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Abstract 

 

Photoacoustic (PA) and photothermal (PT) effects can be important as driven mechanisms for 

micromechanical structures, especially for micro-(opto)electro-mechanical structures (MOEMS). A new 

approach for producing compact, lightweight, a highly sensitive detector is provided by MOEMS 

technology, which are based on the the elastic bending of microstructure generated by absorption of 

modulated optical power. The electronic and thermal elastic vibrations (the electronic deformation and 

thermoelastic mechanisms of elastic wave generation) in a semiconductor rectangular simply supported plate 

(3D geometry), photogenerated by a focused and intensity-modulated laser beam, were studied. The 

theoretical model for the elastic displacements space and frequency distribution by using the Green function 

method was given. The amplitude of the elastic bending in the rectangular plate were calculated and 

analysed, including the thermalization and surface and volume recombination heat sources. The theoretical 

results were compared with the experimental data. These investigations are important for many practical 

experimental situation (atomic force microscopy, thermal microscopy, thermoelastic microscopy, etc) and 

sensors and actuators.  
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1 Introduction 

The development of microsystem technologies (surface and bulk micromachining) resulted in the production 

of miniature sensors, actuators, resonators and electromechanical parts. One of main problem is the methods 

of characterization of these microstructures. The photoacoustic (PA) and photothermal (PT) science and 

technology extensively developed new methods for the investigation of micro (nano) – electro – mechanical 

- systems (MEMS, OEMS). The PA and PT effects can be important also as driven mechanisms for optically 

excited micromechanical structures.  

The PT and PA effects in micromechanical structures are based on the photogeneration of electron-hole 

pairs, i.e. plasma waves, generated by the absorbed intensity-modulated excitation. Depth-dependent plasma 

waves contribute to the generation of periodic heat and mechanical vibrations, i.e. thermal and elastic waves. 

The thermal waves in the sample cause elastic vibrations, i.e. the thermoelastic (TE) wave generation. On 

the other hand, the photogenerated carriers produce periodic elastic deformation in the sample – the 

electronic deformation (ED). The TE and ED mechanism are two main mechanisms of elastic displacement 

(elastic bending) generation in optically driven MEMS (NEMS), OEMS, especially for optically driven 

microstructures for sensors and actuators.  

The analysis of the thermoelastic (TE) and electronic deformation (ED) effects in micromechanical 

structures consists in modeling a complex system by simultaneous analysis of the coupled plasma, thermal 

and elastic wave equations. Todorović et al. [1-3], theoretically and experimentally investigated the TE and 

ED effects in micromechanical structures.  

The theoretical analysis of the plasma and thermal effects in micromechanical structures consists in 

modeling a complex system by simultaneous analysis of the plasma and thermal wave equations. In 

previously published papers, the plasma, thermal and elastic fields in one-dimension (1D) micromechanical 

structures were theoretically and experimentally analyzed by Todorović et al. [1-3]. The plasma and thermal 

waves, i.e. the carrier-density and temperature space and frequency distribution in a rectangular plate (3D 

geometry), photogenerated by a tightly focused and intensity-modulated laser beam, were are analyzed in 

our previously papers [4].  
 

In this work the electronic and thermal elastic vibrations, i.e. the electronic deformation (ED) and 

thermoelastic (TE) space and frequency elastic bending distribution (3D geometry) in a simply supported 

semiconductor rectangular plate, photogenerated by a tightly focused and intensity-modulated laser beam, 

are analyzed.  



 

2 Electronic and Thermal Elastic Vibrations   

2.1 Plasma, Thermal and Elastic Fields 

The theoretical treatment enables quantitative accounts of the carrier density field, n(r,t), temperature field, 

T(r,t) and elastic displacement field, u(r,t). In the case of periodical excitation, with angular modulating 

frequency of the incident beam , the excess carrier-density can be assumed as n(r,t)=Re[N(r,ω)exp(iωt)], 

temperature T(r,t)=Re[T(r,ω)exp(iωt)], and elastic displacement  u(r,t;ω)=Re[u(r,t)exp(iωt)], where 

N(r;ω), T(r,ω) and U(r;ω) are complex values which define the amplitude and phase of the carrier, 

temperature and displacment fields, respectively.  

The plasma (carrier-density) and thermal fields in an opaque rectangular Si plate with dimensions Lx , Ly , Lz 

(3D geometry), excited with a tightly focused and intensity-modulated laser beam (Dirac harmonic source) 

centered at (x1 , y1 , z1 = 0), is analyzed in our previously published paper [4]. Fig.1 shows rectangular plate 

with a focused laser beam excitation and optical probe detection configuration and the coordinate system for 

calculating the carrier density, temperature and elastic bending. The carrier-density N(x,y,z;ω) and 

temperature T(x,y,z;ω) space and frequency distribution in the Si plate were calculated and use as a source 

term in the elastic bending equation.  

2.2 Electronic and Thermal Elastic Deformations 

Absorption of the optical energy in a semiconductor plate causes the various ED and TE effects. The 

photogenerated plasma can directly produce a local strain, which then generates elastic waves in the 

semiconductor. The electronic strain, ε
ED

(r;ω) can be given vs. the excess carrier density, ε
ED

(r;ω) ≈ dn 

N(r;ω), where dn is the coefficient of electronic elastic deformation (dn denotes the pressure dependence on 

the band gap energy at a constant temperature). Than, the electronic elastic displacement U
ED

(r;ω), using 

the strain-stress relations, can be given vs. the electronic deformation.  Also, the thermal elastic 

displacement U
TE

(r;ω), can be given vs. the thermoelastic strain ε
TE

(r;ω) ≈ T T(r;ω), where T is the 

coefficient of linear expansion. Since dn is negative for silicon, it means that electronic strain and thermal 

expansion are opposite in sign; the generation of excess carriers causes a contraction of the material, while 

thermal heating results in an expansion. Than, the elastic displacement U(r;ω) can be given as the sum of 

two components: U
ED

(r;ω) and  U
TE

(r;ω).  

2.3 Theory of the elastic thin plate 

The elastic bending calculation for a thin rectangular plate, with a thickness Lz much smaller than the length 

Lx and width Ly (Lz  Lx , Ly ) is given. One side of the plate is illuminated with an intensity-modulated 

laser beam (Fig.1). When the thickness of the elastic plate is much smaller then all other plate dimensions, it 



is possible to suppose that the elastic deformation is approximately the same along the sample thickness. For 

that reason, it is possible to use the simple theory of the elastic thin plate to obtain the elastic bending. 

In accordance with the elastic theory of thin plate, the elastic displacements U  = {Ux, Uy, Uy} for the plate 

are: 
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where W(x,y;ω) is the displacement of the elastic neutral plane of the plate and zn is the position of the 

neutral plane (zn = Lz / 2).  

2.3.1 Elastic Strain-stress Relations  

The following equation connects the component of elastic strain and the bending: 
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Components of elastic strain, σij(x,y,z;ω) as a function of the displacement W(x,y;ω), can be obtain from 

stress-strain relation. 
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where the second term in the bracket of the right-hand-side of the equation is the source term from the 

thermal and plasma waves, as a function of the temperature and carrier density distribution in the sample.  

2.3.2 Elastic Bending Moments  

Let us now introduce into the analysis the resultants of the state of elastic stress-bending moments Mij(x,y;ω) 

for i,j = x,y. In the elastic theory of the thin plate, instead of the stresses or average value of stresses per 

thickness, the so-called cross-section moments are usually used. These elastic bending and torsion moments 

in thin plate are:  
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where B = EY Lz
3 
/(12(1-ν

2
))  is the flexural rigidity of the plate and m(x,y;ω) is the TE and ED moment 

generation term, i.e. the source term from the thermal and plasma waves.  

2.3.3 Elastic Bending Equation  

The equation for the deflection of the plate is:  
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Sustituting for Mij(x,y;ω) their values from Eq.4, we arrive at the equation for vibrations of the plate:  
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2.3.4 Elastic Green Function in a Simply Supported Plate 

A concentrated unit force (impulsive, Dirac),  δ(r – ro), acts at point ro = (xo, yo, zo = Lz/2) perpendicular to 

the middle plane.   
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The function W
*
(x,y│xo ,yo) denotes the deflection at the point (x,y), due to the action of a unit concetrated 

force at the point (xo,yo). For rectangular simply supported plate at the edges, the elastic Green function 

W
*
(x,y│xo,,yo), is given as [5]:  
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where {ε m(x)} and {ε n (y)} are the complete orthogonal eigenfunction sets associated with the x and y 

direction.  

Then, the quasistatic elastic bending:  
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3 Analysis of the  Elastic Vibrations 

The theoretical model, derived in this work, enables to calculate and analyzed the 3D elastic displacement 

field i.e. it enables to study the electronic and thermal elastic vibrations in the optically excited plate.  

For a semiconductor it is possible to define one plasma source of the elastic vibrations (the electronic elastic 

bending) and four different heat source for the elastic vibrations (the thermal elastic bending). For each 

source, using the Green method is possible to derive the appropriate relations for elastic bending 

components.      

3.1 Plasma source 

The electronic deformation component of elastic displacement:   
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3.2 Thermal sources 

There are three main mechanisms in thermal wave generation, i.e. there are three thermal sources in 

semiconductors: the thermalization heat source, Q
T
(r,ω), the bulk recombination source, Q

BR
(r, ω) and two 

different heat sources at the plate surface z=0, Q 1
SR

(ω) and Q2
SR

(ω) at the plate surfaces z=Lz.  

The periodic temperature distribution, T(x,y,z;ω) in the plate can be given as a sum of four components: the 

thermalization, T
TZ

(x,y,z;ω), surface recombination T
SR1

(x,y,z;ω), T
SR2

(x,y,z;ω) and bulk T
BR

(x,y,z;ω) 

components of the temperature distribution, respectively. Then, the thermoelastic component of elastic 

displacement:  
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The electronic and thermal elastic vibrations were calculated for typical parameters of Si and dimensions: 

length Lx = 9000 m, width Ly = 4500 m and thickness of the Si plate Lz = 300 m. The typical parameters of 

the Si used in these simulations are given in Table 1. 

Figures 2, 3 and 4 show typical examples of the elastic bending for the simply supported rectangular plate 

(Si ,  <111> , 9 x 4.5 mm ,  300 um); optical excitation with tightly focused beam, modulated at the 



frequency  f = 5 kHz, impinges at point x1 = Lx / 2 = 4.5 mm,  y1 = Ly / 2 = 2.25 mm; detection at the point : 

xd = Lx / 2,  yd = Ly / 2. Space ddistribution of the amplitude of elastic bending for the simply supported 

rectangular plate is given in Fig.2. Fig. 3 shows components of the elastic vibrations (the amplitude of 

elastic bending) along x-axis (y = Ly / 2). Fig. 4 shows the electronic deformation (ED), thermoelastic (TE) 

and sum (TE + ED) components of vibrations. Partially, TE component is the sum of four components (TE_ 

TZ + TE_ SR1 + TE_ SR2 + TE_ BR).  

3.3 Comparing Theoretical and Experimental Results  

The theoretical model was verified by comparing with the experimental results. The small optically excited 

elastic vibrations of the plate were measured with a laser probe [6,7]. The laser probe was an optical 

interferometer designed to measure the very small vibrations of the micromechanical structures. The small 

deflection can be detected below 0.1 picometer magnitude in accurate adjustment conditions. This 

nondestructive apparatus mainly include optical excitation (Nd:YAG laser, 532 nm, 200 mW), and optical 

probe detection (HeNe laser, 633 nm, 0.5 mW). The excitation laser beam is modulated with an acousto-

optic modulator (AOM), and the response signal was measured with a lock-in amplifier (the frequency range 

is 2-70 kHz). The presented measurements results were the mean values of at least three measurements in 

the same conditions.  

The elastic vibrations were detected at the center of the plate. Fig.5 shows typical experimental amplitude 

elastic vibration spectra for a Si plate (n-type, <111>, 500-1000 Ωcm, both surfaces polished), with the 

following dimensions: length Lx = 9 mm; width  Ly  = 4.5 mm;  and thickness Lz = 300 μm. The 

experimental results were comapred with the theoretically calculated spectra by using the theoretical model 

given in this work, including the TE and ED components. Fig.5 shows the best fit of the theoretically 

calculated amplitude spectra with experimental one. The parameters for Si used in calculation of the fitted 

spectra are given in  Table 1.  

Comparing the theoretical and experimental results shows good agreement in the frequency range from 3 

kHz to ~34 kHz (below the frequency of a small damped resonant mode). Below the frequency of 3 kHz 

there is small deviation of the theoretically fitted curve from the experimental one. This is the consequence 

of the acoustic noise which slump in the low frequency rang.       

 

4 Conclusion 

The theoretical model for the space and frequency distribution of the electronic and thermal elastic 

displacements in a semiconductor plate (3D geometry), photogenerated by a tightly focused and intensity-

modulated laser beam, was given. The theoretical relations for 3D elastic bending, including the electronic 



deformation and four thermoelastic components (the thermalization, surface and bulk recombination) of the 

elastic bending were derived. The amplitude of elastic vibrations in the simply supported rectangular plate 

were calculated and analysed. The analysis of the amplitude space distribution shows that the elastic 

displacements are not only significant around the focused laser excitation point. The analysis also shows that 

the transport parameters (the lifetime and surface recombination velocities of the photogenerated carriers) 

have significant influence to the elastic vibrations. The theoretical model was verified by comparing with the 

experimental results.  

These results showed that the photothermal elastic vibration spectra are very convenient for investigation the 

mechanical characteristics of micromechanical structures.  This investigation is in progress.  
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Table 1 Parameters and values 

 

Parameter 

 

 

symbol 

 

value 

 

unite 

density of Si ρ 2.33∙103  kg∙m-3 

optical reflectivity of Si                                             Rs 0.30  

optical absorption coefficient of Si                  5.00∙105 m-1 

thermal conductivity of Si                K                  150 W∙m-1.∙K-1 

thermal conductivity of the air Kg     0.025 W∙m-1.∙K-1 

thermal capacity of Si C 695 J∙kg-1.∙K-1 

thermal difusivity of Si DT                       9.26∙10-5 m2.∙s-1 

power of optical excitation   Po                  0.1 W 

excitation energy     E                   2.33 eV 

energy gap of Si     EG                  1.11 eV 

lifetime of photogenerated carriers                5.0∙10-6 s 

coefficient of carrier diffusion for Si                                  DE    3.5∙10-3 m2∙s-1 

recombination velocitie of the front surface s1              3 m∙s-1 

recombination velocitie of the rear surface s2                       6 m∙s-1 

quantum efficiency of carrier genation  γG               1  

coefficient of bulk carrier recombination         γR                1  

Young’s modulus for Si                       EY                 1.31∙1011  N∙m-2 

linear thermal expansion for Si  T 3.0∙10-6  K-1 

coefficient of electronic deformation  dn                           -9.0∙10-31 m3 



 

 

Figure Captions 

 

Fig. 1 Rectangular simply supported plate with a focused laser beam excitation and optical detection 

configuration and the coordinate system for calculating the carrier density, temperature and elastic bending  

 

Fig. 2 Distribution of elastic vibrations (the amplitude of elastic bending) for the simply supported 

rectangular plate (Si ,  <111> , 9 x 4.5 mm ,  300 um) ;  optical excitation with tightly focused beam, 

modulated at the frequency  f = 5 kHz, impinges at point x1 = Lx / 2 = 4.5 mm,  y1 = Ly / 2 = 2.25 mm; 

detection at the point : xd = Lx / 2,  yd = Ly / 2  

 

Fig. 3 Components of elastic vibrations (the amplitude of elastic bending) along x-axis (y = Ly / 2) for the 

simply supported rectangular plate (Si ,  <111> , 9 x 4.5 mm ,  300 um) ;  optical excitation with tightly 

focused beam, impinges at point x1 = Lx / 2 = 4.5 mm,  y1 = Ly / 2 = 2.25 mm; detection at the point : xd = Lx 

/ 2,  yd = Ly / 2: ( red ) bulk recombination component of the thermoelastic bending (TE_ BR);   ( blue ) 

electronic deformation (ED);   ( green ) surface recombination at the surface z = 0 (TE_ SR1) and z = Lz 

(TE_ SR2);  ( yelow ) termalization component (TE_ TZ);  ( x ) sum of components (SUM)           

 

Fig. 4 Electronic and thermal components of vibrations (the amplitude of elastic bending) vs. modulation 

frequency for the simply supported rectangular plate (Si ,  <111> , 9 x 4.5 mm ,  300 um) ;  optical 

excitation with tightly focused beam, impinges at point x1 = Lx / 2 = 4.5 mm,  y1 = Ly / 2 = 2.25 mm; 

detection at the point : xd = Lx / 2,  yd = Ly / 2:  ( - - ) TE component (sum of TE_ TZ  + TE_ SR1 + TE_ SR2 

+ TE_ BR);    ( -.- ) ED component;   ( -.- ) SUM (TE + ED)      

 

Fig. 5 Amplitude of vibrations (elastic bending) vs. modulation frequency for the simply supported 

rectangular plate (Si ,  <111> , 9 x 4.5 mm ,  300 um) ; optical excitation with tightly focused beam, 

impinges at point x1 = Lx / 2 = 4.5 mm,  y1 = Ly / 2 = 2.25 mm; detection at the point : xd = Lx / 2,  yd = Ly / 2:  

( x ) experimental;  ( - ) theoretically fitted   
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Fig. 4 
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Fig. 5   
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