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Nonlinear delay dynamics have found during the last 30 years a particularly prolific
exploration area in the field of photonic systems. Besides the popular external cavity laser
diode setups, we will focus in this article on another experimental realization involving
electro-optic (EO) feedback loops, with delay. This approach has strongly evolved with
the important technological progress made on broadband photonic and optoelectronic
devices dedicated to high speed optical telecommunications. The complex dynamical
systems performed by nonlinear delayed electro-optic feedback loop architectures, were
designed and explored within a huge range of operating parameters. Thanks to the
availability of high performance photonic devices, these electro-optic delay dynamics led
also to many successful, efficient, and diverse applications, beyond the many fundamental
questions raised from the observation of experimental behaviors. Their chaotic motion
allowed for a physical layer encryption method to secure optical data, and this in real
time at the typical speed of modern optical telecommunications. Microwave limit cycles
generated in similar EO delay oscillators, showed significantly improved spectral purity
thanks to the use of a very long fiber delay line. Last but not least, a novel brain
inspired computational principle has been recently implemented physically in photonics
for the first time, again on the basis of an EO delay dynamical system. In this latter
emerging application, the computed result is obtained by a proper “Read-out” of the
complex nonlinear transients emerging from a fixed point, the transient being issued by
the injection of the information signal to be processed.
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1. Early electro-optic delay dynamics

The Lorenz Butterfly effect (also known in a more academic way as “sensitivity
to initial conditions”) is originating from a 1963 publication, and it strongly
contributed to the important revival of nonlinear dynamics theory. This occurred
many years after the interrupted path drawn by Poincaré in the late 19*" and early
20" century. The field of nonlinear dynamics was later popularized by Yorke in the
70s, while renaming this field “chaos theory”. Important efforts were then brought
in this emerging scientific community to show evidence of chaotic motion in real
world, whether in systems observable in the Nature, or in artificial ones designed
by humans. In the particular field of Optics, a seminal idea was proposed in the
late 70s by a japanese researcher, K. Ikeda, in order to observe chaotic motions
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in Optics, the dynamical variable being the light intensity at the output of a ring
cavity containing a Kerr medium (see Fig. 1(left)) [15].

A rapid physical look at this “Gedanken” experiment immediately reveals the
central role of the delay induced by the time of flight of the light propagating
inside the ring cavity. A simple dynamical modeling of the system can lead to the
reduction of the number of dynamical variables to a single one, the laser output
intensity. In this setup, this light intensity level is also repsonsible for the optical
phase variations induced by the Kerr effect, at a rate of change ~ limited only
by this ultra fast light-matter interaction phenomenon. One is then brought to a
scalar linear first order differential equation, driven by a nonlinear feedback term
delayed in time. If no delay were present, it is known to always lead to a fixed
point as the most complex possible solution. Bistable fixed points are however
possible even without delay, because of the nonlinear feedback term occurring
inside the cavity at the input of the Kerr medium. This nonlinear transformation
is performed by an interference phenomena occuring between the input CW laser
beam, and the cavity feedback beam. The actual presence of the delay violently
changes the dynamical perspectives on this simple system, increasing its number
of degrees of freedom from 1 (the intensity at the time origine), to infinity. This
delay-induced infinite number of degrees of freedom stems from the size of the
initial conditions formed, when delay is present, by a functional decribing the
actual intensity variations in time, over a duration corresponding to the delay
time 7p. This delay interval can then be viewed as the “memory” of the cavity.
Again, a rapid physical analysis of the relative time scales, would easily convince
anyone that this delay potentially induces a from far non negligeable “memory”
effects on the dynamics: the rate of change v for a Kerr effect is of the order
of ps~! or even (sub-ps)~! time scale, whereas the time of flight of the light in
vacuum easily exceeds ns (3 orders of magnitude greater!) even when only a few
cm cavity length is concerned. This makes a strong evidence of the importance of
the large delay situation in which the setup has to be considered.

In such an Ikeda ring cavity, high complexity chaotic motions were indeed obtained
numerically. This was also confirmed experimentally, but on a modified setup.
This alternative setup was however still following the typical ingredients described
above, a delayed feedback loop with a modulated interference condition. In [13], a
bulk electro-optic birefringent interferometer was proposed instead of the optical
cavity, and the delay was performed via a digital buffer after analogue-to-digital
conversion of the photodetected interference intensity. After being transformed
back to a continuous time signal by a digital-to-analogue converter and some
amplification, this delayed electronic signal was finally used as the drive of
the electro-optically induced phase shift in the interferometer. Instead of this
bulk setup, an integrated optics version was proposed right after in [33]. This
technological solution is the one concerned by most of the results reported in
this article. It is indeed a very convenient experimental approach, both from the
system integration perspectives, as well as from the ones of the setup stability
and performances. As it will be shown in this article, the extremely robust and
reliable features of the related off-the-shelf optical telecommunication devices,
transformed the original Ikeda ring cavity into a flexible photonic lab tool for
harnessing the complexity of delay dynamics.



2. Modeling and design

The Ikeda ring cavity dynamics principle, once translated into a signal processing
approach, appears as an obvious feedback loop chain. One of its main advantage is
to allow for a clear separation between the linear and the nonlinear contributions
in the dynamics. These issues will be detailed and analysed in the following
subsections.
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Figure 1. Tkeda dynamics: from the “Gedanken” experiment to the electro-optic implementation.
Left: The Ikeda ring cavity ingredients: a nonlinear modulation of the intensity is performed via
an interference condition modulated by the phase shift Ay occurred at one round trip earlier in
a Kerr medium (length L, Kerr coefficient n2). The input laser beam has a constant intensity Io
and a wave vector k =27 /A =27v/c in vacuum. The dynamics of the phase shift is ruled by the
Kerr response time 7 =~"'. The dynamics can be observed through the intensity fluctuations
at any output of the two partially reflecting mirrors of the cavity. Right: The intensity electro-
optic nonlinear delay oscillator: a laser diode is seeding an electro-optic Mach-Zehnder (MZ)
modulator with a continuous wave light beam of power Py; the MZ output interference is (7)
dynamically modulated by the electrical input G z(t), and (i) statically set by the offset phase
Dy (set by a constant voltage on the dc electrode); the resulting nonlinear transformation fxr.(z)
is delayed in time by 7p (flight time through a fiber); the modulated and delayed optical intensity
is detected by a photodiode (sensitivity S); the resulting electrical signal is filtered in the Fourier
domain according to H(w), and amplified (gain G), then serving as the rf input of the MZ.

(a) Modeling: a signal processing approach

The simplified physical equation as written in the Kerr medium box of
Fig.1(left), can be re-written with a splitting of the linear terms in the left
hand side, and the nonlinear term in the right hand side. One can then analyse
the dynamics as follows: in the time domain, it consists of a linear first order
differential process driven by a nonlinear delayed feedback term; in the Fourier
domain, the left hand side plays the role of a linear first order filter (actually a
low pass filter) driven at its input by a delayed nonlinear transformation of its
output. This results from a straightforward calculation as described in Eq.(2.1),
using conversion rules between the Fourier and the Time domain (according to
Fourier Transformations (FT), d/dt — iw-FT, and [dt — (iw)~*-FT):

doy FT Ap(w) 1

G0 +0e) = felt — )] =2(t) B TS = = H(),
(2.1)

where Z(w) =FT[z(t)] and Ap(w) =FT[dp(t)] are the Fourier Transforms of the
corresponding time variations. The Fourier Transform H (w) represents the linear
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filtering performed on the input signal and thus leading to the output signal. This
filter is actually involved in the feedback loop architecture, i.e. it is the first order
low pass filter in the particular case of Eq.(2.1). It is typically characterised by
a —3 dB cut-off frequency of (27r7)~! =~/(27). One could notice that any other
filter could be in principle considered with the same modeling approach. This
results in a change of the Fourier filtering function H(w), according to the actual
filter to be considered. The consequence in the time domain would consist in the
presence of higher order differential terms, as well as also eventually in additional
integral terms. One might recall that H (w) is defined as FT[h(t)], where h(t) is the
so-called temporal impulse response of the corresponding linear filter, i.e. the filter
output signal when the input is a Dirac function 6(¢). With this modeling approach
allowing for different kinds of filters, the right hand side of the differential
equation remains unchanged, since it consists in the nonlinear delayed feedback
driving the input of the linear filter. In our particular experimental scheme, the
nonlinear transformation is ruled by a two-wave interference phenomena, i.e.
z(t) = A[1 + Bcos[op(t — p) + Po|}. A and B are constant parameters defined
by the feedback gain, and the contrast of the intereference respectively. B =1
for a unity contrast, i.e. when balanced wave amplitudes are concerned in the
interference, and A < nokly/2, as illustrated in Fig.1(left).

In practical situations where broadband or high frequency delayed optoelectronic
feedback is involved, the low pass filtering has typically to be replaced by a
bandpass filter to reflect the actual filtering performed by the electronic branch of
the loop. In such a situation, the most simple linear filter model corresponding to
a bandpass filtering, is a two pole (second order) Fourier transfer function H(w).
More physically and “time domain” speaking, this filtering situation is the one
obtained in a damped oscillator, with the well known differential model of the
following form:

i2mw/wy FT-!

H(w)= — 2.2
@) 14+ i2mw/wy — (w/wp)?’ (2.2)
1 . 2 . 1 . 2
ﬂJ&Pdt-ﬂip—i——&p:z & 5<p+—m5<p+—25cp:—mz'
2m 2muwyg wo wp wo

where @ is the derivative of z with respect to time, m is the damping factor, and
27 Jwp the pseudo oscillation period. In this case of a second order bandpass filter,
the discussion with respect to the damped oscillator analogy typically involves
the nature of the eigenvalues. On the one hand, one can have complex eigenvalues
when m < 1, in the case of a weakly damped oscillator and thus a narrow filtering
around a central resonance frequency wg. This is the typical situations met in high
spectral purity delay optoelectronic microwave oscillators (wg/(27) ~ 10 GHz, and
—3 dB bandwidth mwy~ 10s MHz), as proposed in [43]. On the other hand, the
eigenvalues can be purely real and negative, which is met in a strongly damped
oscillator with m > 1, wg being then the geometric mean of the caracteristic cut-
off pulsation ,/wpxw;. In this case, the filtering features are as follows: (i) a —3 dB
high cut-off frequency wy /(27) = f, ~ 10 GHz is corresponding to a low pass filter
as in Eq.(2.1) with 7 =w; ' = (2mwp) ™! ~ 10 ps; (i4) and a low cut-off frequency
wy/(2m) = fi ~10s kHz corresponding to a high pass filter, and introducing a
slow integration characteristic time as in Eq.(2.2) 6 =w; ' =2m/wy of a few pus.
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The case of negative real eigenvalues characterises the situation typically met
in broadband optoelectronic chaos communication applications, as proposed in
[14, 22, 3]). The modified Ikeda dynamics from (2.1) into (2.2) has been named
integro-differential nonlinear delay equation, since it is written as follows in a
normalized amplitude form, keeping the same cos? nonlinear delayed feedback
term in the right hand side:

%LO z(§)dE + x(t) + T((ii_?(t) = faufz(t — )] — fNu]0] (2.3)

= B {cos®[z(t — mp) + Pg] — cos® Dy},

where 3 is the normalised weight of the nonlinear function fyr, in the dynamics,
and @ is a static phase shift defining the interference condition around which the
dynamical modulation of the MZ occurs. The normalised dynamical variable x(t)
is determined so that it appears as a scale free argument of the cos? nonlinear
function. It is physically proportional to the original Kerr phase shift dp in the
Ikeda model, or in the MZ case, it is proportionnal whether to the electro-optically
induced phase shift or also to the rf voltage driving the MZ. One would notice that
a constant term was added to the right hand side (fx1,[0]) only for convenience,
because this writing allows to highlight the fact that = =0 is a natural steady
state in integro-differential delay dynamics. The model in Eq.(2.3), eventually
with minor modifications depending on particular experimental conditions, was
successfully used to investigate whether numerically or analytically many specific
dynamical motions observed with the bandpass version of the generic electro-optic
intensity setup (see Fig.1(right), [17, 8, 36, 6, 32|). It is sometimes more convenient
to re-write the dynamics in a vectorial form, with a time s =¢/7p normalized to
the delay. The equations of motion read then as follows:

e-ifs) = —x(s) = 0-y(s) + furfz(s = V)] = fwr [0], (2:4)
yls) = a(s).

The previous formulation of the dynamics might be particularly usefull in the
broadband case, in order to highlight a few parameters revealing the important
underlying multiple time scales problem: e =7/7p <1 and § =7p/f < 1 as in
[36, 42|, where the various relevant time scales are spanned over more than 6
orders of magnitudes.

The actual dynamical features which can be reached experimentally, strongly
depend on the devices and system organisation. To clarify this from the practical
point of view, we will address a few experimental details in the next subsection,
trying to connect the technical characteristics of the devices used to build the
electro-optic delay oscillator, together with some expected dynamical features.

(b) Device features, and delay system properties

In this subsection, many numerical values for the experimentally achievable
parameter range will be given and discussed in the context of the dynamical
properties of the electro-optic delay dynamics. Each of the devices depicted in the
setup of Fig.1(right) will be addressed.
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(b.1) Amplitude parameters

As indicated in Eq.(2.3), essentially two independent amplitude parameters
can be defined for the characterization of the nonlinear function: (i) /3 is a weight
for fxi[x], acting as a vertical stretching in the graph of fxr,); (i) ®q is an offset
phase defining the mean operating point, it is acting as an horizontal shift in the
graph of fxi, (see Fig.2).

The physical origine defining f=7SGPy/(2V;,) comes from the various
amplification factors and conversion efficiencies of each device in the feedback
loop. The most important device is the electro-optic Mach-Zehnder (MZ)
modulator performing the nonlinear transformation in the dynamics, a cos’-
transformation. It is practically obtained from an electro-optically tuneable
integrated optics two wave interferometer. The constructive interference are
leading to the maximum of the function fxp (plotted in Fig.2 Left), and the
destructive one correspond to the minima of the function. With an EO Mach-
Zehnder device, the interference condition can be dynamically controlled over
a large bandwidth, i.e. the one typically involved in optical telecommunication
systems for which they are commonly designed and used. The electro-optic
efficiency is quantified technically by the half wave voltage V; .. It corresponds to
the input voltage amplitude required to induce a mw-phase shift in the interference
condition, thus changing for example a constructive interference into a destructive
one. The voltage amplitude AV applied to the MZ electrodes, when rescaled with
respect to Vr ., can be viewed as a measure of the nonlinear strength actually
involved in the dynamics. More mathematically speaking, (1+ AV/V; ) is an
estimate of the equivalent degree for the polynomial that could approximate
the actually used range of the nonlinear function. This would be for example
a parabola when AV ~V_ . or a cubic polynomial when AV ~2V. . etc....
Highly nonlinear motions are thus subject to the capability to provide a voltage
large enough compared to Vi, over the full bandwidth of interest (>10 GHz
for telecom devices). Currently, the most efficient Telecom MZ have a V; of
about 3 Volts, but common values are usually closer to 5 Volts. The technical
challenge becomes then obvious, for a cubic motion one would need to drive the
MZ with ca. 15 Volts, which is commonly slightly above the limits of conventional
MZ telecom drivers. Higher voltage spans are however possible, but usually at
the cost of a strongly reduced bandwidth. A proper signal amplification is thus
required, which is the role of the optoelectronic feedback. It is intended to provide
enough detection efficiency and amplification, up to the requested drive voltage
amplitude to be applied to the MZ. When broadband operation is desired, this
implies a 50 €2 termination at the MZ electrodes, which is imposing an additional
technical constrain in terms of rf power drive capability (up to a few electrical
Watts). Assuming one has a standard “telecom” maximum optical power available
at the photodiode input (fluctuations from 0 to 10 mW), and taking into account
the typical detection efficiency of 0.9 A/W for InGaAs telecom photodiodes
loaded with 50 €2 transimpedance amplifier, the electronic gain required from the
photodiode to the driver, rises to a few 30 dB when quadratic nonlinear operation
is expected. Neverheless, broadband amplified photodiodes are commercially
available with up to 2.4 k) transimpedance instead of the previous 50 €2. This
is relaxing the remaining electrical gain to less than 20 dB. Though this consists
already in a strong amplification, especially for bandwidth greater than 10 GHz,
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it is technically feasible. When amplifier drive saturation is experienced, one could
modify the model in Eq.(2.3) with an additional nonlinear transformation, a
tanh(x) as the argument of the cos? main non linearity instead of = (see [17, 6]).
The progress in novel photonic technologies (plasmonic and/or photonic crystal
devices) might further improve the actually achievable range for the nonlinear
operation of electro-optic nonlinear delay oscillators. This corresponds to the
design capability of devices with lower half wave voltage. Alternative setups and
physical solutions can be found in the literature, however usually at the cost
of strongly reduced bandwidth. This is for example the case for the wavelength
chaos generator reported in [21, 31|, where a polynomial up to 14th degree can be
achieved due to the large, but slow, tuning range of a tunable DBR semiconductor
laser. The achievable wavelength deviation can drive up to several free spectral
range of a strongly imbalanced birefringent interferometer.

The parameter ®¢ = mVhjias/(2Vr,.) is usually tunable over a large enough range,
considering its m-periodicity in the model. As indicated in Fig.1(right), this
parameter is simply adjusted via a constant voltage applied to the dc electrode
of the MZ. This allows to adjust the operating point over more than one period
of the cos? modulation transfer function. With a Vj 4. of about 4 to 7 Volts,
with a purely capacitive load impedance and only very low frequency operation
requirements, the only practical issue to check is the possible slow and small drift
with external environment changes. Slow time scale relaxation phenomena, e.g.
very slow dynamics induced by possible surface charge redistribution inside the
electro-optic crystal, might occur, thus inducing a slow time dependence of the
actual electro-optic efficiency.

(b.2) Time parameters

The key condition typically required when high complexity dynamics is
desired, is the so-called large delay configuration. In that case, the delay 7p is
typically much greater than the characteristic time 7. The linear “memory” of the
dynamics is thus scaled as the ratio 7p/7. This ratio can be viewed as simply
representing the number of times that the fastest temporal motif limited by 7 can
be accumulated over a time interval corresponding to the delay 7p. Complexity
can be further increased through nonlinear effects: it was shown in [27, 28] that
the attractor dimension of the Ikeda dynamics in chaotic regimes increases as
Btp/T.

From the more practical point of view, the setting of the time parameters
depends on the targeted issues. For fundamental investigations of the dynamical
properties of delay system, any setting can be adopted, depending on the
studied configuration: accurately controlable and variable time parameters usually
involves discrete time ([21]) or analogue-to-digital conversion (|10, 37, 38, 31]). The
delay function is emulated by so-called FIFO (fist in first out) memories in the
digital processing. The delay value is then fixed by the FIFO memory depth, and
the digital clock defining the speed at which the samples are travelling through
the FIFO. The delay value can be easily adjusted when tuning the digital clock
frequency. When the FIFO is implemented in programmable digital devices (such
as FPGA), even the linear filter can be implemented digitally, thus also providing
a large flexibility, stability, and accuracy, in the definition of the filter properties.
One has however to respect the basic rules of sampling theory (Shannon sampling
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theorem), which is imposing limitations in terms of available analogue bandwidth
depending on the maximum sampling rate. One has also to be aware of some
signal to noise ratio limitations depending on the level of quantization. The
digital approach has many advantages for more flexibility and robustness of the
experimentally explored complex phenomena. Typical values of the ratio 7p/7 is
of the order of a few 10s, and the reference time scale 7 is of the order of one or
a few 10s of us, resulting in delays of the order of ms.

When high speed is targeted, the natural choice is to perform the delay via the
ultra broadband (10s THz) capacity of optical fibers. Optical fibers have also the
attractive property to provide an ultra low absorption (typ. 0.2 dB/km) of the
travelling light beam at the telecom wavelength (1.5 um). This solution however
leads to fixed delays, which value is directly determined by the length of the fiber.
For example, a 4 km standard telecom grade single mode fiber spool provides ca.
20 us delay, with an attenuation of less than 1 dB. The other time scales ruling the
dfferential dynamics through the electronic filtering feedback, can be set to very
fast dynamics when Telecom grade devices are used. Optoelectronic, electro-optic,
and electronic devices can provide access to characteristic response time as fast as
10 ps. These devices are typically designed for communication bandwidth greater
than 10 GHz. The large delay configuration is then easily fullfilled with a setup
as in Fig.1(right), since only a few meters of fiber is generating 10 ns time delay,
thus performing a normalised linear memory greater than 1000. Considering the
fiber pigtails of commercial devices, 10s ns delays are simply obtained without any
additional fiber spool. The memory of the delay can be increased by 3 additional
orders of magnitude (1 million size linear “memory”) when commercial fiber spool
of several 10s of km are used. Within this extreme situation, subtil dispersion
phenomena might have to be further considered in the dynamics, since ultra-
fast dynamics leads to continuously spread time delays depending on the Fourier
frequency components, as described in [25].

(¢) Dynamical and architectural diversity
(c.1) A few bifurcation issues

A basic and common interpretation of delay differential equations (DDE, as
in Eq.(2.1)) is usually done as a first approach for the understanding of some of
its numerous behavior. It is typically called the adiabatic approximation, or the
singular limit map, which consists in taking the limit e =7/7p — 0. Under this
asumption, the dynamics is reduced to a map x, 1 = f[r,] = Bcos?[z + ®]. The
fixed points xr (5, Pg) are obtained from the transcendental equation zp = f[zp],
and they are the same for the DDE model. Graphically, these fixed points are
found as the intersections between the graph of y = fxr,[x], and the first bissector
y=x. There exists at least one solution between 0 and the normalized weight
B, due to the bounded character of the two-wave intensity interference function.
The number of intersections is increasing linearly with 8. The stability of these
fixed points under the map approximation, can be straightforwardly derived. It
is ruled by the absolute value of the slope of the nonlinear function, evaluated at
the fixed point, |8 sin[2(zp + Pp)]|: it is stable if the value is smaller than 1, and
unstable otherwise (see Fig.2). As a consequence, it is usually always possible to
find one stable fixed points in the (8, ®g)-plane, if one selects @y such that the
fixed point is close enough to an extremum of f(z) (i.e. close to a constructive or



destructive interference). Conversely, since this value is proportional to the weight
B, the stable fixed point can always be destabilized by increasing the feedback
gain 3, except for the exact constructive or destructive interference condition.
Practical parameter values accessible experimentally, are covering easily the full
m-periodicity range for ®. However for (3, it is usually limited to a few units (typ.
~5) in the case of an electro-optic setup as in Fig.1(right).

Bifurcations and route to chaos are typically explored as the feedback gain g is
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Figure 2. Route to chaos in delay dynamics. Left: graph of the Ikeda map 2,1 = 3 cos?(x, +
®g), in which the pitchfork case is represented along the positive slope of the map model,
leading to whether a period doubling or a crisis and a period doubling (see also Fig.3 for
bifurcation diagrams). Center: unusual experimental time traces obtained with an integro
differential (¢ ~0.015 and 6 ~ 0.628) delay dynamics along the positive slope (up: 7p-periodic
limit cycle connecting the two stable fixed of the pitchfork map, with asymmetric duty cycle;
middle: period doubled of the previous regime; low: slow #-periodic limit cycle); theses regimes
are only obtained with the integro-differential model, the upper and lower ones being bistable
(hysteresis loop is obtained with respect to ®o, for the same ). Right: common regimes of the
period doubling cascade, along the negative slope (up: period 4 limit cycle; middle: period-2
chaos; low: fully develop chaos).

increased. This is experimentally convenient since 8 can be directly and linearly
tuned by the input optical power level Py as in Fig.1(right)). Under the map
model, this route to chaos can be roughly divided into 2 scenarii depending on
the sign of the slope around the original stable fixed point g (for small s and
depending on ).

- If the slope is positive, a pitchfork bifurcation occurs, leading to the appearence
of two stable fixed points (with also positive slopes) separated by an unstable
fixed point (see Fig.2): the dynamics exhibits bistability, the actually observed
stable fixed point depends on the initial condition. The upper fixed point is the
closest to a maximum of f(x), i.e. to a constructive interference. As f3 is increased,
it slides upward along fnr,, going through the constructive interference state,
and then reaching the negative slope region. Further bifurcation of this stable
fixed point along a negative slope region, is qualitatively the same as the one
experienced by a stable fixed point originally located along the negative slope. If
the actual intial fixed point if the lower one, it is the closest to the minimum of
f(z), i.e. to the destructive interference. On the contrary to the upper fixed point,
it experiences a tangent bifurcation through a collision with the unstable fixed
point when [ is increased. Both fixed points then disappear after the bifurcation,
leading to a crisis of the dynamics, with a jump onto the remaining fixed point
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located close to the maximum of f(z). The observed dynamics is then the one
resulting from the bifurcation sequence experienced by the same fixed point from
its stable steady state around a maximum of f(x). If the parameter g is then
decreased, the hysteresis cycle around the crisis point can be visited, highlighting
the characteristic bistability around this point (see Fig.3).

In the case of a DDE model, novel solutions arises (see Fig.2-center and -right)
with respect to the above described map model situation (Fig.2-left). A recently
observed and analyzed one concerns a Tp-periodic motion connecting plateaus.
The values of the plateaus do not correspond to the common limit cycle of the map
with a period of twice the delay, but they are corresponding to each of the two
stable fixed points in Fig.2. Whereas such a solution was proven to be unstable or
metastable for standard DDE with low pass feedback filter, the bandpass feedback
was recently found to lead to a stable version of this particular 7p-periodic solution
[41, 40].

- If the slope is negative, the bifurcation scenario is very similar to the well known
period doubling cascade route to chaos, popularized in the literature by the logistic
map. The nonlinear function around a maximum of intereference is indeed locally
a concave parabola, exactly as for the logistic map. In the real world of DDEs
however, only the beginning of the period doubling cascade is observed up to
period 8 or 16, depending on the noise level in the experiment. The amplitude
separation in the limit cycle is smaller and smaller as the period doubling
increases: when this separation is smaller than the noise experiment, they can not
be distinguished. The limit cycles of the DDE take the form of alternating plateaus
of duration corresponding to the delay 7p. The amplitudes of the plateaus are
matching the ones calculated for the map. The transitions between the successive
plateaus are however not instantaneous as in the map, but they occur with e-small
transition layers. These layers are thus scaled in time with the response time T,
or equivalently, they are scaled with the inverse of the bandwidth limiting the
feedback filtering. These jumps are also characterised by stronger and stronger
overshoots or weakly damped oscillations, which are underlining the increasing
role of the continuous time dynamics in the global solution. After what is called the
accumulation point for the map (value of § leading to an infinite period limit cycle
in 2" as n — o0), a reverse period doubling cascade is observed (n now decreasing
with increasing (). The accumulation point in [ is located at the position of the
vertical dashed line in Fig.3. A characteristic dynamics in this reverse cascade is
qualitatively characterised by 2™ plateaus consisting of small chaotic fluctuations
with amplitudes $/2" and with e-small time scales, each plateau being separated
by 2™ — 1 forbidden amplitude bandgaps. As § passes the fully developed chaos
limit found for the map (for which n =0, i.e. when the full interval [0, /] is
densely visited by the corresponding dynamics), the actually observed dynamics
are strongly dominated by the numerous continuous time modes of DDEs, which
are corresponding to the large amplitude and high frequencies eigenmodes of
the DDE characteristic equation: 1 + e\ = f/(xp)e™?. Within this S-range, many
qualitative features of the observed dynamics can be used to illustrate the much
stronger influence of the continuous time dynamics compared to the discrete time
map approximation. The high complexity regimes are thus strongly differing from
the map situation (compare left and right diagrams for high 5 in Figs.3): (7)the
amplitude probability density distribution becomes very smooth (whereas it is
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discontinuous for the map); (ii)instead of the periodicity windows of the map,
one can observe so-called higher harmonic synchronisation [16] revealing complex
resonances with rational numbers between the short time scale 7, and the large
delay 7p; the chaotic attractor, instead of being included in a 1D phase space,
reaches dimensions of the order of f7p/7. In actual experiments, the chaotic
attractor dimensions can easily reach more than several hundreds up to several
thousands.

inverse
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Figure 3. Bifurcation diagrams. Left: for the Ikeda map (numerics). Many values of the
asymptotic solutions are calculated for each of the 800 S-values along the horizontal axis. The
values are used to calculate a probability density function (PDF) for each 8. The PDF is color
encoded. Right: for the continuous time Ikeda model (experimental, low pass filter as in Eq.(2.1)).
The bifurcation parameter 8 was slowly scanned with a triangular signal controlling the optical
power seeding the MZ of the setup in Fig.1 Right. This allowed to increase and then decrease
B in time, very slowly (0.5 s) compared to the characteristic time scales of the dynamics. Many
points (107) are collected all along the scan, thus allowing to calculate an approached PDF
with 10* values at each of the 1024 horizontal positions for 5. The PDF is encoded in grey
scale. ®¢ is adjusted to a comparable value with respect to the left bifurcation diagram. Notice
that solutions represented in Fig.2 Center are typical of the nonlinear delay integro-differential
model, and can not be observed with the map, or the delay differential model of this figure. The
solutions of Fig.2 Right are common to each of the dynamical models.

(c.2) Setup design variations: even more motion complerity

Though the initial Ikeda DDE model already features rich and highly complex
dynamics, the experimental investigation of such systems largely contributed
to the emergence of even reacher dynamics. New experiments performing EO
delay dynamics in the framework of several practical applications, gave rise to
various modeling modifications (see the sections below). This is typically one of
the historical reason motivating fundamental studies on the integro-differencial
nonlinear delay dynamics described in Eq.(2.3) or (2.4) instead of the DDE in
Eq.(2.1). The presence of the integral term was originating from the design of
broadband chaos generators for high speed optical chaos communications. In the
case of such a wide bandwidth spanning over 6 orders of magnitude in the Fourier
domain, from a few 10s of kHz to more than 10 GHz, it is technologically too
difficult to have a DC preserving feedback. The broadband rf electronic amplifier
of concern behave necessarily as bandpass filters. Such a situation required the
introduction of an additional slow time scale 6 attached to the low cut-off
frequency of a few 10s of kHz. This led to a not yet exhaustive “zoology” of many
new dynamics, such as chaotic breathers [20], slow limit cycle, pulsating regime
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[36], novel crisis transisition from fixed point to chaos [6], 7p-periodic limit cycle
along the positive slope [41], Neimark-Sacker (torus) bifurcation of the limit cycle
in very weakly damped (m < 1) microwave delay oscillators [8], etc.. ..

Among other technological modifications of the original Tkeda dynamics, novel
electro-optic architectures also led to a surprising modeling of this dynamics back
to a map, however preserving the high-dimensional feature of the solutions [23].
Compared to the setup in Fig.1(right), the modification leading here to a correct
map modeling is related to the use of a high repetition rate (>GHz) mode locked
pulsed laser source. The condition leading to a map model is related to the fast
optoelectronic devices capable to resolve the nonlinear feedback of the pulses
within a time shorter than the repetition period of the laser. Dimensionality of
the solutions is then ruled by the number of independent pulses stored in the
feedback delay line, each pulse being ruled by the nonlinear map.

Other experimental investigations dedicated to optical chaos communication [29,
26, 25| proposed the introduction of a multiple delay electro-optic architecture.
The specific device introducing a supplementary delay was a passive imbalanced
DPSK (difference phase shift keing) demodulator. This led to the design of a
4 time scales delay dynamics, an additional short delay d7p being present due
to the imbalance interferometer. Novel bifurcation phenomena of the first Hopf
bifurcation were discovered in such a system, revealing a resonance condition
between the small delay d7p and the large delay 7p [42]. The bifurcation consists
in the destabilization of the Hopf limit cycle ruled by the small delay, and the
occurrence of a stable amplitude modulation of the Hopf cycle, with an envelope
period ruled by the large delay.

Last but not least, in the framework of the investigation of a novel computational
principle referred to as “Reservoir Computing” and based on the computational
power provided by complex transient motion of high-dimensional dynamical
system, a many delayed feedback (15 to 150 randomly distributed delays)
dynamics was explored. Their motivation was related to the investigation of the
connectivity enhancement of the equivalent virtual network of nodes, due to the
multiple delayed feedback architecture [31]. The actual properties and features of
this novel kind of complex multiple delay dynamics is still under investigations.

3. Delay dynamics meet applications

In the remaining sections, we will focus more on a few practical applications
that were explored in the recent past years, specifically on the basis of various
electro-optic nonlinear delay dynamics. We will connect the specific dynamical
properties of the electro-optic delay oscillators of concern, to the actual physical
requirements expected for each of these applications. The sequence of the three
proposed applications will moreover scan a bifurcation diagram in the reverse
direction: first, optical chaos communications will show how one can make use of
the high complexity chaotic regimes to perform data encryption; second, the limit
cycle of an optoelectronic microwave oscillator will benefit from high spectral
purity provided by a long delay; and last, even the stable fixed point will be
usefull as a stable starting point from which a complex transient is generated.
This nonlinear transient dynamics is the complex response of the dynamics to
an external signal encoding a problem to be solved. The nonlinear transient is
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the conceptual basis for a novel universal computing principle exploiting high
dimensional phase space of complex dynamics.

(a) Secure chaos communications

The idea to hide an information signal within a chaotic carrier stems from
the demonstration of the synchronisation capability between two distant chaotic
oscillators, provided a suitable coupling between the emitter and the receiver
can be designed [35]. Indeed, when a waveform can be synchronised, this usually
means it can be used as an information carrier. The most common carrier in
classical communications systems is the sine waveform, for which a receiver
typically performs frequency synchronisation in order to achieve the demodulation
of the carried information. Replacing the sine waveform by a broadband noise-
like chaotic waveform does change the concept of information transmission via
a carrier signal, as long as synchronisation of the chaotic carrier is possible.
Such a synchronisation capability for chaotic signal, was orignally thought to
be impossible because of the well known sensitivity to initial conditions of chaotic
dynamics. Chaos synchronisation is thus the triggering scientific result for the
field of chaos communications. A rough explanation for the synchronisation
requirement in chaos communications, can be given as follows (we refer the
reader to the prolific literature on chaos synchronization for more details, see e.g.
[5]). The transmitted signal, which is available for anyone listening to the public
transmission channel, is the result of the clear information signal superimposed
onto the large amplitude chaotic carrier. Recovery of the masked information into
the chaotic carrier, can be achieved if one is able at the decoder side to replicate
the same chaotic carrier waveform (usually called identical synchronisation). In an
authorised decoder, the locally synchronised chaotic carrier is subtracted from the
received signal to result in the recovery of the original information (see the middle
plots in Fig.4, upper: masked signal, chaos plus information; lower: unmasked
information). Chaos, as a broadband signal much more complex than a sine
waveform, offers the possibility to protect the transmitted information via the
masking, and via the difficulty for achieving a successfull synchronisation. Indeed,
synchonisation usually requires the knowledge of numerous physical parameters
defined at the emitter for the generation of the chaotic carrier. These physical
parameters and their precise setting at the emitter, usually form the secret key
required also at the receiver for a proper decoding via chaos synchronisation.
Electro-optic delay dynamics offered in that context several attractive advantages:
they increased dramatically the phase space dimension compared to the first
experimental demonstration. The first demonstrations were indeed making use
of electronic circuits generating chaotic carrier in a 3D phase space only [12],
with easily recognisable spectra. On the contrary, the chaotic solutions of highly
nonlinear delay dynamics exhibit a nearly flat and broadband Fourier spectrum,
and a nearly Gaussian probability density function. They are thus ressembling
any white noise source, and they make much more challenging the identification
of the secret key parameters. The use of an optical architectures also provided
access to standard optical telecommunication bandwidth, due to the use of off-
the-shell telecom optoelectronic, electronic, and electro-optic devices designed
for more than 10 Gb/s optical data transmissions. The single loop oscillating
scheme also allowed to implement unconditionnally stable chaos synchronisation
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Figure 4. Electro-optic phase chaos communications: left: schematic of the emitter and receiver
setup; middle: 10 Gb/s eye diagrams for the chaos encrypted signal (up) and recovered bit stream
(low); right: satellite view of the “Lumiére brothers” network in Besangon, where the first 10 Gb/s
field experiment was performed. The Lumiére brothers are the inventors of cinema, they were
born in the city of Besangon.

configuration. Recently, experimental investigations of chaos communications
succesfully achieved field experiment demonstration over installed fiber optic
network, at more than 10 Gb/s data transmission. A specifically design EO setup
was able to generate a chaotic optical phase used to carry the digital data with
a DPSK encoding [25]. The demonstration was first performed on the small ring
network in our city of Besancon, the so-called “Lumiére” brothers ring network
(see Fig.4). Further experiments over larger networks showed that our lab emitter-
receiver setup can be plugged on an installed network, being operational over more
than 100 km transmission link. The link quality of the encrypted transmission
was found to be reasonnably good, with a net bit error rate at last of 1077.
Such performance can be easily improved to error free transmission with standard
digital error correction encoding.

(b) Microwave optoelectronic oscillators

The limit cycle solution of delay dynamics might offer also very attractive
high performance features for another engineering applications. This concerns
the generation of microwave oscillations at ultra high spectral purity level, e.g.
for Radar sources. The actually oscillating microwave frequency F' is roughly
determined as wgy/(27) if we adopt the model in Eq.(2.3) for which the bandpass
filter is highly selective, i.e. with m < 1. The long fiber delay line is here used to
provide a long (compared to the oscillating period) energy storage element, which
is typically required when high spectral purity is expected. In usual oscillators, this
energy storage function is typically performed by resonators with very high quality
factors. Quarz resonators are very well mature devices for achieving extreme
stability via piezoelectric effects coupling electrical and mechanical vibrations.
However, their Fourier frequency range, when very high stability is concerned,
is currently limited up 100 MHz. In the microwave range, surface acoustic wave
devices are making impressive progress, but photonic technologies are offering
for the moment the most efficient solutions, e.g. through so-called optoelectronic
oscillators (OEQ). A basic, but very attractive feature is moreover that on the
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contrary to oscillators based on electro-mechanical resonators, their quality factor
is increasing with the operating frequency. This is easily explained due to the
energy storage principle based on the delay of a microwave signal carried by an
optical light beam: at a given linear loss coefficient (very low for fibers, typ.
0.2 dB/km), the 1/e attenuation is corresponding to a fixed fiber length L or
delay 7p, independently of the microwave modulation of the light carrier. Quality
factor can then be defined as the number of open loop oscillating periods before
their amplitude decay at 1/e. Consequently, this quality factor scales linearly
with the microwave frequency F, i.e. Q= (n.L/c) F =71p F. Such a scaling is
moreover valid in principle up to very high frequencies, due to the huge bandwidth
of Telecom grade 1.5 um monomode silica fibers. Practical limitations do not
involved the ultra low loss feature, but other restricting physical phenomena
at the origine of time delay fluctuations. This comprises for example refractive
index variation due to temperature drifts, or laser phase noise transfer onto the
microwave due to fiber dispersion. These limitations are currently imposing in
practical OEQ, a fiber length limit ca. of a few km (thus a few 10s of us), thus
shorter than to the 1/e attenuation limit. Figure 5 represents a typical phase
noise spectrum recorded around an OEO with a central frequency /' =10 GHz. It
was designed with an accurately thermalized 4 km fiber delay line, and a 50 MHz
bandwidth “selective” electronic feedback filter. The zoom inset is a high resolution
measurement of the width and height of the first side noise delay mode. This
peak occurs at 50 kHz= 7'51 from the central oscillating mode. One can notice
the extremely thin width (ca. 40 mHz) and the extreme height (110 dB, from the
floor level at -140, to the top level accurately measured in the inset at -30), which
are typical signatures of the large delay character of such an OEO.

From the more theoretical and nonlinear dynamics point of view, such extreme
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Figure 5. Microwave optoelectronic oscillator. Left: filter features relative to the delay mode in
the Fourier domain. Right: Phase noise spectrum measurement around the central frequency at
wo/2m =10 GHz; inset: spectral features (extremely thin and strong) of the first noisy side band
delay mode[9] (the peak at 50 Hz is only a parasitic peak due to unavoidable electrical power
line electro-magnetic pollution).

parameter conditions have brought also very interesting investigations. Indeed,
with respect to the model given in Egs. (2.2) and (2.3), one has a resonant filtering
feedback corresponding to a very low damping m ~ 1072 < 1. This is in strong
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contrast compared to the very high damping of the previous section a where
m ~10° > 1. However, though the feedback bandwidth is strongly reduced, the
potential complexity or the number of degrees of freedom, is not necessarily very
low, because the decrease of bandwidth is here compensated by the increase of
the time delay. The relatively short delay in the previous section was about 10s
of ns, it is here extended to several 10s of us. The fondamental Fourier delay
mode is now corresponding to a much lower frequency (typ. 50 kHz vs. 10 MHz
for chaos communications), and the delay modes are becoming much more dense
in the Fourier space. Though narrow bandpass feedback filter is involved around
10 GHz, the density of delay modes still allows for many tens to hundreds of these
modes to be potantially involved in the dynamics. The narrow filter width of a
few 10s of MHz feeds back potentially many of the 50 kHz-spaced delay modes.
Highly complex delay dynamics can be expected, and was found to lead to other
bifurcation scenarii when the feedback gain is increased: e.g. a Neimark-Sacker
bifurcation occurs from the wg-Hopf limit cycle, leading to a torus characterized
by a 7p-periodic envelope modulation of the wy microwave oscillation [8].

(¢) Photonic nonlinear transient computing

The stable steady state is a solution of “a priori” relatively poor interest. And
indeed, if one considers a fixed point, only a very low complexity level is obtained.
The stable fixed point is however not a unique feature of the dynamical system it
is generated from. One might at least associate to it the corresponding basin of
attraction. Depending on the dynamics structure and dimension, the stable fixed
point can become much more attractive in terms of related complexity. One could
then not only analyze the local structure of a fixed point, but also its entire basin
of attraction, as soon as a complex external signal can be designed to address in
principle any possible trajectory driving to the fixed point: this is precisely what
is used in an emerging application, “Reservoir Computing”, which is making use
of nonlinear transients complexity to perform computation. “Nonlinear Transient
Computing” was also suggested in [11] and [31] as a naming which might refer
more to the physics and nonlinear dynamics viewpoint. This novel computational
principle was originally proposed independently in the early 2000 by the computer
science / neural network computing community [18], and the brain cognitive
research community [30]. It was initially referred to as Echo State Network, and
Liquid State Machine, respectively. More recently, the unified name of “Reservoir
Computing” [39] was proposed. The concept is closely inspired and related to the
standard neural network computing, as represented in Fig.6. One of the main
difference is to assume that the internal structure of the network does not need
to be optimized during the learning phase. This internal structure typically only
needs to be once randomly defined, via a connectivity matrix WT. This is imposing
a fixed, but still complex, dynamics for the global neural network. The learning
phase then aims only at finding a suitable so-called “Read-Out” output via a
Read-Out matrix W, The Read-Out consists simply in finding a hyperplane in
the phase space of the network dynamics, from which the correct answer can
be easily deduced. This Read-Out output consists of a linear combination of
some of the network nodes that are animated by the complex transient motion,
consecutivey to the injection into the network of the information to be processed.
A suitable formatting of the input information is required, which is practically
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defined by an input layer connection to the nodes of the network. This introduces
a data connectivity matrix WP, i.e. the way the input information is injected
into the complex phase space. One of the most important advantage compared
to classical neural network computing, resides in the fact that the learning is
strongly simplified. It is usually performed successfully via an always existing
solution of a simple ridge regression. This regression results in the calculation of
WHR. Despite its much lower algorithmic complexity which is essentially reduced
to the learning procedure, this approach already showed very good results on
various complex tasks. Moreover, performances at the level of the most efficient
classical neural network approaches have been achieved, and sometimes they are
even outperforming them[19].

Very recently, in the frame of the European project PHOCUS, this novel

Complex Nonlinear Dynamics

Input
Data

Input
(Linear
Connection)

R

Read-Out w

(Linear Connection) *

Figure 6. Photonic Nonlinear Transient Computing, or Reservoir Computing, with electro-optic
delay dynamics. Left: general architecture of neural network computing. Middle: picture of the
EO setup, and schematic of the setup similar to Fig.1. Right: experimental result with an already
learnt Read Out matrix W, multiplied by the 2D pattern representing the transient response of
the delay dynamics. The horizontal axis represents the discrete time index k labelling the time
delay interval over the processing duration. The vertical axis represents the node index n (from
1 to 150), labelling the sampled amplitudes within each of the successive time delay intervals.
The transient is generated by an external signal corresponding to the input information, here an
acoustic speech (spoken digit) to be recognised. The matrix product gives a Read Out output
where digit 7 can be easily identified as the most red-colored line among the 10 possible digits
(0 t0 9).
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computational approach was addressed from the experimental point of view, with
the use of a delay dynamics instead of a network of nodes. A first approach was
tested with an electronic Mackey-Glass delay dynamics [1]. This first electronic
demonstration was then also extended to a photonic design [24, 34, 31] directly
inspired by the setup in Fig.1. These successful implementations of Reservoir
Computing with delay dynamics, can be explained by a known analogy between
infinite dimensional delay dynamics, and spatio-temporal dynamics [2] (see Fig.7).
Standard neural network computer are usually materialized as a network of
interconnected nodes, such as network of neurons, thus forming a complex spatio-
temporal dynamics. This dynamical analogy between spatio-temporal dynamics
and delay dynamics, allows a priori for the use of a delay dynamics for Reservoir
Computing, in the place of the common spatially extended networks. This analogy
consists in a representation of a delay dynamics, as a virtual continuous-space and
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Figure 7. Graphical interpretation of the space-time analogy for a delay dynamical system used
as a Nonlinear Transient Computer. Left: the input data are multiplexed in time through the
use of a mask. Time multiplexing plays the role of addressing the virtual spatial nodes with the
input data, with different weights. The virtual spatial nodes are “fine” temporal positions within
a time delay of the nonlinear delayed feedback dynamics. They are separated by the quantity
07. The same nodes are used to perform the Read-Out, as a linear combination of these node
amplitudes during the transient response of the delay dynamics. Middle: the delay dynamics
is interpreted in terms of nodes interconnections. The impulse response h(t) provides a short
term connectivity, or equivalently a short distance spatial connectivity between the nodes. The
nonlinear delayed term appears as a long term connectivity, or a temporal update from one time
delay to the next, for each node. Right: spatio-temporal graph of a nonlinear delay dynamical
transient. The fine temporal structure is the virtual spatial coordinate represented vertically.
The time step from one time delay to the next, represents the discrete time iteration.

discrete-time dynamics. The discrete-time motion is corresponding to a round trip
in the delay oscillation loop, indexed by an integer k labelling the number of the
current 7p-interval. The virtual continuous-space consists of the fine temporal
motion of the dynamics, of the order of 7, and occuring within one “coarse” time
delay interval. The nodes of the virtual network are then defined as N temporal
positions within a time delay. Each node x,(k)|n € [1, N] has a discrete time
motion from one delay interval to the next, as k is increased to k + 1. The 2D
pattern z(n,k) forms a representation of the transient motion, on which one
has to apply the Read-Out matrix W in order to find the expected answer
(see Fig.6). Experiments based on nonlinear delay dynamics used as the virtual
complex dynamical network involved in a nonlinear transient computer, have
been successfully conducted on benchmark tests such as spoken digit recognition,
time series prediction and nonlinear channel equalization. Moreover, the achieved
performances in these real-world physical setups are very close to the ones
obtained from pure numerical simulations, opening very interesting perspectives
on many practical problems that can not be solved easily and/or fast enough with
standard digital computers.

4. Conclusions and future issues

Electro-optic delay dynamical systems have triggered during the last 15 years
an important scientific activity, nicely balanced and cross-fertilized between
fundamental issues and novel applications. It took benefit from the intrinsic
complexity and dimensionality of the numerous and various possible dynamics.
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Powerful applications have been at the origine of specific dynamical features due to
setup modifications guided by applications. These specific dynamical features have
been then also explored from the theoretical point of view. Examples in this review
have covered applications concerned by three solutions of delay equations, from
high dimensional chaos to the complex transients leading to a stable fixed point,
through the extreme regularity of a limit cycle solution. A typical illustration
of the cross-fertilisation can be the following one: broadband chaos was used
in the frame of secure optical communication, which could only be designed
with bandpass optoelectronic feedback, thus resulting in an integral term in the
modeling equation. This term was then found to be at the origine of whether new
periodic regimes, or stable ones which were known to be unstable or metastable.
A important horizon is still open in this framework, and many issues remain to be
addressed, again both from the application point of view and from the theoretical
one. The nonlinear interactions between the limit cycle features, and the phase
noise performance in microwave OEQ, requires fundamental investigations of
noisy delay equations. The phase space feature around the stable fixed point
used for nonlinear transient computing needs to be deeper understood, especially
from the information theory point of view, in order to optimize the processing
power of this novel computational principle.

Last but not least, we anticipate that novel fundamental dynamical properties
will appear again via novel design approaches for improved applications involving
delay dynamical systems. A probably important technological evolution in delay
dynamics, which already started in the case of external cavity lasers [4], concerns
the use of integration possibilities and micro- nano-technologies for the realisation
of delay dynamical systems. This also includes optical disk resonators currently
investigated for broadband comb generation and extreme stability time-frequency
systems. These setups have been clearly identified as involving both the delay in
the ring, and also a distributed nonlinear light-matter interactions between the
numerous cavity /delay modes [7].
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