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Nonlinear delay dynami
s have found during the last 30 years a parti
ularly proli�


exploration area in the �eld of photoni
 systems. Besides the popular external 
avity laser

diode setups, we will fo
us in this arti
le on another experimental realization involving

ele
tro-opti
 (EO) feedba
k loops, with delay. This approa
h has strongly evolved with

the important te
hnologi
al progress made on broadband photoni
 and optoele
troni


devi
es dedi
ated to high speed opti
al tele
ommuni
ations. The 
omplex dynami
al

systems performed by nonlinear delayed ele
tro-opti
 feedba
k loop ar
hite
tures, were

designed and explored within a huge range of operating parameters. Thanks to the

availability of high performan
e photoni
 devi
es, these ele
tro-opti
 delay dynami
s led

also to many su

essful, e�
ient, and diverse appli
ations, beyond the many fundamental

questions raised from the observation of experimental behaviors. Their 
haoti
 motion

allowed for a physi
al layer en
ryption method to se
ure opti
al data, and this in real

time at the typi
al speed of modern opti
al tele
ommuni
ations. Mi
rowave limit 
y
les

generated in similar EO delay os
illators, showed signi�
antly improved spe
tral purity

thanks to the use of a very long �ber delay line. Last but not least, a novel brain

inspired 
omputational prin
iple has been re
ently implemented physi
ally in photoni
s

for the �rst time, again on the basis of an EO delay dynami
al system. In this latter

emerging appli
ation, the 
omputed result is obtained by a proper �Read-out� of the


omplex nonlinear transients emerging from a �xed point, the transient being issued by

the inje
tion of the information signal to be pro
essed.
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1. Early ele
tro-opti
 delay dynami
s

The Lorenz Butter�y e�e
t (also known in a more a
ademi
 way as �sensitivity

to initial 
onditions�) is originating from a 1963 publi
ation, and it strongly


ontributed to the important revival of nonlinear dynami
s theory. This o

urred

many years after the interrupted path drawn by Poin
aré in the late 19th and early
20th 
entury. The �eld of nonlinear dynami
s was later popularized by Yorke in the

70s, while renaming this �eld �
haos theory�. Important e�orts were then brought

in this emerging s
ienti�
 
ommunity to show eviden
e of 
haoti
 motion in real

world, whether in systems observable in the Nature, or in arti�
ial ones designed

by humans. In the parti
ular �eld of Opti
s, a seminal idea was proposed in the

late 70s by a japanese resear
her, K. Ikeda, in order to observe 
haoti
 motions
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in Opti
s, the dynami
al variable being the light intensity at the output of a ring


avity 
ontaining a Kerr medium (see Fig. 1(left)) [15℄.

A rapid physi
al look at this �Gedanken� experiment immediately reveals the


entral role of the delay indu
ed by the time of �ight of the light propagating

inside the ring 
avity. A simple dynami
al modeling of the system 
an lead to the

redu
tion of the number of dynami
al variables to a single one, the laser output

intensity. In this setup, this light intensity level is also repsonsible for the opti
al

phase variations indu
ed by the Kerr e�e
t, at a rate of 
hange γ limited only

by this ultra fast light-matter intera
tion phenomenon. One is then brought to a

s
alar linear �rst order di�erential equation, driven by a nonlinear feedba
k term

delayed in time. If no delay were present, it is known to always lead to a �xed

point as the most 
omplex possible solution. Bistable �xed points are however

possible even without delay, be
ause of the nonlinear feedba
k term o

urring

inside the 
avity at the input of the Kerr medium. This nonlinear transformation

is performed by an interferen
e phenomena o

uring between the input CW laser

beam, and the 
avity feedba
k beam. The a
tual presen
e of the delay violently


hanges the dynami
al perspe
tives on this simple system, in
reasing its number

of degrees of freedom from 1 (the intensity at the time origine), to in�nity. This

delay-indu
ed in�nite number of degrees of freedom stems from the size of the

initial 
onditions formed, when delay is present, by a fun
tional de
ribing the

a
tual intensity variations in time, over a duration 
orresponding to the delay

time τD. This delay interval 
an then be viewed as the �memory� of the 
avity.

Again, a rapid physi
al analysis of the relative time s
ales, would easily 
onvin
e

anyone that this delay potentially indu
es a from far non negligeable �memory�

e�e
ts on the dynami
s: the rate of 
hange γ for a Kerr e�e
t is of the order

of ps

−1
or even (sub-ps)

−1
time s
ale, whereas the time of �ight of the light in

va
uum easily ex
eeds ns (3 orders of magnitude greater!) even when only a few


m 
avity length is 
on
erned. This makes a strong eviden
e of the importan
e of

the large delay situation in whi
h the setup has to be 
onsidered.

In su
h an Ikeda ring 
avity, high 
omplexity 
haoti
 motions were indeed obtained

numeri
ally. This was also 
on�rmed experimentally, but on a modi�ed setup.

This alternative setup was however still following the typi
al ingredients des
ribed

above, a delayed feedba
k loop with a modulated interferen
e 
ondition. In [13℄, a

bulk ele
tro-opti
 birefringent interferometer was proposed instead of the opti
al


avity, and the delay was performed via a digital bu�er after analogue-to-digital


onversion of the photodete
ted interferen
e intensity. After being transformed

ba
k to a 
ontinuous time signal by a digital-to-analogue 
onverter and some

ampli�
ation, this delayed ele
troni
 signal was �nally used as the drive of

the ele
tro-opti
ally indu
ed phase shift in the interferometer. Instead of this

bulk setup, an integrated opti
s version was proposed right after in [33℄. This

te
hnologi
al solution is the one 
on
erned by most of the results reported in

this arti
le. It is indeed a very 
onvenient experimental approa
h, both from the

system integration perspe
tives, as well as from the ones of the setup stability

and performan
es. As it will be shown in this arti
le, the extremely robust and

reliable features of the related o�-the-shelf opti
al tele
ommuni
ation devi
es,

transformed the original Ikeda ring 
avity into a �exible photoni
 lab tool for

harnessing the 
omplexity of delay dynami
s.



3

2. Modeling and design

The Ikeda ring 
avity dynami
s prin
iple, on
e translated into a signal pro
essing

approa
h, appears as an obvious feedba
k loop 
hain. One of its main advantage is

to allow for a 
lear separation between the linear and the nonlinear 
ontributions

in the dynami
s. These issues will be detailed and analysed in the following

subse
tions.

Figure 1. Ikeda dynami
s: from the �Gedanken� experiment to the ele
tro-opti
 implementation.

Left: The Ikeda ring 
avity ingredients: a nonlinear modulation of the intensity is performed via

an interferen
e 
ondition modulated by the phase shift ∆ϕ o

urred at one round trip earlier in

a Kerr medium (length L, Kerr 
oe�
ient n2). The input laser beam has a 
onstant intensity I0
and a wave ve
tor k=2π/λ=2πν/c in va
uum. The dynami
s of the phase shift is ruled by the

Kerr response time τ = γ−1
. The dynami
s 
an be observed through the intensity �u
tuations

at any output of the two partially re�e
ting mirrors of the 
avity. Right: The intensity ele
tro-

opti
 nonlinear delay os
illator: a laser diode is seeding an ele
tro-opti
 Ma
h-Zehnder (MZ)

modulator with a 
ontinuous wave light beam of power P0; the MZ output interferen
e is (i)

dynami
ally modulated by the ele
tri
al input Gx(t), and (ii) stati
ally set by the o�set phase

Φ0 (set by a 
onstant voltage on the d
 ele
trode); the resulting nonlinear transformation f
NL

(x)
is delayed in time by τD (�ight time through a �ber); the modulated and delayed opti
al intensity

is dete
ted by a photodiode (sensitivity S); the resulting ele
tri
al signal is �ltered in the Fourier

domain a

ording to H(ω), and ampli�ed (gain G), then serving as the rf input of the MZ.

(a)Modeling: a signal pro
essing approa
h

The simpli�ed physi
al equation as written in the Kerr medium box of

Fig.1(left), 
an be re-written with a splitting of the linear terms in the left

hand side, and the nonlinear term in the right hand side. One 
an then analyse

the dynami
s as follows: in the time domain, it 
onsists of a linear �rst order

di�erential pro
ess driven by a nonlinear delayed feedba
k term; in the Fourier

domain, the left hand side plays the role of a linear �rst order �lter (a
tually a

low pass �lter) driven at its input by a delayed nonlinear transformation of its

output. This results from a straightforward 
al
ulation as des
ribed in Eq.(2.1),

using 
onversion rules between the Fourier and the Time domain (a

ording to

Fourier Transformations (FT), d/dt → iω·FT, and
∫
dt → (iω)−1·FT):

τ
dδϕ

dt
(t) + δϕ(t) = f [δϕ(t − τD)] = z(t)

FT−→ ∆ϕ(ω)

Z(ω)
=

1

1 + iωτ
=H(ω),

(2.1)

where Z(ω) =FT[z(t)] and ∆ϕ(ω) =FT[δϕ(t)] are the Fourier Transforms of the


orresponding time variations. The Fourier Transform H(ω) represents the linear
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�ltering performed on the input signal and thus leading to the output signal. This

�lter is a
tually involved in the feedba
k loop ar
hite
ture, i.e. it is the �rst order

low pass �lter in the parti
ular 
ase of Eq.(2.1). It is typi
ally 
hara
terised by

a −3 dB 
ut-o� frequen
y of (2πτ)−1 = γ/(2π). One 
ould noti
e that any other

�lter 
ould be in prin
iple 
onsidered with the same modeling approa
h. This

results in a 
hange of the Fourier �ltering fun
tion H(ω), a

ording to the a
tual

�lter to be 
onsidered. The 
onsequen
e in the time domain would 
onsist in the

presen
e of higher order di�erential terms, as well as also eventually in additional

integral terms. One might re
all that H(ω) is de�ned as FT[h(t)], where h(t) is the
so-
alled temporal impulse response of the 
orresponding linear �lter, i.e. the �lter

output signal when the input is a Dira
 fun
tion δ(t). With this modeling approa
h

allowing for di�erent kinds of �lters, the right hand side of the di�erential

equation remains un
hanged, sin
e it 
onsists in the nonlinear delayed feedba
k

driving the input of the linear �lter. In our parti
ular experimental s
heme, the

nonlinear transformation is ruled by a two-wave interferen
e phenomena, i.e.

z(t) =A[1 +B cos[δϕ(t − τD) + Φ0]}. A and B are 
onstant parameters de�ned

by the feedba
k gain, and the 
ontrast of the intereferen
e respe
tively. B = 1
for a unity 
ontrast, i.e. when balan
ed wave amplitudes are 
on
erned in the

interferen
e, and A∝ n2kI0/2, as illustrated in Fig.1(left).

In pra
ti
al situations where broadband or high frequen
y delayed optoele
troni


feedba
k is involved, the low pass �ltering has typi
ally to be repla
ed by a

bandpass �lter to re�e
t the a
tual �ltering performed by the ele
troni
 bran
h of

the loop. In su
h a situation, the most simple linear �lter model 
orresponding to

a bandpass �ltering, is a two pole (se
ond order) Fourier transfer fun
tion H(ω).
More physi
ally and �time domain� speaking, this �ltering situation is the one

obtained in a damped os
illator, with the well known di�erential model of the

following form:

H(ω) =
i2mω/ω0

1 + i2mω/ω0 − (ω/ω0)2
,

FT

−1

−→ (2.2)

ω0

2m

∫
δϕdt+ δϕ+

1

2mω0

˙δϕ= z ⇔ δϕ+
2m

ω0

˙δϕ +
1

ω2
0

δ̈ϕ=
2m

ω0

ż

where ẋ is the derivative of x with respe
t to time, m is the damping fa
tor, and

2π/ω0 the pseudo os
illation period. In this 
ase of a se
ond order bandpass �lter,

the dis
ussion with respe
t to the damped os
illator analogy typi
ally involves

the nature of the eigenvalues. On the one hand, one 
an have 
omplex eigenvalues

when m≪ 1, in the 
ase of a weakly damped os
illator and thus a narrow �ltering

around a 
entral resonan
e frequen
y ω0. This is the typi
al situations met in high

spe
tral purity delay optoele
troni
 mi
rowave os
illators (ω0/(2π)≃ 10 GHz, and
−3 dB bandwidth mω0 ≃ 10s MHz), as proposed in [43℄. On the other hand, the

eigenvalues 
an be purely real and negative, whi
h is met in a strongly damped

os
illator with m≫ 1, ω0 being then the geometri
 mean of the 
ara
teristi
 
ut-

o� pulsation

√
ωhωl. In this 
ase, the �ltering features are as follows: (i) a −3 dB

high 
ut-o� frequen
y ωh/(2π) = fh ≃ 10 GHz is 
orresponding to a low pass �lter

as in Eq.(2.1) with τ = ω−1

h
= (2mω0)

−1 ≃ 10 ps; (ii) and a low 
ut-o� frequen
y

ωl/(2π) = fl ≃ 10s kHz 
orresponding to a high pass �lter, and introdu
ing a

slow integration 
hara
teristi
 time as in Eq.(2.2) θ= ω−1

l
=2m/ω0 of a few µs.
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The 
ase of negative real eigenvalues 
hara
terises the situation typi
ally met

in broadband optoele
troni
 
haos 
ommuni
ation appli
ations, as proposed in

[14, 22, 3℄). The modi�ed Ikeda dynami
s from (2.1) into (2.2) has been named

integro-di�erential nonlinear delay equation, sin
e it is written as follows in a

normalized amplitude form, keeping the same cos2 nonlinear delayed feedba
k

term in the right hand side:

1

θ

∫
t

t0

x(ξ)dξ + x(t) + τ
dx

dt
(t) = f

NL

[x(t− τD)]− f
NL

[0] (2.3)

= β · {cos2[x(t− τD) + Φ0]− cos2 Φ0},

where β is the normalised weight of the nonlinear fun
tion f
NL

in the dynami
s,

and Φ0 is a stati
 phase shift de�ning the interferen
e 
ondition around whi
h the

dynami
al modulation of the MZ o

urs. The normalised dynami
al variable x(t)
is determined so that it appears as a s
ale free argument of the cos2 nonlinear

fun
tion. It is physi
ally proportional to the original Kerr phase shift δϕ in the

Ikeda model, or in the MZ 
ase, it is proportionnal whether to the ele
tro-opti
ally

indu
ed phase shift or also to the rf voltage driving the MZ. One would noti
e that

a 
onstant term was added to the right hand side (f
NL

[0]) only for 
onvenien
e,

be
ause this writing allows to highlight the fa
t that x≡ 0 is a natural steady

state in integro-di�erential delay dynami
s. The model in Eq.(2.3), eventually

with minor modi�
ations depending on parti
ular experimental 
onditions, was

su

essfully used to investigate whether numeri
ally or analyti
ally many spe
i�


dynami
al motions observed with the bandpass version of the generi
 ele
tro-opti


intensity setup (see Fig.1(right), [17, 8, 36, 6, 32℄). It is sometimes more 
onvenient

to re-write the dynami
s in a ve
torial form, with a time s= t/τD normalized to

the delay. The equations of motion read then as follows:

ε · ẋ(s) = −x(s)− δ · y(s) + f
NL

[x(s− 1)]− f
NL

[0], (2.4)

ẏ(s) = x(s).

The previous formulation of the dynami
s might be parti
ularly usefull in the

broadband 
ase, in order to highlight a few parameters revealing the important

underlying multiple time s
ales problem: ε= τ/τD ≪ 1 and δ = τD/θ≪ 1 as in

[36, 42℄, where the various relevant time s
ales are spanned over more than 6

orders of magnitudes.

The a
tual dynami
al features whi
h 
an be rea
hed experimentally, strongly

depend on the devi
es and system organisation. To 
larify this from the pra
ti
al

point of view, we will address a few experimental details in the next subse
tion,

trying to 
onne
t the te
hni
al 
hara
teristi
s of the devi
es used to build the

ele
tro-opti
 delay os
illator, together with some expe
ted dynami
al features.

(b)Devi
e features, and delay system properties

In this subse
tion, many numeri
al values for the experimentally a
hievable

parameter range will be given and dis
ussed in the 
ontext of the dynami
al

properties of the ele
tro-opti
 delay dynami
s. Ea
h of the devi
es depi
ted in the

setup of Fig.1(right) will be addressed.
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(b.1)Amplitude parameters

As indi
ated in Eq.(2.3), essentially two independent amplitude parameters


an be de�ned for the 
hara
terization of the nonlinear fun
tion: (i) β is a weight

for f
NL

[x], a
ting as a verti
al stret
hing in the graph of f
NL

); (ii) Φ0 is an o�set

phase de�ning the mean operating point, it is a
ting as an horizontal shift in the

graph of f
NL

(see Fig.2).

The physi
al origine de�ning β = πSGP0/(2Vπ
rf

) 
omes from the various

ampli�
ation fa
tors and 
onversion e�
ien
ies of ea
h devi
e in the feedba
k

loop. The most important devi
e is the ele
tro-opti
 Ma
h-Zehnder (MZ)

modulator performing the nonlinear transformation in the dynami
s, a cos2-
transformation. It is pra
ti
ally obtained from an ele
tro-opti
ally tuneable

integrated opti
s two wave interferometer. The 
onstru
tive interferen
e are

leading to the maximum of the fun
tion f
NL

(plotted in Fig.2 Left), and the

destru
tive one 
orrespond to the minima of the fun
tion. With an EO Ma
h-

Zehnder devi
e, the interferen
e 
ondition 
an be dynami
ally 
ontrolled over

a large bandwidth, i.e. the one typi
ally involved in opti
al tele
ommuni
ation

systems for whi
h they are 
ommonly designed and used. The ele
tro-opti


e�
ien
y is quanti�ed te
hni
ally by the half wave voltage Vπ
rf

. It 
orresponds to

the input voltage amplitude required to indu
e a π-phase shift in the interferen
e


ondition, thus 
hanging for example a 
onstru
tive interferen
e into a destru
tive

one. The voltage amplitude ∆V applied to the MZ ele
trodes, when res
aled with

respe
t to Vπ
rf

, 
an be viewed as a measure of the nonlinear strength a
tually

involved in the dynami
s. More mathemati
ally speaking, (1 + ∆V/Vπ
rf

) is an

estimate of the equivalent degree for the polynomial that 
ould approximate

the a
tually used range of the nonlinear fun
tion. This would be for example

a parabola when ∆V ≃ Vπ
rf

, or a 
ubi
 polynomial when ∆V ≃ 2Vπ
rf

, et
. . . .

Highly nonlinear motions are thus subje
t to the 
apability to provide a voltage

large enough 
ompared to Vπ
rf

, over the full bandwidth of interest (> 10 GHz

for tele
om devi
es). Currently, the most e�
ient Tele
om MZ have a Vπ
rf

of

about 3 Volts, but 
ommon values are usually 
loser to 5 Volts. The te
hni
al


hallenge be
omes then obvious, for a 
ubi
 motion one would need to drive the

MZ with 
a. 15 Volts, whi
h is 
ommonly slightly above the limits of 
onventional

MZ tele
om drivers. Higher voltage spans are however possible, but usually at

the 
ost of a strongly redu
ed bandwidth. A proper signal ampli�
ation is thus

required, whi
h is the role of the optoele
troni
 feedba
k. It is intended to provide

enough dete
tion e�
ien
y and ampli�
ation, up to the requested drive voltage

amplitude to be applied to the MZ. When broadband operation is desired, this

implies a 50 Ω termination at the MZ ele
trodes, whi
h is imposing an additional

te
hni
al 
onstrain in terms of rf power drive 
apability (up to a few ele
tri
al

Watts). Assuming one has a standard �tele
om� maximum opti
al power available

at the photodiode input (�u
tuations from 0 to 10 mW), and taking into a

ount

the typi
al dete
tion e�
ien
y of 0.9 A/W for InGaAs tele
om photodiodes

loaded with 50 Ω transimpedan
e ampli�er, the ele
troni
 gain required from the

photodiode to the driver, rises to a few 30 dB when quadrati
 nonlinear operation

is expe
ted. Neverheless, broadband ampli�ed photodiodes are 
ommer
ially

available with up to 2.4 kΩ transimpedan
e instead of the previous 50 Ω. This
is relaxing the remaining ele
tri
al gain to less than 20 dB. Though this 
onsists

already in a strong ampli�
ation, espe
ially for bandwidth greater than 10 GHz,
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it is te
hni
ally feasible. When ampli�er drive saturation is experien
ed, one 
ould

modify the model in Eq.(2.3) with an additional nonlinear transformation, a

tanh(x) as the argument of the cos2 main non linearity instead of x (see [17, 6℄).

The progress in novel photoni
 te
hnologies (plasmoni
 and/or photoni
 
rystal

devi
es) might further improve the a
tually a
hievable range for the nonlinear

operation of ele
tro-opti
 nonlinear delay os
illators. This 
orresponds to the

design 
apability of devi
es with lower half wave voltage. Alternative setups and

physi
al solutions 
an be found in the literature, however usually at the 
ost

of strongly redu
ed bandwidth. This is for example the 
ase for the wavelength


haos generator reported in [21, 31℄, where a polynomial up to 14th degree 
an be

a
hieved due to the large, but slow, tuning range of a tunable DBR semi
ondu
tor

laser. The a
hievable wavelength deviation 
an drive up to several free spe
tral

range of a strongly imbalan
ed birefringent interferometer.

The parameter Φ0 = πV
bias

/(2Vπ
d


) is usually tunable over a large enough range,


onsidering its π-periodi
ity in the model. As indi
ated in Fig.1(right), this

parameter is simply adjusted via a 
onstant voltage applied to the d
 ele
trode

of the MZ. This allows to adjust the operating point over more than one period

of the cos2 modulation transfer fun
tion. With a Vπ
d


of about 4 to 7 Volts,

with a purely 
apa
itive load impedan
e and only very low frequen
y operation

requirements, the only pra
ti
al issue to 
he
k is the possible slow and small drift

with external environment 
hanges. Slow time s
ale relaxation phenomena, e.g.

very slow dynami
s indu
ed by possible surfa
e 
harge redistribution inside the

ele
tro-opti
 
rystal, might o

ur, thus indu
ing a slow time dependen
e of the

a
tual ele
tro-opti
 e�
ien
y.

(b.2)Time parameters

The key 
ondition typi
ally required when high 
omplexity dynami
s is

desired, is the so-
alled large delay 
on�guration. In that 
ase, the delay τD is

typi
ally mu
h greater than the 
hara
teristi
 time τ . The linear �memory� of the

dynami
s is thus s
aled as the ratio τD/τ . This ratio 
an be viewed as simply

representing the number of times that the fastest temporal motif limited by τ 
an

be a

umulated over a time interval 
orresponding to the delay τD. Complexity


an be further in
reased through nonlinear e�e
ts: it was shown in [27, 28℄ that

the attra
tor dimension of the Ikeda dynami
s in 
haoti
 regimes in
reases as

βτD/τ .
From the more pra
ti
al point of view, the setting of the time parameters

depends on the targeted issues. For fundamental investigations of the dynami
al

properties of delay system, any setting 
an be adopted, depending on the

studied 
on�guration: a

urately 
ontrolable and variable time parameters usually

involves dis
rete time ([21℄) or analogue-to-digital 
onversion ([10, 37, 38, 31℄). The

delay fun
tion is emulated by so-
alled FIFO (�st in �rst out) memories in the

digital pro
essing. The delay value is then �xed by the FIFO memory depth, and

the digital 
lo
k de�ning the speed at whi
h the samples are travelling through

the FIFO. The delay value 
an be easily adjusted when tuning the digital 
lo
k

frequen
y. When the FIFO is implemented in programmable digital devi
es (su
h

as FPGA), even the linear �lter 
an be implemented digitally, thus also providing

a large �exibility, stability, and a

ura
y, in the de�nition of the �lter properties.

One has however to respe
t the basi
 rules of sampling theory (Shannon sampling
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theorem), whi
h is imposing limitations in terms of available analogue bandwidth

depending on the maximum sampling rate. One has also to be aware of some

signal to noise ratio limitations depending on the level of quantization. The

digital approa
h has many advantages for more �exibility and robustness of the

experimentally explored 
omplex phenomena. Typi
al values of the ratio τD/τ is

of the order of a few 10s, and the referen
e time s
ale τ is of the order of one or

a few 10s of µs, resulting in delays of the order of ms.

When high speed is targeted, the natural 
hoi
e is to perform the delay via the

ultra broadband (10s THz) 
apa
ity of opti
al �bers. Opti
al �bers have also the

attra
tive property to provide an ultra low absorption (typ. 0.2 dB/km) of the

travelling light beam at the tele
om wavelength (1.5 µm). This solution however

leads to �xed delays, whi
h value is dire
tly determined by the length of the �ber.

For example, a 4 km standard tele
om grade single mode �ber spool provides 
a.

20 µs delay, with an attenuation of less than 1 dB. The other time s
ales ruling the

d�erential dynami
s through the ele
troni
 �ltering feedba
k, 
an be set to very

fast dynami
s when Tele
om grade devi
es are used. Optoele
troni
, ele
tro-opti
,

and ele
troni
 devi
es 
an provide a

ess to 
hara
teristi
 response time as fast as

10 ps. These devi
es are typi
ally designed for 
ommuni
ation bandwidth greater

than 10 GHz. The large delay 
on�guration is then easily full�lled with a setup

as in Fig.1(right), sin
e only a few meters of �ber is generating 10 ns time delay,

thus performing a normalised linear memory greater than 1000. Considering the

�ber pigtails of 
ommer
ial devi
es, 10s ns delays are simply obtained without any

additional �ber spool. The memory of the delay 
an be in
reased by 3 additional

orders of magnitude (1 million size linear �memory�) when 
ommer
ial �ber spool

of several 10s of km are used. Within this extreme situation, subtil dispersion

phenomena might have to be further 
onsidered in the dynami
s, sin
e ultra-

fast dynami
s leads to 
ontinuously spread time delays depending on the Fourier

frequen
y 
omponents, as des
ribed in [25℄.

(
)Dynami
al and ar
hite
tural diversity

(
.1)A few bifur
ation issues

A basi
 and 
ommon interpretation of delay di�erential equations (DDE, as

in Eq.(2.1)) is usually done as a �rst approa
h for the understanding of some of

its numerous behavior. It is typi
ally 
alled the adiabati
 approximation, or the

singular limit map, whi
h 
onsists in taking the limit ε= τ/τD → 0. Under this
asumption, the dynami
s is redu
ed to a map xn+1 = f [xn] = β cos2[x+Φ0]. The
�xed points x

F

(β,Φ0) are obtained from the trans
endental equation x
F

= f [x
F

],
and they are the same for the DDE model. Graphi
ally, these �xed points are

found as the interse
tions between the graph of y = f
NL

[x], and the �rst bisse
tor

y = x. There exists at least one solution between 0 and the normalized weight

β, due to the bounded 
hara
ter of the two-wave intensity interferen
e fun
tion.

The number of interse
tions is in
reasing linearly with β. The stability of these

�xed points under the map approximation, 
an be straightforwardly derived. It

is ruled by the absolute value of the slope of the nonlinear fun
tion, evaluated at

the �xed point, |β sin[2(x
F

+Φ0)]|: it is stable if the value is smaller than 1, and

unstable otherwise (see Fig.2). As a 
onsequen
e, it is usually always possible to

�nd one stable �xed points in the (β,Φ0)-plane, if one sele
ts Φ0 su
h that the

�xed point is 
lose enough to an extremum of f(x) (i.e. 
lose to a 
onstru
tive or
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destru
tive interferen
e). Conversely, sin
e this value is proportional to the weight

β, the stable �xed point 
an always be destabilized by in
reasing the feedba
k

gain β, ex
ept for the exa
t 
onstru
tive or destru
tive interferen
e 
ondition.

Pra
ti
al parameter values a

essible experimentally, are 
overing easily the full

π-periodi
ity range for Φ0. However for β, it is usually limited to a few units (typ.

≃ 5) in the 
ase of an ele
tro-opti
 setup as in Fig.1(right).

Bifur
ations and route to 
haos are typi
ally explored as the feedba
k gain β is

Figure 2. Route to 
haos in delay dynami
s. Left: graph of the Ikeda map xn+1 = β cos2(xn +
Φ0), in whi
h the pit
hfork 
ase is represented along the positive slope of the map model,

leading to whether a period doubling or a 
risis and a period doubling (see also Fig.3 for

bifur
ation diagrams). Center: unusual experimental time tra
es obtained with an integro

di�erential (ε≈ 0.015 and δ ≈ 0.628) delay dynami
s along the positive slope (up: τD-periodi

limit 
y
le 
onne
ting the two stable �xed of the pit
hfork map, with asymmetri
 duty 
y
le;

middle: period doubled of the previous regime; low: slow θ-periodi
 limit 
y
le); theses regimes

are only obtained with the integro-di�erential model, the upper and lower ones being bistable

(hysteresis loop is obtained with respe
t to Φ0, for the same β). Right: 
ommon regimes of the

period doubling 
as
ade, along the negative slope (up: period 4 limit 
y
le; middle: period-2


haos; low: fully develop 
haos).

in
reased. This is experimentally 
onvenient sin
e β 
an be dire
tly and linearly

tuned by the input opti
al power level P0 as in Fig.1(right)). Under the map

model, this route to 
haos 
an be roughly divided into 2 s
enarii depending on

the sign of the slope around the original stable �xed point x
F

(for small βs and
depending on Φ0).

- If the slope is positive, a pit
hfork bifur
ation o

urs, leading to the appearen
e

of two stable �xed points (with also positive slopes) separated by an unstable

�xed point (see Fig.2): the dynami
s exhibits bistability, the a
tually observed

stable �xed point depends on the initial 
ondition. The upper �xed point is the


losest to a maximum of f(x), i.e. to a 
onstru
tive interferen
e. As β is in
reased,

it slides upward along f
NL

, going through the 
onstru
tive interferen
e state,

and then rea
hing the negative slope region. Further bifur
ation of this stable

�xed point along a negative slope region, is qualitatively the same as the one

experien
ed by a stable �xed point originally lo
ated along the negative slope. If

the a
tual intial �xed point if the lower one, it is the 
losest to the minimum of

f(x), i.e. to the destru
tive interferen
e. On the 
ontrary to the upper �xed point,

it experien
es a tangent bifur
ation through a 
ollision with the unstable �xed

point when β is in
reased. Both �xed points then disappear after the bifur
ation,

leading to a 
risis of the dynami
s, with a jump onto the remaining �xed point
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lo
ated 
lose to the maximum of f(x). The observed dynami
s is then the one

resulting from the bifur
ation sequen
e experien
ed by the same �xed point from

its stable steady state around a maximum of f(x). If the parameter β is then

de
reased, the hysteresis 
y
le around the 
risis point 
an be visited, highlighting

the 
hara
teristi
 bistability around this point (see Fig.3).

In the 
ase of a DDE model, novel solutions arises (see Fig.2-
enter and -right)

with respe
t to the above des
ribed map model situation (Fig.2-left). A re
ently

observed and analyzed one 
on
erns a τD-periodi
 motion 
onne
ting plateaus.

The values of the plateaus do not 
orrespond to the 
ommon limit 
y
le of the map

with a period of twi
e the delay, but they are 
orresponding to ea
h of the two

stable �xed points in Fig.2. Whereas su
h a solution was proven to be unstable or

metastable for standard DDE with low pass feedba
k �lter, the bandpass feedba
k

was re
ently found to lead to a stable version of this parti
ular τD-periodi
 solution
[41, 40℄.

- If the slope is negative, the bifur
ation s
enario is very similar to the well known

period doubling 
as
ade route to 
haos, popularized in the literature by the logisti


map. The nonlinear fun
tion around a maximum of intereferen
e is indeed lo
ally

a 
on
ave parabola, exa
tly as for the logisti
 map. In the real world of DDEs

however, only the beginning of the period doubling 
as
ade is observed up to

period 8 or 16, depending on the noise level in the experiment. The amplitude

separation in the limit 
y
le is smaller and smaller as the period doubling

in
reases: when this separation is smaller than the noise experiment, they 
an not

be distinguished. The limit 
y
les of the DDE take the form of alternating plateaus

of duration 
orresponding to the delay τD. The amplitudes of the plateaus are

mat
hing the ones 
al
ulated for the map. The transitions between the su

essive

plateaus are however not instantaneous as in the map, but they o

ur with ε-small

transition layers. These layers are thus s
aled in time with the response time τ ,
or equivalently, they are s
aled with the inverse of the bandwidth limiting the

feedba
k �ltering. These jumps are also 
hara
terised by stronger and stronger

overshoots or weakly damped os
illations, whi
h are underlining the in
reasing

role of the 
ontinuous time dynami
s in the global solution. After what is 
alled the

a

umulation point for the map (value of β leading to an in�nite period limit 
y
le

in 2n as n→∞), a reverse period doubling 
as
ade is observed (n now de
reasing

with in
reasing β). The a

umulation point in β is lo
ated at the position of the

verti
al dashed line in Fig.3. A 
hara
teristi
 dynami
s in this reverse 
as
ade is

qualitatively 
hara
terised by 2n plateaus 
onsisting of small 
haoti
 �u
tuations

with amplitudes β/2n and with ε-small time s
ales, ea
h plateau being separated

by 2n − 1 forbidden amplitude bandgaps. As β passes the fully developed 
haos

limit found for the map (for whi
h n=0, i.e. when the full interval [0, β] is
densely visited by the 
orresponding dynami
s), the a
tually observed dynami
s

are strongly dominated by the numerous 
ontinuous time modes of DDEs, whi
h

are 
orresponding to the large amplitude and high frequen
ies eigenmodes of

the DDE 
hara
teristi
 equation: 1 + ελ= f ′(x
F

)e−λ
. Within this β-range, many

qualitative features of the observed dynami
s 
an be used to illustrate the mu
h

stronger in�uen
e of the 
ontinuous time dynami
s 
ompared to the dis
rete time

map approximation. The high 
omplexity regimes are thus strongly di�ering from

the map situation (
ompare left and right diagrams for high β in Figs.3): (i)the

amplitude probability density distribution be
omes very smooth (whereas it is
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dis
ontinuous for the map); (ii)instead of the periodi
ity windows of the map,

one 
an observe so-
alled higher harmoni
 syn
hronisation [16℄ revealing 
omplex

resonan
es with rational numbers between the short time s
ale τ , and the large

delay τD; the 
haoti
 attra
tor, instead of being in
luded in a 1D phase spa
e,

rea
hes dimensions of the order of βτD/τ . In a
tual experiments, the 
haoti


attra
tor dimensions 
an easily rea
h more than several hundreds up to several

thousands.

Figure 3. Bifur
ation diagrams. Left: for the Ikeda map (numeri
s). Many values of the

asymptoti
 solutions are 
al
ulated for ea
h of the 800 β-values along the horizontal axis. The

values are used to 
al
ulate a probability density fun
tion (PDF) for ea
h β. The PDF is 
olor

en
oded. Right: for the 
ontinuous time Ikeda model (experimental, low pass �lter as in Eq.(2.1)).

The bifur
ation parameter β was slowly s
anned with a triangular signal 
ontrolling the opti
al

power seeding the MZ of the setup in Fig.1 Right. This allowed to in
rease and then de
rease

β in time, very slowly (0.5 s) 
ompared to the 
hara
teristi
 time s
ales of the dynami
s. Many

points (107) are 
olle
ted all along the s
an, thus allowing to 
al
ulate an approa
hed PDF

with 104 values at ea
h of the 1024 horizontal positions for β. The PDF is en
oded in grey

s
ale. Φ0 is adjusted to a 
omparable value with respe
t to the left bifur
ation diagram. Noti
e

that solutions represented in Fig.2 Center are typi
al of the nonlinear delay integro-di�erential

model, and 
an not be observed with the map, or the delay di�erential model of this �gure. The

solutions of Fig.2 Right are 
ommon to ea
h of the dynami
al models.

(
.2) Setup design variations: even more motion 
omplexity

Though the initial Ikeda DDE model already features ri
h and highly 
omplex

dynami
s, the experimental investigation of su
h systems largely 
ontributed

to the emergen
e of even rea
her dynami
s. New experiments performing EO

delay dynami
s in the framework of several pra
ti
al appli
ations, gave rise to

various modeling modi�
ations (see the se
tions below). This is typi
ally one of

the histori
al reason motivating fundamental studies on the integro-di�eren
ial

nonlinear delay dynami
s des
ribed in Eq.(2.3) or (2.4) instead of the DDE in

Eq.(2.1). The presen
e of the integral term was originating from the design of

broadband 
haos generators for high speed opti
al 
haos 
ommuni
ations. In the


ase of su
h a wide bandwidth spanning over 6 orders of magnitude in the Fourier

domain, from a few 10s of kHz to more than 10 GHz, it is te
hnologi
ally too

di�
ult to have a DC preserving feedba
k. The broadband rf ele
troni
 ampli�er

of 
on
ern behave ne
essarily as bandpass �lters. Su
h a situation required the

introdu
tion of an additional slow time s
ale θ atta
hed to the low 
ut-o�

frequen
y of a few 10s of kHz. This led to a not yet exhaustive �zoology� of many

new dynami
s, su
h as 
haoti
 breathers [20℄, slow limit 
y
le, pulsating regime
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[36℄, novel 
risis transisition from �xed point to 
haos [6℄, τD-periodi
 limit 
y
le

along the positive slope [41℄, Neimark-Sa
ker (torus) bifur
ation of the limit 
y
le

in very weakly damped (m≪ 1) mi
rowave delay os
illators [8℄, et
. . . .

Among other te
hnologi
al modi�
ations of the original Ikeda dynami
s, novel

ele
tro-opti
 ar
hite
tures also led to a surprising modeling of this dynami
s ba
k

to a map, however preserving the high-dimensional feature of the solutions [23℄.

Compared to the setup in Fig.1(right), the modi�
ation leading here to a 
orre
t

map modeling is related to the use of a high repetition rate (>GHz) mode lo
ked

pulsed laser sour
e. The 
ondition leading to a map model is related to the fast

optoele
troni
 devi
es 
apable to resolve the nonlinear feedba
k of the pulses

within a time shorter than the repetition period of the laser. Dimensionality of

the solutions is then ruled by the number of independent pulses stored in the

feedba
k delay line, ea
h pulse being ruled by the nonlinear map.

Other experimental investigations dedi
ated to opti
al 
haos 
ommuni
ation [29,

26, 25℄ proposed the introdu
tion of a multiple delay ele
tro-opti
 ar
hite
ture.

The spe
i�
 devi
e introdu
ing a supplementary delay was a passive imbalan
ed

DPSK (di�eren
e phase shift keing) demodulator. This led to the design of a

4 time s
ales delay dynami
s, an additional short delay δτD being present due

to the imbalan
e interferometer. Novel bifur
ation phenomena of the �rst Hopf

bifur
ation were dis
overed in su
h a system, revealing a resonan
e 
ondition

between the small delay δτD and the large delay τD [42℄. The bifur
ation 
onsists

in the destabilization of the Hopf limit 
y
le ruled by the small delay, and the

o

urren
e of a stable amplitude modulation of the Hopf 
y
le, with an envelope

period ruled by the large delay.

Last but not least, in the framework of the investigation of a novel 
omputational

prin
iple referred to as �Reservoir Computing� and based on the 
omputational

power provided by 
omplex transient motion of high-dimensional dynami
al

system, a many delayed feedba
k (15 to 150 randomly distributed delays)

dynami
s was explored. Their motivation was related to the investigation of the


onne
tivity enhan
ement of the equivalent virtual network of nodes, due to the

multiple delayed feedba
k ar
hite
ture [31℄. The a
tual properties and features of

this novel kind of 
omplex multiple delay dynami
s is still under investigations.

3. Delay dynami
s meet appli
ations

In the remaining se
tions, we will fo
us more on a few pra
ti
al appli
ations

that were explored in the re
ent past years, spe
i�
ally on the basis of various

ele
tro-opti
 nonlinear delay dynami
s. We will 
onne
t the spe
i�
 dynami
al

properties of the ele
tro-opti
 delay os
illators of 
on
ern, to the a
tual physi
al

requirements expe
ted for ea
h of these appli
ations. The sequen
e of the three

proposed appli
ations will moreover s
an a bifur
ation diagram in the reverse

dire
tion: �rst, opti
al 
haos 
ommuni
ations will show how one 
an make use of

the high 
omplexity 
haoti
 regimes to perform data en
ryption; se
ond, the limit


y
le of an optoele
troni
 mi
rowave os
illator will bene�t from high spe
tral

purity provided by a long delay; and last, even the stable �xed point will be

usefull as a stable starting point from whi
h a 
omplex transient is generated.

This nonlinear transient dynami
s is the 
omplex response of the dynami
s to

an external signal en
oding a problem to be solved. The nonlinear transient is
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the 
on
eptual basis for a novel universal 
omputing prin
iple exploiting high

dimensional phase spa
e of 
omplex dynami
s.

(a) Se
ure 
haos 
ommuni
ations

The idea to hide an information signal within a 
haoti
 
arrier stems from

the demonstration of the syn
hronisation 
apability between two distant 
haoti


os
illators, provided a suitable 
oupling between the emitter and the re
eiver


an be designed [35℄. Indeed, when a waveform 
an be syn
hronised, this usually

means it 
an be used as an information 
arrier. The most 
ommon 
arrier in


lassi
al 
ommuni
ations systems is the sine waveform, for whi
h a re
eiver

typi
ally performs frequen
y syn
hronisation in order to a
hieve the demodulation

of the 
arried information. Repla
ing the sine waveform by a broadband noise-

like 
haoti
 waveform does 
hange the 
on
ept of information transmission via

a 
arrier signal, as long as syn
hronisation of the 
haoti
 
arrier is possible.

Su
h a syn
hronisation 
apability for 
haoti
 signal, was orignally thought to

be impossible be
ause of the well known sensitivity to initial 
onditions of 
haoti


dynami
s. Chaos syn
hronisation is thus the triggering s
ienti�
 result for the

�eld of 
haos 
ommuni
ations. A rough explanation for the syn
hronisation

requirement in 
haos 
ommuni
ations, 
an be given as follows (we refer the

reader to the proli�
 literature on 
haos syn
hronization for more details, see e.g.

[5℄). The transmitted signal, whi
h is available for anyone listening to the publi


transmission 
hannel, is the result of the 
lear information signal superimposed

onto the large amplitude 
haoti
 
arrier. Re
overy of the masked information into

the 
haoti
 
arrier, 
an be a
hieved if one is able at the de
oder side to repli
ate

the same 
haoti
 
arrier waveform (usually 
alled identi
al syn
hronisation). In an

authorised de
oder, the lo
ally syn
hronised 
haoti
 
arrier is subtra
ted from the

re
eived signal to result in the re
overy of the original information (see the middle

plots in Fig.4, upper: masked signal, 
haos plus information; lower: unmasked

information). Chaos, as a broadband signal mu
h more 
omplex than a sine

waveform, o�ers the possibility to prote
t the transmitted information via the

masking, and via the di�
ulty for a
hieving a su

essfull syn
hronisation. Indeed,

syn
honisation usually requires the knowledge of numerous physi
al parameters

de�ned at the emitter for the generation of the 
haoti
 
arrier. These physi
al

parameters and their pre
ise setting at the emitter, usually form the se
ret key

required also at the re
eiver for a proper de
oding via 
haos syn
hronisation.

Ele
tro-opti
 delay dynami
s o�ered in that 
ontext several attra
tive advantages:

they in
reased dramati
ally the phase spa
e dimension 
ompared to the �rst

experimental demonstration. The �rst demonstrations were indeed making use

of ele
troni
 
ir
uits generating 
haoti
 
arrier in a 3D phase spa
e only [12℄,

with easily re
ognisable spe
tra. On the 
ontrary, the 
haoti
 solutions of highly

nonlinear delay dynami
s exhibit a nearly �at and broadband Fourier spe
trum,

and a nearly Gaussian probability density fun
tion. They are thus ressembling

any white noise sour
e, and they make mu
h more 
hallenging the identi�
ation

of the se
ret key parameters. The use of an opti
al ar
hite
tures also provided

a

ess to standard opti
al tele
ommuni
ation bandwidth, due to the use of o�-

the-shell tele
om optoele
troni
, ele
troni
, and ele
tro-opti
 devi
es designed

for more than 10 Gb/s opti
al data transmissions. The single loop os
illating

s
heme also allowed to implement un
onditionnally stable 
haos syn
hronisation
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Figure 4. Ele
tro-opti
 phase 
haos 
ommuni
ations: left: s
hemati
 of the emitter and re
eiver

setup; middle: 10 Gb/s eye diagrams for the 
haos en
rypted signal (up) and re
overed bit stream

(low); right: satellite view of the �Lumière brothers� network in Besançon, where the �rst 10 Gb/s

�eld experiment was performed. The Lumière brothers are the inventors of 
inema, they were

born in the 
ity of Besançon.


on�guration. Re
ently, experimental investigations of 
haos 
ommuni
ations

su

esfully a
hieved �eld experiment demonstration over installed �ber opti


network, at more than 10 Gb/s data transmission. A spe
i�
ally design EO setup

was able to generate a 
haoti
 opti
al phase used to 
arry the digital data with

a DPSK en
oding [25℄. The demonstration was �rst performed on the small ring

network in our 
ity of Besançon, the so-
alled �Lumière� brothers ring network

(see Fig.4). Further experiments over larger networks showed that our lab emitter-

re
eiver setup 
an be plugged on an installed network, being operational over more

than 100 km transmission link. The link quality of the en
rypted transmission

was found to be reasonnably good, with a net bit error rate at last of 10−7
.

Su
h performan
e 
an be easily improved to error free transmission with standard

digital error 
orre
tion en
oding.

(b)Mi
rowave optoele
troni
 os
illators

The limit 
y
le solution of delay dynami
s might o�er also very attra
tive

high performan
e features for another engineering appli
ations. This 
on
erns

the generation of mi
rowave os
illations at ultra high spe
tral purity level, e.g.

for Radar sour
es. The a
tually os
illating mi
rowave frequen
y F is roughly

determined as ω0/(2π) if we adopt the model in Eq.(2.3) for whi
h the bandpass

�lter is highly sele
tive, i.e. with m≪ 1. The long �ber delay line is here used to

provide a long (
ompared to the os
illating period) energy storage element, whi
h

is typi
ally required when high spe
tral purity is expe
ted. In usual os
illators, this

energy storage fun
tion is typi
ally performed by resonators with very high quality

fa
tors. Quarz resonators are very well mature devi
es for a
hieving extreme

stability via piezoele
tri
 e�e
ts 
oupling ele
tri
al and me
hani
al vibrations.

However, their Fourier frequen
y range, when very high stability is 
on
erned,

is 
urrently limited up 100 MHz. In the mi
rowave range, surfa
e a
ousti
 wave

devi
es are making impressive progress, but photoni
 te
hnologies are o�ering

for the moment the most e�
ient solutions, e.g. through so-
alled optoele
troni


os
illators (OEO). A basi
, but very attra
tive feature is moreover that on the



15


ontrary to os
illators based on ele
tro-me
hani
al resonators, their quality fa
tor

is in
reasing with the operating frequen
y. This is easily explained due to the

energy storage prin
iple based on the delay of a mi
rowave signal 
arried by an

opti
al light beam: at a given linear loss 
oe�
ient (very low for �bers, typ.

0.2 dB/km), the 1/e attenuation is 
orresponding to a �xed �ber length L or

delay τD, independently of the mi
rowave modulation of the light 
arrier. Quality

fa
tor 
an then be de�ned as the number of open loop os
illating periods before

their amplitude de
ay at 1/e. Consequently, this quality fa
tor s
ales linearly

with the mi
rowave frequen
y F , i.e. Q= (n.L/c)F = τD F . Su
h a s
aling is

moreover valid in prin
iple up to very high frequen
ies, due to the huge bandwidth

of Tele
om grade 1.5 µm monomode sili
a �bers. Pra
ti
al limitations do not

involved the ultra low loss feature, but other restri
ting physi
al phenomena

at the origine of time delay �u
tuations. This 
omprises for example refra
tive

index variation due to temperature drifts, or laser phase noise transfer onto the

mi
rowave due to �ber dispersion. These limitations are 
urrently imposing in

pra
ti
al OEO, a �ber length limit 
a. of a few km (thus a few 10s of µs), thus
shorter than to the 1/e attenuation limit. Figure 5 represents a typi
al phase

noise spe
trum re
orded around an OEO with a 
entral frequen
y F =10 GHz. It
was designed with an a

urately thermalized 4 km �ber delay line, and a 50 MHz

bandwidth �sele
tive� ele
troni
 feedba
k �lter. The zoom inset is a high resolution

measurement of the width and height of the �rst side noise delay mode. This

peak o

urs at 50 kHz= τ−1

D
from the 
entral os
illating mode. One 
an noti
e

the extremely thin width (
a. 40 mHz) and the extreme height (110 dB, from the

�oor level at -140, to the top level a

urately measured in the inset at -30), whi
h

are typi
al signatures of the large delay 
hara
ter of su
h an OEO.

From the more theoreti
al and nonlinear dynami
s point of view, su
h extreme

Figure 5. Mi
rowave optoele
troni
 os
illator. Left: �lter features relative to the delay mode in

the Fourier domain. Right: Phase noise spe
trum measurement around the 
entral frequen
y at

ω0/2π =10 GHz; inset: spe
tral features (extremely thin and strong) of the �rst noisy side band

delay mode[9℄ (the peak at 50 Hz is only a parasiti
 peak due to unavoidable ele
tri
al power

line ele
tro-magneti
 pollution).

parameter 
onditions have brought also very interesting investigations. Indeed,

with respe
t to the model given in Eqs. (2.2) and (2.3), one has a resonant �ltering

feedba
k 
orresponding to a very low damping m≃ 10−3 ≪ 1. This is in strong
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ontrast 
ompared to the very high damping of the previous se
tion a where

m≃ 105 ≫ 1. However, though the feedba
k bandwidth is strongly redu
ed, the

potential 
omplexity or the number of degrees of freedom, is not ne
essarily very

low, be
ause the de
rease of bandwidth is here 
ompensated by the in
rease of

the time delay. The relatively short delay in the previous se
tion was about 10s

of ns, it is here extended to several 10s of µs. The fondamental Fourier delay

mode is now 
orresponding to a mu
h lower frequen
y (typ. 50 kHz vs. 10 MHz

for 
haos 
ommuni
ations), and the delay modes are be
oming mu
h more dense

in the Fourier spa
e. Though narrow bandpass feedba
k �lter is involved around

10 GHz, the density of delay modes still allows for many tens to hundreds of these

modes to be potantially involved in the dynami
s. The narrow �lter width of a

few 10s of MHz feeds ba
k potentially many of the 50 kHz-spa
ed delay modes.

Highly 
omplex delay dynami
s 
an be expe
ted, and was found to lead to other

bifur
ation s
enarii when the feedba
k gain is in
reased: e.g. a Neimark-Sa
ker

bifur
ation o

urs from the ω0-Hopf limit 
y
le, leading to a torus 
hara
terized

by a τD-periodi
 envelope modulation of the ω0 mi
rowave os
illation [8℄.

(
)Photoni
 nonlinear transient 
omputing

The stable steady state is a solution of �a priori� relatively poor interest. And

indeed, if one 
onsiders a �xed point, only a very low 
omplexity level is obtained.

The stable �xed point is however not a unique feature of the dynami
al system it

is generated from. One might at least asso
iate to it the 
orresponding basin of

attra
tion. Depending on the dynami
s stru
ture and dimension, the stable �xed

point 
an be
ome mu
h more attra
tive in terms of related 
omplexity. One 
ould

then not only analyze the lo
al stru
ture of a �xed point, but also its entire basin

of attra
tion, as soon as a 
omplex external signal 
an be designed to address in

prin
iple any possible traje
tory driving to the �xed point: this is pre
isely what

is used in an emerging appli
ation, �Reservoir Computing�, whi
h is making use

of nonlinear transients 
omplexity to perform 
omputation. �Nonlinear Transient

Computing� was also suggested in [11℄ and [31℄ as a naming whi
h might refer

more to the physi
s and nonlinear dynami
s viewpoint. This novel 
omputational

prin
iple was originally proposed independently in the early 2000 by the 
omputer

s
ien
e / neural network 
omputing 
ommunity [18℄, and the brain 
ognitive

resear
h 
ommunity [30℄. It was initially referred to as E
ho State Network, and

Liquid State Ma
hine, respe
tively. More re
ently, the uni�ed name of �Reservoir

Computing� [39℄ was proposed. The 
on
ept is 
losely inspired and related to the

standard neural network 
omputing, as represented in Fig.6. One of the main

di�eren
e is to assume that the internal stru
ture of the network does not need

to be optimized during the learning phase. This internal stru
ture typi
ally only

needs to be on
e randomly de�ned, via a 
onne
tivity matrixW I

. This is imposing

a �xed, but still 
omplex, dynami
s for the global neural network. The learning

phase then aims only at �nding a suitable so-
alled �Read-Out� output via a

Read-Out matrix WR

. The Read-Out 
onsists simply in �nding a hyperplane in

the phase spa
e of the network dynami
s, from whi
h the 
orre
t answer 
an

be easily dedu
ed. This Read-Out output 
onsists of a linear 
ombination of

some of the network nodes that are animated by the 
omplex transient motion,


onse
utivey to the inje
tion into the network of the information to be pro
essed.

A suitable formatting of the input information is required, whi
h is pra
ti
ally
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de�ned by an input layer 
onne
tion to the nodes of the network. This introdu
es

a data 
onne
tivity matrix WD

, i.e. the way the input information is inje
ted

into the 
omplex phase spa
e. One of the most important advantage 
ompared

to 
lassi
al neural network 
omputing, resides in the fa
t that the learning is

strongly simpli�ed. It is usually performed su

essfully via an always existing

solution of a simple ridge regression. This regression results in the 
al
ulation of

WR

. Despite its mu
h lower algorithmi
 
omplexity whi
h is essentially redu
ed

to the learning pro
edure, this approa
h already showed very good results on

various 
omplex tasks. Moreover, performan
es at the level of the most e�
ient


lassi
al neural network approa
hes have been a
hieved, and sometimes they are

even outperforming them[19℄.

Very re
ently, in the frame of the European proje
t PHOCUS, this novel

Figure 6. Photoni
 Nonlinear Transient Computing, or Reservoir Computing, with ele
tro-opti


delay dynami
s. Left: general ar
hite
ture of neural network 
omputing. Middle: pi
ture of the

EO setup, and s
hemati
 of the setup similar to Fig.1. Right: experimental result with an already

learnt Read Out matrixWR

, multiplied by the 2D pattern representing the transient response of

the delay dynami
s. The horizontal axis represents the dis
rete time index k labelling the time

delay interval over the pro
essing duration. The verti
al axis represents the node index n (from

1 to 150), labelling the sampled amplitudes within ea
h of the su

essive time delay intervals.

The transient is generated by an external signal 
orresponding to the input information, here an

a
ousti
 spee
h (spoken digit) to be re
ognised. The matrix produ
t gives a Read Out output

where digit 7 
an be easily identi�ed as the most red-
olored line among the 10 possible digits

(0 to 9).


omputational approa
h was addressed from the experimental point of view, with

the use of a delay dynami
s instead of a network of nodes. A �rst approa
h was

tested with an ele
troni
 Ma
key-Glass delay dynami
s [1℄. This �rst ele
troni


demonstration was then also extended to a photoni
 design [24, 34, 31℄ dire
tly

inspired by the setup in Fig.1. These su

essful implementations of Reservoir

Computing with delay dynami
s, 
an be explained by a known analogy between

in�nite dimensional delay dynami
s, and spatio-temporal dynami
s [2℄ (see Fig.7).

Standard neural network 
omputer are usually materialized as a network of

inter
onne
ted nodes, su
h as network of neurons, thus forming a 
omplex spatio-

temporal dynami
s. This dynami
al analogy between spatio-temporal dynami
s

and delay dynami
s, allows a priori for the use of a delay dynami
s for Reservoir

Computing, in the pla
e of the 
ommon spatially extended networks. This analogy


onsists in a representation of a delay dynami
s, as a virtual 
ontinuous-spa
e and
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Figure 7. Graphi
al interpretation of the spa
e-time analogy for a delay dynami
al system used

as a Nonlinear Transient Computer. Left: the input data are multiplexed in time through the

use of a mask. Time multiplexing plays the role of addressing the virtual spatial nodes with the

input data, with di�erent weights. The virtual spatial nodes are ��ne� temporal positions within

a time delay of the nonlinear delayed feedba
k dynami
s. They are separated by the quantity

δτ . The same nodes are used to perform the Read-Out, as a linear 
ombination of these node

amplitudes during the transient response of the delay dynami
s. Middle: the delay dynami
s

is interpreted in terms of nodes inter
onne
tions. The impulse response h(t) provides a short

term 
onne
tivity, or equivalently a short distan
e spatial 
onne
tivity between the nodes. The

nonlinear delayed term appears as a long term 
onne
tivity, or a temporal update from one time

delay to the next, for ea
h node. Right: spatio-temporal graph of a nonlinear delay dynami
al

transient. The �ne temporal stru
ture is the virtual spatial 
oordinate represented verti
ally.

The time step from one time delay to the next, represents the dis
rete time iteration.

dis
rete-time dynami
s. The dis
rete-time motion is 
orresponding to a round trip

in the delay os
illation loop, indexed by an integer k labelling the number of the


urrent τD-interval. The virtual 
ontinuous-spa
e 
onsists of the �ne temporal

motion of the dynami
s, of the order of τ , and o

uring within one �
oarse� time

delay interval. The nodes of the virtual network are then de�ned as N temporal

positions within a time delay. Ea
h node xn(k)|n ∈ [1, N ] has a dis
rete time

motion from one delay interval to the next, as k is in
reased to k + 1. The 2D

pattern x(n, k) forms a representation of the transient motion, on whi
h one

has to apply the Read-Out matrix WR

in order to �nd the expe
ted answer

(see Fig.6). Experiments based on nonlinear delay dynami
s used as the virtual


omplex dynami
al network involved in a nonlinear transient 
omputer, have

been su

essfully 
ondu
ted on ben
hmark tests su
h as spoken digit re
ognition,

time series predi
tion and nonlinear 
hannel equalization. Moreover, the a
hieved

performan
es in these real-world physi
al setups are very 
lose to the ones

obtained from pure numeri
al simulations, opening very interesting perspe
tives

on many pra
ti
al problems that 
an not be solved easily and/or fast enough with

standard digital 
omputers.

4. Con
lusions and future issues

Ele
tro-opti
 delay dynami
al systems have triggered during the last 15 years

an important s
ienti�
 a
tivity, ni
ely balan
ed and 
ross-fertilized between

fundamental issues and novel appli
ations. It took bene�t from the intrinsi



omplexity and dimensionality of the numerous and various possible dynami
s.
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Powerful appli
ations have been at the origine of spe
i�
 dynami
al features due to

setup modi�
ations guided by appli
ations. These spe
i�
 dynami
al features have

been then also explored from the theoreti
al point of view. Examples in this review

have 
overed appli
ations 
on
erned by three solutions of delay equations, from

high dimensional 
haos to the 
omplex transients leading to a stable �xed point,

through the extreme regularity of a limit 
y
le solution. A typi
al illustration

of the 
ross-fertilisation 
an be the following one: broadband 
haos was used

in the frame of se
ure opti
al 
ommuni
ation, whi
h 
ould only be designed

with bandpass optoele
troni
 feedba
k, thus resulting in an integral term in the

modeling equation. This term was then found to be at the origine of whether new

periodi
 regimes, or stable ones whi
h were known to be unstable or metastable.

A important horizon is still open in this framework, and many issues remain to be

addressed, again both from the appli
ation point of view and from the theoreti
al

one. The nonlinear intera
tions between the limit 
y
le features, and the phase

noise performan
e in mi
rowave OEO, requires fundamental investigations of

noisy delay equations. The phase spa
e feature around the stable �xed point

used for nonlinear transient 
omputing needs to be deeper understood, espe
ially

from the information theory point of view, in order to optimize the pro
essing

power of this novel 
omputational prin
iple.

Last but not least, we anti
ipate that novel fundamental dynami
al properties

will appear again via novel design approa
hes for improved appli
ations involving

delay dynami
al systems. A probably important te
hnologi
al evolution in delay

dynami
s, whi
h already started in the 
ase of external 
avity lasers [4℄, 
on
erns

the use of integration possibilities and mi
ro- nano-te
hnologies for the realisation

of delay dynami
al systems. This also in
ludes opti
al disk resonators 
urrently

investigated for broadband 
omb generation and extreme stability time-frequen
y

systems. These setups have been 
learly identi�ed as involving both the delay in

the ring, and also a distributed nonlinear light-matter intera
tions between the

numerous 
avity/delay modes [7℄.
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