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Abstract— It has been demonstrated that magnetic fields are
relevant for manipulating an untethered magnet, either using
fixed coils or mobile permanent magnets. This paper shows
however, that any magnetic manipulation method is prone to
singular configurations and that the simple numerical analysis
of the rank of the “manipulation matrix” is not enough to
detect them. Alternatively, we propose a geometrical analysis
to interpret and detect the singularities as well as to decide
on the acceptability of a reference trajectory. Then, we present
results obtained by simulating a planar manipulation system
including a multiple mobile coils and a Helmholtz like set-up.

I. INTRODUCTION

This work is in the context of the gastrointestinal en-
doscopy. Since the development of the M2A capsule en-
doscopy system [1], several studies have been led to im-
prove the concept of capsular device navigating through the
gastrointestinal tracts, especially about the two challenges of
the localization and the controlled manipulation of the cap-
sule. This paper focuses on this second challenge: replacing
passive locomotion (peristaltis) of the capsule, by an active
control of the motion.

One way to control the capsule motion is to add legs to
the capsule [2], but this yields strong energy concerns.

An alternative to embedded actuation is to actuate the
capsule externally using magnetic fields. This presents the
advantage of being non toxic to the human body [3] and it
permits to remotely control the device without any poten-
tially traumatic gripping in the intestinal wall (due to the
legs). Two approaches can be found in the literature for this
type of magnetic manipulation.

The first method employs stationary electromagnets and
then control their currents to adjust the magnetic field (as
in opthalmology) [4], [5]. In a Helmholtz configuration,
the workspace lies between the two coils where a uniform
magnetic field is present [6]. This is used in MRI systems
to displace a magnetic micro-object within the blood ves-
sels [7], [8].

The second method makes use of permanent magnets to
create the appropriate magnetic field and they are moved
around the patient using a robotic system to displace the
manipulated object [9], [10]. On some of these systems, the
“driving permanent magnet” is constantly rotating [11], [12].

Existing work (Table I) shows that the two approaches are
complementary.

The stationary electromagnets approach has full dexter-
ity. However the electrical consumption (associated to heat
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Static coils Mobile magnets Mobile coils
⊕ Full dexterity 	 Partial dexterity ⊕ Full dexterity
	 Long source-to-
object distance

⊕ Short source-to-
object distance

⊕ Short source-to-
object distance

	 Heat ⊕ Thermally inert  Reduced heat
⊕ On/off capacity 	 Always ”on” ⊕ On/off capacity
⊕ Stabilizable 	 Intrinsic unstability ⊕ Stabilizable
⊕ Simple control ⊕ Simple control ⊕ Redundant control
	 Poor patient ac-
ceptability

	 Dangerous to the
patient and staff

 Light weight sys-
tem

TABLE I: Some pros and cons of magnetic manipulation
techniques (from [13])

concerns) becomes high as the capsule evades from the
sources. Conversely, the mobile magnets approach does not
need electrical energy to generate the field, but the use of
a constant field is intrinsically unstable (since the capsule
is always attracted by the magnet, which can not be “turned
off”) and offers only partial dexterity (because the continuity
of motion is much more restrictive, with respect to time, than
the continuity of the magnetic flux).

Our concept, depicted in Fig. 1, consists of several coils
actuated by a robotic system so that they can move around
the patient and stay close to the capsule. Hence, it keeps
full dexterity by making use of coils while reducing energy
consumption by a nearer manipulation. Moreover, the robotic
system, yet to be properly designed, can be made lighter
and less bulky than the existing prototypes, in order to be
intrinsically safe to the patient.

Fig. 1: Robot-assisted magnetic manipulation with several
mobile coils.

Recently, we proposed in [13], [14] an hybrid approach by
using multiple mobile coils in order to control the motion of
a magnetic capsule by both servoing the currents and moving
the magnetic sources. Modification of the magnetic field then
becomes possible mechanically and electrically. A redundant
system is therefore created which increases manipulability
and dexterity. To verify this ability we study the control of
such system.



However, the complexity of this system is prone to sin-
gularities [14]. This paper contributes to show that the usual
condition number is not enough for a reliable detection of
such singularities and to propose, as an additional criterion,
the use of the angles between the columns of the “manipu-
lation matrix” which models the current-to-force conversion.
These angles are used to determine the acceptability of a
reference trajectory, which is shown by simulating a multi
mobile coils system and a Helmholtz like set-up.

This paper is organized as follows. Section II presents
the theoretical background for magnetic manipulation and
singularity analysis, while Section III focuses on the study of
a particular case. Then Section IV presents the application of
this theory by simulating two planar manipulation systems.
Conclusion and perspectives are given in Section V.

II. A HYBRID APPROACH TO MAGNETIC MANIPULATION

A. Basic electromagnetics seen from a robotics viewpoint

The motion of the capsule is driven by the efforts applied
on it. These efforts are due to the magnetic field created
by each coil (the magnetic force Fm,i and torque Cm,i), the
weight of the capsule (mg), and friction force Ff and torque
Cf. All these efforts and accelerations are expressed in F0,
a fixed reference frame which can be attached to the patient,
to the perception system, or to the patient’s bed. Fob j is
the local frame linked to the moving object. The notation iX
used in the rest of the paper points out in which reference
frame Fi the vector X is expressed. If nothing is specified,
the vector is expressed in F0.

The magnetic efforts applied on a permanent magnet
located at the point P with a magnetization vector M (which
encompasses the magnet strength and its orientation in space)
in an external magnetic field Bi(P) created by a coil i, are
given by [15]:

Fm,i = V ·∇(M ·Bi(P)) (1)
Cm,i = V ·M∧Bi(P) (2)

where V is the volume of the permanent magnet, ∇ is the
gradient operator and ∧ is the cross-product.

As electromagnets are used, the magnetic field created by
the ith coil also depends on the current Ii flowing through
this coil. Then Bi(P) = Bi(P, Ii). Moreover, computing the
magnetic field due to a coil i is usually easier in the frame
Fi attached to this coil, but this formula can also be easily
expressed in the reference frame F0 using the homogeneous
matrix 0[T ]i multiplication, composed of the orientation and
position of Fi with respect to F0:

Bi(P, Ii) =
0[T ]i iBi(

iP, Ii) (3)

In vacuum, air, or any linear magnetic medium, the super-
position principle is used to compute the overall magnetic
field created by the n coils. As shown in [5], in such a case,
forces and torques can be computed as a linear combination
of the currents in the coils, grouped in the vector I. For a

system with n coils, the direct electro-magnetic model is then
given by:

[A(P,M)] I =
(

Fm
Cm

)
(4)

By construction, the electro-magnetic manipulation ma-
trix, or simply the “manipulation matrix”, [A] depends on:
the position of the capsule P, the orientation of the capsule
(which can be deduce from M), and the position of each
coil 0[T ]i.

Moreover, [A] depends non-linearly on P and I which does
not guarantee that even for simple set-ups (e.g. Helmholtz-
like configuration), it will never be singular.

Finally, the three possibilities to control the efforts applied
to the capsule appear in this matrix modelling. The first
control method is to change the coils position which will
modify the matrix [A], the second method is to change the
currents in the coils, and the third one is the hybrid one we
proposed.

Notice also that [A] can be decomposed as:

[A] =
[

AF
AC

]
(5)

[AF ] and [AC] are two 3×n matrices, and the product of
these matrices by the vector of currents I gives respectively
the magnetic force Fm and the magnetic torque Cm.

B. Study of the singularities

The matrix [A] is a 6×n matrix, with n the number of coils,
i.e. the number of independant currents. The ith column of
this matrix represents the wrench on the capsule (force and
torque) per current unit created by the ith coil, according
to (1) and (2). Thus, [A] has the same structure as a robot
kinematic Jacobian matrix. The analysis of its singularities
is thus needed.

Numerically, singularities are detected by computing the
rank of the matrix (usually, by detecting the fall of the ratio
of successive singular values). This is actually related to the
condition number of the matrix:

Cond([A]) =
σ1

σN

with σ1 > σ2 > · · · > σN > 0, the singular values of [A]
obtained by singular value decomposition (SVD).

The condition number is frequently used as a so-called
manipulability index [16] to measure the performance of a
mechanism. However, in addition to the specificities of the
special euclidean group SE(3), this index suffers from the
fact that one needs an empirical choice of the threshold value
to decide the closeness of the rank deficiency. Unfortunately,
this threshold on the ratios of two successive singular values
does not have a physical interpretation.

On the opposite, for such kinematic matrices, whose
dimensions are 6×n, one can express the singularities from
geometry. A geometrical analysis relies on the fact that if [A]
is non-singular, a subset of columns which spans the whole
space (ie. of dimension 6) exists.

In practice, the relative orientation of each column to each
other has a great importance. Indeed, if all these columns are



almost collinear, without [A] being singular, the necessary
energy to move in a “transverse” direction (see Fig. 2) is
much higher than in an ideal case (a subset of the columns
forming an orthogonal base).

Fig. 2: “Transverse” direction.

To enlighten this point, let us consider a planar manipula-
tor. In this case, the dimension of [A] reduces to 3×n, with
the first two rows of [AF ] dedicated to forces in the plane,
and the third row of [AC] to the torque around the normal to
the plane. As the direction of the columns of [AC] is constant,
the geometrical analysis can be limited to [AF ]. Of course,
a singular configuration occurs when the columns of [AF ]
are parallel (i.e. αi, j = 0), but a non-singular case with
small angles (let us say 5 or 10 deg) between the columns
of [AF ] may also cause significant problems in practice. At
right angles, the manipulability is good, because the energy
transfer is decoupled. At small angles, it is poor, as more
energy is needed to move the capsule in the “transverse”
direction (Fig. 2) than in the “common” direction.

This is particularly prevalent in magnetic manipulation,
because at small angles, one would need higher currents
in the coils than at angles almost equal to π/2 rad. Since
“higher currents” means a risk of current saturation as well
as heating in the coils, this situation should be avoided. As a
consequence, the analysis of the evolution of the angles αi, j
(between the ith and the jth column vectors of the matrix
[AF ]) can be used to check if the trajectory is acceptable, i.e.
the trajectory does not encounter a singularity of [A].

III. STUDY OF A PARTICULAR CASE

A. Description

Fig. 3: System studied.

The proposed criteria is investigated in the horizontal
planar configuration. Thus, the study is carried on a system
(presented in [14]) with n= 3 coils, and the capsule can move
in the plane made by the coils axis as shown on Fig. 3.

The architecture shown is similar to a 3-UPS parallel
kinematic manipulator. The coils can turn around a vertical
axis (Oi,Z) in order to keep the mobile on their axis of
revolution. This architecture was chosen to be able to use the
well-known magnetic dipole approximation (6) often used
in literature to compute the magnetic field iBi(

iP, Ii). This
approximation is only valid when the distance between P
and the coil axis is small.

iBi(
iP, Ii) =


Br =

µ0

2π
(Ii ·π a2)

cosθ

r3

Bθ =
µ0

4π
(Ii ·π a2)

sinθ

r3

Bϕ = 0

 (6)

B. Modeling

As the system is studied in the horizontal plane, P, M
and Bi (i = 1,2,3) are coplanar. Thus, the generic form of
the matrix [A] becomes:

[A] =


F1x F2x F3x
F1y F2y F3y
0 0 0
0 0 0
0 0 0

C1z C2z C3z

 (7)

which can be reduced, as previously mentioned, by suppress-
ing the rows of 0.

The geometrical analysis is then reduced to the study of
the angles αi, j between 2D column vectors of [AF ] (the upper
two rows of [A]).

IV. SIMULATION RESULTS

A. Simulation set-up

A simulation in C++ using the ViSP library [17] has been
developed. The trajectory control, based on the structure
shown in Fig. 4, is computed. With this control strategy, the
orientation control and the current control are independent.

Fig. 4: Control strategy inspired by Parallel Kinematic Ma-
chine (PKM) with linear actuators.

The trajectory tracking block is a PD plus feed-forward
controller that provides the desired acceleration (a∗, ω̇∗) for
the capsule from the difference between its measured (P,M)
and reference position (P∗,M∗). To determine the current I



needed to ensure (a∗, ω̇∗), the dynamic model of the capsule
is used:

[A(P,M)] I =
(

m ·a
0[IG]ob j · ω̇

)
−
(

Ff
Cf

)
(8)

where m is the mass of the capsule, 0[IG]ob j its inertia, Ff
and Cf the friction efforts, and a and ω̇ the acceleration.

This model is inverted by singular value decomposition
to calculate the current I applied into the coils. It is imple-
mented in the block called Inverse Dynamic Model in Fig. 4.

B. Results

First, the simulation is ran without any friction
(Ff = Cf = 0) or measurement noise. The simulated system
includes three coils with 930 turns placed at 2π/3 rad on a
circle of 75 mm radius, and a capsule which mass is 10 g.
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Fig. 5: Position followed by the capsule (plain). The desired
trajectory (dashed) is a straight line, the * is the starting
point, and the magnetization is in the same direction as the
trajectory.
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Fig. 6: Tracking error during the trajectory Fig. 5.

On Fig. 5 the desired trajectory P∗, a 40 mm long straight
line, and the realized trajectory are displayed. They match

very accuratly, with a maximal error of 2.19 · 10−5 mm in
position and 1.69 · 10−7 rad in orientation. This correspond
to the numerical round-off errors.

Moreover, the currents flowing through the coils to realize
this trajectory are shown on Fig. 7 and do not exceed
0.35 A. Consequently, we can conclude that the trajectory
is physically admissible.
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Fig. 7: Currents inside the coils during the trajectory Fig. 5.

Now, let us observe the angles between the columns of
[AF ] along this trajectory. Fig. 8 shows that, as expected,
during the whole trajectory, there is always at least one of
the angles which is close to π/2 rad. This means that the
algorithm is always able to construct a base for the forces in
the horizontal plane, and thereby to find a linear combination
that gives the desired effort. Moreover, the simulation did not
encounter any loss of rank of the matrix [A], which is also
normal for a properly planned trajectory. However the two
angles come close to π , meaning that two columns align.
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Fig. 8: Angles between the direction of the force created by
each coil during the trajectory Fig. 5.

However, executing the simulation for different trajectories
led us to find that some of them induce a loss of control. This
is illustrated on Fig. 9a and 9b, where the desired trajectory
is the same trajectory as the first one, but this time with
the capsule orientation perpendicular to the direction of the
trajectory. Notice that the control is lost on the orientation.
Furthermore, the currents applied to the coils become very
high where the control is lost (Fig. 10) which means that
this trajectory is not admissible.

The trajectory was realized with several values of ε , the
detection threshold of the rank. Note that in the first case
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Fig. 9: (a) Position followed by the capsule (plain). The
desired trajectory (dashed) is a straight line, the * is the
starting point, and the magnetization is perpendicular to the
trajectory. (b) Tracking error during the trajectory.
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Fig. 10: Currents inside the coils during the trajectory Fig. 9a.
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Fig. 11: Rank of the matrix [A] during the trajectory Fig. 9a.

(ε = 10−3 Fig. 11a) the loss of rank of the manipulation
matrix [A] happens before any loss of control, and in the
second case (ε = 10−6 Fig. 11b) the loss of rank is not
detected until the control is lost. This highlights that the rank
is not a sufficient criteria.

On the contrary, Fig. 12a shows a sudden decrease of the
angles between the direction of the forces from each coil. At
t = 33.36 s, the starting time of the control loss, the three
angles are equal to 0 (Fig. 12b).

In such a case, the three coils can only create a force
along the same direction, which actually is orthogonal to
the desired trajectory. This fully explains why the current
dramatically increase (see Fig. 10 and Fig. 13), yielding
unstabilities. To avoid these unstabilities one can define
a margin on the angles related to the maximum current
admissible by the system (see Fig. 13).
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Fig. 12: (a) Angles between the direction of the force created
by each coil during the trajectory Fig. 9a. (b) Zoom in.
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Fig. 13: Norm (‖I‖2) of the currents in coils 1 and 2, as a
function of the angle α1,2 between these coils, during the
trajectory Fig. 9a

C. Discussion

Conventional devices for magnetic manipulation found in
the literature (as [18]) are most of the time composed of four
fixed coils, which are placed in a configuration similar to the
Helmholtz one (face to face in pairs). A simulation of such a
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Fig. 14: Simulation output for a 4 fixed coils system.

system was done and the analysis of the angles αi, j between
the columns of the matrix [AF ] (whose dimension is 2×4 in
this case) was conducted on this system.

We see that trajectories with singularities on these angles
are unusual for this kind of system. Most of the time, the
singularities encountered are due to a loss of rank, and the



perturbation ensuing such a singularity may not induce a
strong loss of control. Yet, having found this non-admissible
trajectory confirms the need of a proper singularity analysis
in magnetic manipulation, whatever the configuration.
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Fig. 15: (a) Angles between the columns of the matrix [AF ]
during the trajectory Fig. 14. (b) Zoom in.

A non-admissible trajectory is displayed Fig. 14. Similarly
to the previous simulation, a sudden decrease happens on
the angles αi, j (Fig. 15b) at the moment of the control loss
(t = 25.96 s). This highlights the relevance of this analysis,
and attests that it can be applied to different kind of systems
(with mobile or fixed coils).

V. CONCLUSIONS AND PERSPECTIVES

This paper studies the manipulability for manipulation
systems based on multiple mobile coils. A geometrical
analysis allows to check if planned paths are acceptable or
not.

This geometrical analysis comes in addition to a more
classic numerical criterion (the condition number of the
matrix), which is a necessary but insufficient condition. The
geometrical criterion easily defines a margin on the angles to
ensure the controllability of the system. These results have
also been confirmed for magnetic manipulation systems with
Helmholtz-like fixed coils.

This study on the angles αi, j is a first interesting approach.
However, it is not enough; one must also ensure that the norm
of each column is not too low. Indeed, as a column represents
the wrench per current unit, a low norm would imply high
currents in the coils. A more complete study is being led
in order to determine a manipulability criterion adapted to
multi mobile coils systems.

Finally, this study reveals that magnetic actuated devices
are subject to constraints that may be non-holonomic con-
straints. One perspective of this work is then the trajectory
planning for magnetic manipulation systems.
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