of

the two-qubit Pauli group [7], K(3, 3) thus naturally lends itself, like the above-discussed

square, to a labeling in terms of two-qubit observables — as, for example, depicted in

Fig. 3a. One of the associated dessins (Fig. 3b) possesses the Belyi function of the form

f(x) = ax4(x − 1)2, where a = 36

24
= 729

16
. Since f ′(x) = ax3(x − 1)(3x − 2) the critical

points are at x = 2/3, x = 0 and x = 1. The black vertices of the dessin correspond

to x = 0 and x = 1; out of its five white vertices three answer to real-valued variable,

namely x = −1
3
, x = 2

3
and x ≈ 1.118 (the latter being denoted as x1 in Fig. 3b), and

the remaining two — denoted as x2 and x3 in the figure in question — have imaginary,

complex-conjugate one: x ≈ 0.36 exp (±iφ), with φ ≈ 99.4◦.

4.2. The Fano plane (everywhere)

The only non-trivial geometry of index seven is the projective plane of order two, the

Fano plane (Fig. 4a). This plane plays a very prominent role in finite-dimensional

quantum mechanics, being, for example, intricately related — through the properties of

the split Cayley hexagon of order two [17] — to the structure of the three-qubit Pauli

group [18]. A quick computer search for all permutation subgroups of C+
2 isomorphic

to the group PSL(2, 7), the automorphism group of the Fano plane, shows that this

plane can be recovered from 10 distinct dessins. One choice is depicted schematically

in Fig. 4b; it corresponds to passport 8 (the fourth dessin) in the catalog of Bétréma &
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Figure 3. The bipartite graph K(3, 3) with one of its two-qubit labelings (a) and its

generating dessin (b).

Figure 4. The Fano plane portrayed in its most frequent rendering (a) and one of its

ten stabilizing dessins (b).
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Figure 5. The 16-cell (a) and an associated dessin (b).

Zvonkin [15]. The corresponding permutation group is P = 〈(2, 7, 6, 5)(3, 4), (1, 2)(3, 5)〉
and the Belyi function reads f(x) =

√
8x4(x − 1)2(x − a), with a = −1

4
(1 + i

√
7); its

critical points are located at x = 0 and x = 1 (yielding critical value 0) and at x = a

(yielding 1).

4.3. The 16-cell, stellated octahedron and the completed cube

When moving to index eight, we encounter an appealing 16-cell on the one hand, and

the remarkably “twinned” stellated octahedron and completed cube on the other hand.

The 16-cell (Fig. 5a) arises from a “straight-line” dessin with the signature (5, 4, 1, 0)

and the permutation group isomorphic to D8. Its Belyi function is the fourth order of

the map x→ x2−2, that is f(x) = 8x(x2−2)(x4−4x2+2), with critical points located

at x− 0, x = ±
√
2 and x = ±

√

2±
√
2.

The dessin with signature s = (2, 6, 2, 0) , illustrated in Fig. 6c, has the permutation

group P = 〈(1, 2, 4, 3)(5, 7, 6, 8), (2, 5)(3, 7)〉, which is isomorphic to Z3
2⋊Z2 and endowed

with the cycle structure of the form [42, 2212, 42]. The stabilizer of a pair of its edges

is either the group Z2, leading to the geometry of a stellated octahedron (Fig. 6a), or

the trivial single element group Z1, in which case we get the geometry of a (triangle
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Figure 6. The stellated octahedron (a), the completed cube (b) and their common

stabilizing dessin (c).

free) completed cube, i. e. the ordinary cube where pairs of opposite points are joined

(Fig. 6b). The latter configuration also appears in a recent paper [19, pp. 33–34 as well

as Conjecture 6.1] as an 8-face Kepler-Poinsot quadrangulation of the torus. Note that,

in addition the 6 faces shared with the ordinary cube, the completed cube contains also

8 non-planar faces of which four are self-intersecting. The completed cube can also be

viewed as the bipartite graph K(4, 4). The Belyi funcion of the dessin has the form

f(x) = K
(x− 1)4(x− a)4

x3
, a =

8
√
10− 37

27
, K ≈ −0.4082,

from where we find the positions of “critical” white vertices to be x ≈ 0.0566± 0.506i,

with the other four white vertices being located at x = −1.069, x = −0.162 and

x = 1.634± 0.6109i.

4.4. Geometries of index nine: grid (Mermin’s square), Pappus and Hesse

In the realm of index nine we meet, in addition to our old friend, a 3 × 3-grid (alias

generalized quadrangle GQ(2, 1)), also other distinguished finite geometries like the

Pappus 93-configurations and the Hesse 94123-configuration (aka the affine plane of

order three, AG(2, 3)).

As already mentioned, the grid lives (as a geometric hyperplane) in GQ(2, 2) and

underlies a Mermin “magic” square array of observables furnishing a simple two-qubit

proof of the Kochen-Specker theorem [6, 20]. A Mermin square built around Bell’s

square of Fig. 1a is shown in Fig. 7a. It needs a genus one dessin, with signature



12

Figure 7. A 3 × 3 grid with points labeled by two-qubit observables (aka a Mermin

magic square) (a) and a stabilizing dessin drawn on a torus (b).

(2, 5, 2, 1), to be recovered, as shown in Fig. 7b. The corresponding permutation group is

P = 〈(1, 2, 4, 8, 7, 3)(5, 9, 6), (2, 5)(3, 6)(4, 7)(8, 9)〉 ∼= Z2
3 ⋊Z2

2, having the cycle structure

[6131, 2411, 6131]. This dessin lies on a Riemann surface that is a torus (not a sphere Ĉ),

being thus represented by an elliptic curve. The topic is far more advanced and we shall

not pursue it in this paper (see, e. g., [11] for details). The stabilizer of a pair of edges

of the dessin is either the group Z2, yielding Mermin’s square M1 shown in Fig 7a, or

the group Z1, giving rise to a different square M2 from the maximum sets of mutually

non-collinear pairs of points of M1. The union of M1 and M2 is nothing but the Hesse

configuration.

The Hesse configuration (Fig. 8a), of its own, can be obtained from a genus-zero

dessin shown in Fig. 8b (also reproduced in Fig. 3b of [6]). This configuration was already

noticed to be of importance in the derivation of a Kochen-Specker inequality in [21].

The Pappus configuration, illustrated in Fig. 9a, comprises three copies of the

already discussed K(3, 3)-configuration (Fig. 3a); the three copies are represented by the

point-sets {1, 3, 5, 6, 7, 8}, {2, 3, 4, 5, 8, 9} and {1, 2, 4, 6, 7, 9}, which pairwise overlap in

distinct triples of points. A dessin d’enfant for the Pappus configuration is exhibited in

Fig. 9b. It is important to point out here a well-known fact that the Pappus configuration

is obtained from the Hesse one by removing three mutually skew lines from it (for

example, the three lines that are represented in Fig. 8a by three concentric circles).
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Figure 8. The Hesse configuration (a) and an associated genus-zero dessin (b).

Figure 9. The Pappus configuration (a) and a stabilizing dessin (b).
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Figure 10. The Mermin pentagram (a), the Petersen graph (b) and their generating

dessin (c).

4.5. Realm of index ten: Mermin’s pentagram, Petersen and Desargues

Apart from the two plexes (see Table 1), the only connected configurations generated

by 10-edge dessins are Mermin’s pentagram, the Petersen graph, the Desargues

configuration and the bipartite graph K(5, 5).

The dessin sketched in Fig. 10c, having s = (4, 6, 2, 0) and the alternating group A5

with cycle structure [3211, 2412, 52], induces either the geometry of Mermin’s pentagram

(Fig. 10a) or that of the Petersen graph (Fig. 10b) according as the group stabilizing pairs

of its edges is isomorphic to Z1 or Z2, respectively. A particular three-qubit realization

leading to a proof of the Kochen-Specker theorem is explicitly shown (see, e. g., [14, 20]

for more details on importance of these geometries in quantum theory).

The dessin depicted in Fig. 11b also gives rise to a couple of geometries, one being

again the Petersen graph (with the stabilizer group of a pair of edges isomorphic to Z2
2)

and the other being (Fig. 11a) the famous Desargues 103 configuration (with the group

Z2). The labeling is compatible with that in Fig. 10, which means that the Desargues

configuration represents another way of encoding a three-qubit proof of contextuality;

in particular, a line of Mermin’s pentagram corresponds to a complete graph K4 within

the Desargues configuration as well as to a maximum set of mutually disjoint vertices

in the Petersen graph.



15

Figure 11. The Desargues configuration (a) and its generating dessin (b).

4.6. The Cremona-Richmond 153 configuration, alias GQ(2, 2), or W(3, 2)

We now come to a perhaps most exciting, and encouraging as well, finding that there

exists a dessin generating the configuration of a central importance for any quantum

physical reasoning involving two-qubit observables, namely the configuration (illustrated

in Fig. 12a) known as 153 Cremona-Richmond configuration, or the generalized

quadrangle of order two, GQ(2, 2), or the symplectic polar space of rank two and order

two, W(3, 2). That this configuration is indeed one of corner-stones of finite dimensional

quantum mechanics is also illustrated by the fact that many of the already discussed

geometries, in particular the K(3, 3) graph, the 3 × 3 grid, the Pappus and Desargues

configurations and the Petersen graph, are intricately tied to its structure, as explained

in detail in [7],[22]–[24]. The associated dessin (Fig. 12b) is of signature (5, 9, 3, 0) and

its permutation group has the cycle structure [61322111, 2613, 6231]. Unfortunately, the

complexity of this dessin is already so high that with our current computer power we

have not been able to find the corresponding Belyi function. Finding this function thus

remains one important challenge of our dessin d’enfant programme.

5. Conclusion

We have demonstrated, substantially boosting the spirit of [6], that Grothendieck’s

dessins d’enfant (“childs drawings”) — that is graphs where at each vertex is given
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Figure 12. The Cremona-Richmond 153-configuration (a) with its points labeled by

the elements of the two-qubit Pauli group and its stabilizing dessin (b).

a cyclic ordering of the edges meeting it and each vertex is also assigned one of two

colors, conventionally black and white, with the two ends of every edge being colored

differently — and their associated permutation groups/Belyi functions give rise to a

wealth of finite geometries relevant for quantum physics. We have made a complete

catalog of these geometries for dessins featuring up to 12 edges, highlighted distinguished

geometries for some higher-index dessins, and briefly elaborated on quantum physical

meaning for each non-trivial geometry encountered. We are astonished to see that a

majority of dessin-generated geometries have already been found to have a firm footing

in finite-dimensional quantum mechanical setting, like the K(3, 3) and Petersen graphs,

the Fano plane, the 3×3 grid (Mermin’s square), the Desargues configuration, Mermin’s

pentagram and the generalized quadrangle of order two, GQ(2, 2). We have also found

three geometries, namely the Hesse 94123-configuration, the Reye 124163-configuration

[25] and the 3×3×3-grid, that still await their time to enter the game. Our findings may

well be pointing out that properties of dessins, as well as the Galois group G = Gal(Q̄/Q)

acting on them, may be vital for getting deeper insights into foundational aspects of

quantum mechanics. To this end in view, we aim to expand in a systematic way our

catalog of finite geometries generated by higher-index dessins in order to reveal finer
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traits of the quantum pattern outlined above.
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index name points edges triangles squares

3 2-simplex (triangle) 3 3 1 0

4 3-simplex (tethahedron) 4 6 4 0

square/quadrangle 4 4 0 1

5 4-simplex (5-cell) 5 10 10 0

6 5-simplex 6 15 20 0

3-orthoplex (octahedron) 6 12 8 3

bipartite graph K(3, 3) 6 9 0 9

7 6-simplex 7 21 35 0

Fano plane (73) 7 21 7 0

8 7-simplex 8 28 56 0

4-orthoplex (16-cell) 8 24 32 36

completed cube K(4, 4) 8 16 0 14

stellated octahedron 8 12 8 0

9 8-simplex 9 36 84 0

Hesse (94123) 9 36 12 0

extended-Pappus 9 27 27 27

Pappus (93) 9 27 9 27

(3× 3)-grid 9 18 6 9

10 9-simplex 10 45 120 0

5-orthoplex 10 40 80 10

bipartite graph K(5, 5) 10 25 0 100

Mermin’s pentagram 10 30 30 15

Petersen graph 10 15 10 0

Desargues (103) 10 30 10 15

11 10-simplex 11 55 165 0

12 11-simplex 12 66 220 0

6-orthoplex 12 60 160 15

bipartite graph K(6, 6) 12 36 0 255

threepartite graph K(4, 4, 4) 12 48 0 108

fourpartite graph K(3, 3, 3, 3) 12 54 0 54

Reye (124163) 12 24 16 6

15 Cremona-Richmond (153) 15 45 15 90

27 (3× 3× 3)-cube 27 81 27 81

Table 1. A catalog of connected point-line incidence geometries induced by dessins

d’enfants of small index. For each geometry, when represented by its collinearity graph,

we list the number of points, edges (line-segments joining two points), triangles and

squares it contains. Here, A-simplices should be regarded as trivial because their

dessins are star-like and associated Belyi functions are of a simple form f(x) = xA,

where A is the multiplicity of the singular point at x = 0 [4].
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