A New Concept of Planar Self-Reconfigurable Modular
Robot for Conveying Microparts

Benoit Piranda?®, Guillaume J. Laurent®, Julien Bourgeois®©, Cédric Clévy®,
Sebastian Mobes?, Nadine Le Fort-PiatP

@ University of Franche-Comté, Montbéliard, France.
b Automatic Control and Micro-Mechatronic Systems Department, Institut FEMTO-ST,
UMR CNRS 617/, ENSMM, Besancgon, France.
¢Computer Science Departement, Institut FEMTO-ST, UMR CNRS 617/

Abstract

Modularity and self-healing are two interesting properties that could help
to design more flexible conveyors of micro-objects. In the Smart Blocks
project, we propose to design a 2D modular and self-reconfigurable robot
composed of centimeter-scale sliding blocks that embed their own actuators
and control electronics. This article presents a proof-of-concept of the linkage
and of the traveling system as well as an algorithm able to reconfigure a set
of blocks from a spatial configuration to another one. Prototype blocks have
been realized using electro-permanent magnets which show a good motion
speed while saving power consumption during the linkage. Our reconfigura-
tion algorithm is implemented in a simulator software showing in real-time
the reconfiguration of the robot.

Keywords: Electro-permanent magnets, reconfiguration, self-reconfigurable
robot, part feeder

1. Introduction

Conveyors are usually designed as monolithic entities solving one problem
at a time. If monolithic design fits the need of fixed types of environments
and /or objects, it lacks flexibility to environment changes and failures that
occur at small scales [1]. Furthermore, to convey micro-objects, a MEMS-
based monolithic conveyor is limited by the size of a wafer and it will use
more surface than a modular one. To solve these problems, our idea is to
build a modular conveyor composed of hundreds of similar blocks that can

Preprint submitted to Mechatronics August 17, 2013

detect micro-objects with sensors, move them with MEMS actuators and
communicate with each other to form a flexible conveying path. A further
idea is that the blocks will be able to move by themselves through the use of
side actuators to enable self-reconfigurability. A self-reconfigurable conveyor
will be able to automatically replace blocks that have failed with working ones
(self-healing). Furthermore, some environments like medicinal production
have very detailed guidelines [2] to maximize the quality of the products and
to lower the possibility of product contamination. Human intervention for
conveyor reconfiguration will contaminate the conveyor. There are, therefore,
direct benefits to have a self-reconfigurable conveyor. Building this conveyor
is the objective of a bigger project called Smart Blocks!.

Several projects have influenced our work, but the first thing to mention
is the Smart Surface project? which is our direct predecessor. Different hard-
ware and software systems have been developed to produce an air cushion
in order to move small, flat objects. One of these, a tilted-air-jet surface,
reached a size of 9mmx9mm [3] and gave therefore the target system dimen-
sions for the Smart Blocks project. Ciliary motion systems [4] are also good
candidates since they required only low voltages and match the target di-
mensions. Additionally, there were algorithms developed in order to control
multiple sensor-actuator units with their own processor in a decentralized
way [5] and more general work conducted [6]. Other interesting ideas come
from the modular robot field. The projects like M-TRAN [7], Superbot [§],
Roombots [9] and Molecube [10] have already shown motions of autonomous
parts and self-assembly albeit in bigger dimensions. The miniaturization of
their mechanical connection systems is complex and does not seem to be the
right solution for a smaller system. Another connection system has been
realized by Neubert et al. [11] using a Fields Metal solder, melting at 60°C.
This principle uses electrical heating of the contact area where the solder is
deposited, to melt it and to let it solidify again. The connection is very strong
and can also be used for power or data connections. The problem is that
there is no attraction force to move the modules. In terms of connection and
attraction, the most inspiring work comes from the Pebbles project [12] using
small cubes (12mmx12mm), capable of forming two dimensional shapes us-
ing electro-permanent (EP) magnets. The advantage of EP magnets is that

'http://smartblocks.univ-fcomte.fr
’http://www.smartsurface.cnrs.fr

they are able to keep their polarity after a short energizing phase. However,
Pebble’s cubes cannot move, they are just able to disassemble.

In the Smart Surface project, we conveyed small objects using arrayed-
MEMS actuators. Our new modular conveyor will use these actuators so that
each block will embed arrayed-MEMS actuators on its upper face. Miniatur-
ization of the block is one of the key aspects of the project. The final block
edge length is foreseen to be of 10 mm, including everything from supplying
the MEMS array and connecting the blocks but also to move them. Figure 1
shows a representation of the final conveyor.

The focus of this article is twofold. First, we propose to use EP magnets
to design a linear motor able to move lcm?® blocks. Using this motor, one
block can slide on another one and can be stopped in every state keeping a
strong connection without any power consumption. This means that after
the system has formed its optimal configuration it can perform its conveying
function using no other resources for the linkage. Second, using this special
kind of actuation, we have also proposed a distributed reconfiguration algo-
rithm which is able to form any 2D shape required for the conveyor. This
algorithm is implemented in our simulation software VisibleSim simulating
exchanges of messages and showing in real-time the reconfiguration of the
robot.

2. Sliding blocks

This part presents the design of a new kind of self-reconfigurable modular
robot based on sliding blocks. We propose to use EP magnets inside a linear
motor able to move blocks directly on one another.

2.1. Electro-permanent (EP) magnets

The basic part of the motor unit is the EP magnet. It consists of a coil
with a specific permanent magnet core, like AINiCo. This material is an
alloy made from aluminum, nickel and cobalt which has a remanence similar
to neodymium magnets (around 1.2T), but a relatively weak coercive field
strength around 50 to 100kA m~! (in contrast to neodymium magnets which
have a coercive field over 1000kAm~'). The result is a strong magnetic
force (depending on the remanence), but also the ability of a very easy mag-
netization and demagnetization (depending on the coercive field strength).
Wrapping a coil around the AINiCo core, a magnetic field can be generated
to switch the magnet polarity in a very short time. The result is a bistable

\‘ A‘ ?
Object to carry) %
s e ‘

Arrayed-MEMS
a actuators

Block with its
linear motors

Figure 1: Example of using reconfigurable blocks for conveying objects.

system, able to have an attraction or a repulsion mode like a switchable
permanent magnet.

2.2. Linear motor design

A linear motor is an electric motor that has its stator and rotor “unrolled”
so that instead of producing a torque (rotation) it produces a linear force
along its length. We propose to use this principle to move a “rotor” block
along “stator” blocks. The rotor part is composed of two cylindrical 1mm-
by-1mm neodymium magnets. The stator part consists of three EP magnets
per blocks which have a size of around 2mm in diameter and 3mm in length.

To be able to move the magnets in a chosen direction, the distance be-
tween the two neodymium magnets has to be 50% bigger than the distance
between two EP magnets on the other side. As each block must be able to
move along one another, we put on every block two active sides, each one
containing three EP magnets and two passive sides, each one containing two
permanent magnets. A working configuration needs to have two equal sides
next to each other, as seen in Figure 2.

The block housing, seen in Figure 2a, has been made by rapid prototyping

Conveying B
surface (b) Sectional
view of the

lower magnet

Electro-
permanent layer
magnet

Permanent
magnet

(a) 3D view (c) Sectional
view of the

upper
magnet layer

Figure 2: View of the linear motor units within a block with the EP and the neodymium
magnets. The block is a 10mm cube and consists of an upper and a lower part.

with a fused deposition modeling machine. To build the EP magnets, the
AlINiCo core which has a diameter of Imm and a length of 3mm, has been
placed in a vice and wrapped with 60 turns of 0.1mm enameled copper wire
in three layers. To avoid uncoiling, the whole part is covered by a thin layer
of cyanoacrylate-based glue. The final assembly has been done by placing
and gluing all magnets in the lower part of the block, before gluing the upper
part on it. The separate parts and the final assembly can be seen in Figure 3.

2.8. Electronics design

To supply the EP magnets with current in both directions a H bridge per
coil is required. To reduce the number of components, we used three half-
bridges linked to a shared one. As it can be seen in Figure 4, every coil has
its own half-bridge, allowing the choice of the direction of the electric current
through its EP magnets. Additionally there is a fourth half-bridge, able to
decide which chosen current direction should be powered. Every half-bridge
consists of two MOSFETSs, a P-channel for the upper side and a N-channel
for the lower side.

(a)

Three EP magnets (with

AINiCo core) in front of two
neodymium magnets

(b) Rapid prototyping parts of the
cube, one block is assembled with
three EP magnets (active side, sta-
tor) and another one with two per-
manent magnets (passive side, ro-
tor).

Figure 3: Separate parts and an assembled block

IRF9630

IRF630

%Mnlnr unit coll 3

330
Motor unit coil 2 Motor unit coil 1
,
F

IRF9630

IRF630

RE3

IRF9630

IRFSE]Db 100 120k E
IRF630 L/\/\,f

100
2N2222A ; 2N2222A

IRF630

RE2:
RE1

Figure 4: Schematics of the motor unit electronics

1.2k

REO

Because the resistance of the coil is very low, a 15V difference causes
more than 15A current in the wires. On the one hand, it would be a thermal
problem for the 0.1mm wire to be powered for more than a few micro-seconds,
on the other hand, most power supply are not fast nor powerful enough to
guarantee this current. Therefore, a capacitor is used to store and to deliver
the required energy.

The power supply of the blocks is external. Some specific electric push-
pins will be designed on lateral sides to enable the transmitting of the power
between blocks. However a capacitor is required in each blocks to store
enough power for a current pulse.

2.4. Motor control

With regard to a standard linear motor, we are using only two states for
the EP magnets. Actually, most electric motors are using a sinusoidal control
to reach a smooth motion. To move the “rotor” block from one “stator” to
another, six states are required. The state transition and its effect on the
movement can be seen in Figure 5.

If the polarization of the motor unit should show, for instance, a SSN3
state, the first two half-bridge bipolar transistors will get a 5V signal, opening
the upper side transistor. The third one will stay with no signal and an
opened low side transistor. Because the fourth half-bridge has got no signal
and connects therefore all EP magnets to the ground, the current will flow
from the two first upper sides over the corresponding magnets mainly to the
fourth low side and to the ground. Hence, the first two magnets have been
powered but not the last one. For this, the fourth half-bridge needs to be
switched, whereby only the third EP magnet will be powered. The result is
that if the switching of all magnets is necessary, two shots* has to been done
successively.

The capacitor needs some time to recharge after a shot. This time depends
on the voltage supply, on the resistor in front of the capacitor and on the
duration of the last shot. The capacitor voltage will therefore be read over a
one to ten voltage divider with an analog-digital-converter (ADC) channel, so
that the next shot can be started as soon as the sufficient voltage is reached.

3§ stands for south and N for north, meaning the state of the magnetic pole that points
outside. It is noticeable at the block sides.

4The short signal from the controller, causing an opening of certain upper side transis-
tors and therefore the switching of one or more magnet polarities will be called “shot”.

State 1

State 2

State 3

State 4

State 5

State 6

Figure 5: The motor state diagram shows the 6 different states of the EP magnets and
the changed position in respect to the passive sides of two blocks. The magnetic poles are
marked with S and N for South and North. As every block has two permanent magnets
on each of its passive sides, six states move the “rotor” block from one “stator” to another
(10mm).

I I 1
e [Tl I I I I

I I | | | | |
B ———
I/OPINZ____h___"___i_ _______ i_ _______ i‘ _______ h___"___lh___"___h___n___]:_ ______
T

I I | | | | | |
! ' I | | | | |

Figure 6: The timing diagram shows the signals, coming from the IC, I/O PIN are labeled
from 0 to 3. Additionally, the voltage of the capacitor and the displacement of the block
is shown.

Figure 7: Snapshots of the motion (six-states sequence).

To generate the switching sequence presented in Figure 6, we used a
Microchip dsPIC30F4011. Four output pins are used to give the signal to
the half-bridges and one ADC input measures the capacitor voltage. In the
final solution, we will need 8 I/O pins for running two motor units. A suitable

and smaller IC from Microchip would be the 28 pin PIC16F723A in QFN
design with a size of 4mm x 4mm.

3. Experimental results

3.1. Motion and speed

We carried out some experiments to validate this concept of sliding blocks.
The motion is stable and reproducible but a bit jerky due to on-off state tran-
sitions. Figure 7 show a complete sequence which can be further appreciated
in the video clip accompanying this paper®.

The speed of displacement has been evaluated through one hundred se-
quences and measuring the time. The mean speed was about 0.61s for lcm
(or 10 blocks distance in 6.1s) that is to say 16.4mm/s.

Salso available at this address: http://smartblocks.univ-fcomte.fr/actuation_
EP_magnets.avi

10

40
35
30
25

20 /
15

10
5

0 5 10 15 20 25 30 35

Force in mN

Voltage in V

Figure 8: The magnetic force between the three EP magnets of the active motor unit
side and the two neodymium magnets of the passive motor unit side using a specific
magnetizing voltage and two shots.

3.2. Holding force vs. Voltage

We tested the holding force between two motor units. After a proper de-
magnetizing, changing the polarity of all magnets while decreasing slowly the
switching voltage, we measured the force for different magnetizing voltages
using each time two shots. We therefore put a motor unit below a second
one that is attached to a bracket. The motor units are placed as if they
were within aligned blocks. Then, we used measured balance weights, hang-
ing them carefully on a special built anchor to the lower motor unit, until
the connection broke. We made this several times to guarantee repeatable
measurements of the tensile force.

The result can be seen in Figure 8. Below a voltage of 6V, the magnetic
field is too weak to start a proper magnetization of the AINiCo core. From
6V up to 16V, the holding force increases with the voltage. This is the
linear magnetization region of the AINiCo. Over 16V, the magnetization
is saturated and the holding force reaches 45mN. This graph shows that
voltages over 16V do increase the strength a lot. On the other hand, the
higher the voltage is, the longer the charge of the capacitor will be. Charging
to 18V instead of 15V takes 66% longer but increases the attraction force just
by 10%. Thus, using voltages around 15V-16V is the best compromise.

11

Force in mN

0 10 20 30 40 50

Pulse duration in ps

Figure 9: The magnetic force between the three EP magnets of the active motor unit side
and the two neodymium magnets of the passive motor unit side using 15V and two shots
with a specific shot time.

3.3. Holding force vs. pulse duration

The next test was to check how a shorter or longer shot influences the
force. The magnets were therefore demagnetized as before and, then, mag-
netized with a shorter or a longer 15V shot from a 470uF capacitor. The
result can be seen in Figure 9, showing the force function of the shot time.

We found out that it is useless to increase the shot time over 25us, because
while the coil is powered, the voltage of the capacitor is shrinking, causing
a gradually lower current in the coil. So, after 25us the current seems to be
too low to polarize the magnet any further.

We also tested if multiple shots could increase the holding force. We
found no hint of stronger force after ten or even hundred shots, because just
a stronger magnetic field changes the remanence, the duration is irrelevant
after a certain time (25us).

3.4. Energy consumption

During a shot, the voltage drops around 2V. Knowing the capacitance,
we can deduce that the magnets consumed an energy around 13mJ. That
means that the 10mm move of a cube will consume around 78mJ.

12

Figure 10: Captured image from the simulator software showing blocks with conveying
actuators on the top. The floor is covered by tracks that guide the blocks during their
displacement.

4. Blocks reconfiguration algorithm

The travelling system presented above allows considering the development
of blocks composed of a processing unit, sensors and actuators. Each block
is a small conveying area but, when linked with other blocks, it creates a
conveying path for moving objects over larger distance. Side actuators allow
a block to slide on another one and to form different conveying surfaces
with different geometries. Furthermore, it reduces cost and avoids human
interventions to replace a defective block. The second part of this paper
presents a distributed algorithm which reconfigures a set of blocks, placing
them in a new geometrical configuration.

Our algorithm allows reconfiguring a set of connected blocks considering
that each block runs the same code and may exchange messages with 4
neighbors. This algorithm consists in a finite state machine, driven by the
exchanges of messages in this network of connected blocks. This algorithm
is implemented in our simulator software, named VisibleSim, that shows in
real-time the exchanges of messages and the displacements of blocks (see
Figure 10).

4.1. Operating principle of the blocks

The algorithm is based on exchanges of messages between neighboring
blocks where each message may contain transmitted data. In order to write
this algorithm for block reconfiguration, blocks are considered as entities with

13

)
0

o o0 ~I[SIGIENE A
oo~ o f¥wmr

4 M_‘
oI

NS
NS

Hrmirm N,

P 00 ~ O [N
0o~ oIS

o~k WN—
=
o

11
212
33
44
55
66
77
88

~ow;
~o[Z]

-

Figure 11: Some steps of the reconfiguration algorithm: a) The goal map. b) The initial
configuration of the blocks. ¢) The distance from each block to the closest empty space.
d) The path from one block to a free cell.

their own memory, able to execute a set of instructions. Each block is con-
nected with 1 to 4 neighbors and communicates using asynchronous message
exchange. The algorithm presented requires only data stored within each
block, which can run independently in autonomous units of computation.
One of the blocks is chosen to propagate the actions of the reconfiguration
algorithm to the other blocks. We call this block Master Block, it is con-
nected to an external module that manages the reconfiguration.

The desired configuration is stored in a 4-way connected map, where the
number of cells to fill corresponds exactly to the number of blocks that re-
ceive the map. Figure 11.a shows an example of a map where the cells to fill
are colored in gray.

4.2. Steps of the algorithm

The algorithm for blocks reconfiguration is divided into four major stages.
A preliminary step, executed only once, transmits the target configuration
map to each block. After this preliminary step, three successive steps will be
repeated:

1. Computing the distance between blocks and empty areas,
2. defining the direction of movement,
3. moving the blocks.

14

Each iteration is intended to make the current configuration getting closer
to the target configuration.

4.2.1. Sending the map

The first step is to send the map to all the blocks (broadcast) and to
receive an acknowledgment (convergecast). The Master Block sends the map
to its neighbors. Then, when a block receives a map for the first time, it
sends it to its other neighbors and waits for an answer from each of them.
This stage is ending when the Master Block has received an answer from
each of its neighbors, certifying that each block of the set has received the
map.
The position of each block is relative to the Master Block. During the broad-
cast, each map message contains coordinates of the sender so that when a
block receives a message, it deduces its position from the sender position.
In order to save memory, it is possible that the entire map will not be trans-
mitted to every block. A solution is to decompose the map into several parts
and distribute these sub-maps over the sets of blocks. In the current state
of our algorithm, we are transmitting the entire map to each block, this op-
timization will be the subject of future enhancements.
The algorithm detailed below allows to start the computation on all blocks
by broadcasting (without cycles) the start order. At the end of the computa-
tion, the initial block receives an acknowledgment stating that the algorithm
has been performed on all blocks. The Figure 12 details this algorithm.
We recall that the same program is executed on every block. The program
behaves like a finite state machine where the evolutions of states are triggered
by receiving messages.

During the first step, the "Master Block’ receives the first message from
an external module.
For each type of information conveyed to the blocks, we define a dedicated
message. For example, the message called MAP_MESSAGE is used to send
data about the final map. It contains the following parameters:

e A pointer to the transmitter block (which is necessarily a neighbor of
the receiver),

e the size of the map (width and height of this area),

e the bit array indicating whether each cell must be filled or not,

15

e the transmission time is added to the message in order to simulate the
transfer delay.

When a block receives a message type MAP_MESSAGE, two actions are
possible:

1. If there is already a map stored in the block, then it returns a message
to the sender (ACK_-MAP_MESSAGE);

2. Else, it copies the map into its memory and broadcasts a new message
MAP_MESSAGE containing the map data to its neighbors (except to
the one who sent him the MAP_MESSAGE). Then, it stores the sender
id of the message (in a local variable named sender) and the number
of neighbors to whom he sent this message (in the local variable named
waitedAnswers).

When a block receives a message ACK_MAP_MESSAGE, it decrements
the variable waitedAnswers. Then, if waitedAnswers is null, which indicates
that all its neighbors have already answered, the block sends an acknowledg-
ment to the 'sender’ with ACK_MAP_MESSAGE.

Figure 11.b shows the result of the map transmission to a set of blocks.
Blocks that are already well placed are colored in dark gray and in light gray
otherwise.

4.2.2. Calculating distance between blocks and empty areas

This phase consists in searching for each block, the shortest distance to a
free position in the final configuration map, as shown in Figure 11.c. In this
example, the value placed over each block (in a myDistance variable) is the
distance from the block to the closest empty spot.
This algorithm is based on two steps, each of them needing to broadcast
information to the set of blocks. The first step initializes all distances stored
in the blocks to the infinity value. Then, during the second step, each block
that has an empty place executes the following. Using the map, it checks if
this spot should be empty at the end of the reconfiguration. In this case, it
deduces that its distance value is equal to 1 (myDistance = 1) and broad-
casts this information to its neighbors.
Every block must have a distance corresponding to the minimum distance
from their neighbors plus 1. Then, to determine the distance value for each
block when a neighbor updates its distance, it will propagate this informa-
tion to its neighbors using a message containing its own distance.

16

Wait for messages

|

MAP_MESSAGE |ACK_MAP_MESSAGE

send
ACK_MAP_MESSAGE
to Message.sender

| waitedAnswers--

waitedAnswers

copy Message.map
in local map variable

YES

send
ACK_MAP_MESSAGE
to sender

is
Master Block

sender := Message.sender

waitedAnswers:=0
neighbor:=firstNeighbor

Send
MAP_MESSAGE(map)
to neighbor

waitedAnswers++

17

Figure 12: Algorithm of diffusion of the map over the set of blocks.

When a block receives a message from a neighbor, it compares its own dis-
tance value (myDistance) to the received one (receivedDistance), and, up-
dates myDistance if myDistance > receivedDistance.

4.2.83. Defining the direction of movement

Binas is the farthest block to an empty spot. It is identified easily as its

distance is greater than all its neighbors distance.
Then, B,,., has to find a path to a block, neighbor of an empty spot. This
path is calculated by following the decreasing distance values as shown in
Figure 11.d. The neighbor of B, that admits the smallest distance is
chosen. If distances have equal values, the order West, North, East, and
South (WNES is here a convention) is followed. The relative position of this
neighbor defines the movement direction for the block and it is stored in the
direction variable.

The two previous steps can be repeated as it exists a path linking a free
position and a not well-placed block. In order to avoid deadlocks, we set
the distance stored in these moving blocks to the infinity value (they are
marked with oo in Figure 13). Thus, each block can only participate to
one reconfiguration at a time but many movements of blocks are possible
simultaneously.

4.2.4. The motion of the blocks

The last step of the algorithm consists in starting the physical displace-
ment of the blocks and waiting for them to reach their destination before be-
ginning the next sequence. The whole movement is composed of an ordered
list of one-block movements. When two neighbors have different movement
directions, a priority has to be given to avoid collisions. The first block in
the list must wait for the second one to end its movement.

4.8. The real-time simulator

We developed a software call VisibleSim [13] to visualize in real-time the
states of the blocks during the reconfiguration algorithm. This software, de-
veloped in C++, allows observation of the asynchronous execution of the
code on the different blocks.The small program associated with each block,
called BlockCode, is written in C++ too. VisibleSim helps debug the pro-
gram by changing the color of the blocks during the program or by writing
debugging text, to name a few.

18

»

Wl N < Lol
NS0 © N~
Um0 © M~

— N WO M~
— N =T WD O~ 0

= 1EIKIE

g
{
i
g
g
L] L™
0
-

N Y I

T ANMT WO~

Figure 13: Algorithm for determining the direction of simultaneous displacements of many

blocks.

19

Figure 14: Some screen captured from the simulator interface during the calculation of
the reconfiguration. On the left, the last step of reconfiguration of the 'conveyor’ shape.
On the right, four reconfiguration steps from the horizontal line (on the top) to the text
"Mechatronics’ (on the bottom). Red blocks are already well placed, yellow blocks have
just reached their final position, and grey blocks are not well placed.

The simulator calculates the simultaneous evolution of the blocks state tak-
ing into account the message transmission delay. Thus, the emission of a
message and its reception cannot be achieved simultaneously.

After each movement, the positions of the blocks are displayed in real-time.
Some screen captures are presented in Figure 14 and examples of reconfigura-
tion can be visualized in a short video attached to this paper, or downloaded
at this address : http://smartblocks.univ-fcomte.fr/anim_blocks.mp4.

4.4. FErperiments on reconfiguration time

The total reconfiguration time mainly depends on the difference between
the initial configuration of the blocks compared to the final map. Even
more than the average distance traveled by each block, the complexity of
the 4-connected path separating blocks is an important parameter of the
reconfiguration complexity.
We performed two types of reconfigurations, a first one defining a map with
a fairly simple pattern representing a large conveyor tree (composed of 546
blocks), and a more complex one formed by the text: 'Mechatronics’ (875
blocks) as shown in Figure 14.

For each of these situations, several initial configurations were tested:

e Horizontal lines: Blocks organized as horizontal lines beginning on the

20

Shape Goal | Conveyor | Mechatronics
Horizontal line 121 22
2 horizontal lines 136 119
Diagonal line 108 42
Sinusoidal line 71 30
2 boxes 132 130

Table 1: Number of steps to reach the goal from different initial shapes.

bottom left end side and ending on the right end side.

e Two horizontal lines: Same as horizontal line except that lines are
placed on the top and on the bottom.

e Diagonal lines: Diagonal lines starting on the upper left corner and
ending on the lower right.

e Sinusoidal: a sinusoidal curve.

e Two vertical lines: Same as horizontal lines, except that the lines are
verticals.

For each configuration, the numbers of steps to reach the goal is shown
in Table 1. This value represents only the number of repetitions of the algo-
rithm required for reconfiguration without taking into account the duration
of displacement of the blocks.

One can notice that the speed of convergence of the algorithm varies
significantly depending on the initial configuration. The algorithm seems
to be more effective with the horizontal lines for the second case because it
places blocks in a configuration close to their final distribution.

5. Conclusion

In this paper, we proposed a proof-of-concept of a self-reconfigurable
robot based on sliding blocks. At the hardware level, several blocks have
been realized integrating electro-permanent magnets in order to save energy
between moves. The experiments show that a block is able to move along
one another at an average speed of 16.4 mm/s and produces a holding force

21

of 45mN. The blocks are powered externally but the housing of all the elec-
tronic parts in a 10mm cube is possible. A future improvement could be to
use the EP magnets to sense the “rotor” block position using the different
inductance of the different positions.

If the speed and energy consumption of the system are adequate to built
large robots with hundreds of blocks, the holding force should still be im-
proved. The gliding side of blocks should also be carefully design to minimize
the friction forces and to avoid that a block braces against other ones.

A block is moving by sliding on other blocks, which create an original way
of moving. At the software level, we therefore need a special reconfiguration
algorithm which would take into account this way of moving. We proposed a
distributed algorithm which reconfigures a set of blocks according to a target
map. All the blocks use the same program and are able to organize themselves
by exchanging asynchronous messages. This reconfiguration algorithm has
shown to be effective, i.e. reconfiguration of a set of blocks is working, but the
number of simultaneous blocks moving can still be increased. Furthermore,
the entire map is sent to each block, which is not necessary. An future work
would be to reduce the target map to local positions.

In the future, this work will be used as a basis to realize the Smart Blocks
project. We have therefore given suggestions, hints and solutions to problems
that will be faced in later work, when the actuators will be integrated to form
a modular and reconfigurable conveyor.

Acknowledgment

This work has been funded by the Labex ACTION program (contract
ANR-11-LABX-01-01) and ANR/RGC (contracts ANR-12-1S02-0004-01 and
3-ZG1F) and ANR (contract ANR-2011-BS03-005)

References

[1] N. Chaillet, S. Régnier (Eds.), Microrobotics for Micromanipulation,
John Wiley and Sons, 2010.

[2] The rules governing medicinal products in the European Union, Eu-
dralex, 2010, Ch. Good manufacturing practice guidelines.

[3] R. Zeggari, R. Yahiaoui, J. Malapert, J.-F. Manceau, Design and fabri-
cation of a new two-dimensional pneumatic micro-conveyor, Sensors &
Actuators: A.Physical 164 (2010) 125-130.

22

[4]

J. Malapert, S. Morishita, M. Ataka, H. Fujita, D. Collard, Y. Mita,
Power-regulated thermal actuator based on uv-patterned polyimides for
a ciliary motion system, IEEJ Trans. on Sensors and Micromachines 133
(2013) 77-84.

K. Boutoustous, G. J. Laurent, E. Dedu, L. Matignon, J. Bourgeois,
N. L. Fort-Piat, Distributed control architecture for smart surfaces, in:
Proc. of the IEEE Int. Conf. on Intelligent Robots and Systems, 2010,
pp- 2018-2024.

J. Bourgeois, S. Goldstein, Distributed intelligent mems: Progresses and
perspectives, in: L. Kocarev (Ed.), ICT Innovations 2011, Vol. 150 of
Advances in Intelligent and Soft Computing, Springer Berlin / Heidel-
berg, 2012, pp. 15-25.

H. Kurokawa, K. Tomita, A. Kamimura, S. Kokaji, T. Hasuo, S. Murata,
Distributed self-reconfiguration of M-TRAN III modular robotic system,
Int. Journal of Robotics Research 27 (3-4) (2008) 373-7386.

B. Salemi, M. Moll, W.-M. Shen, Superbot: A deployable, multi-
functional, and modular self-reconfigurable robotic system, in: Proc.
of the TEEE Int. Conf. on Intelligent Robots and Systems, 2006, pp.
3636-3641.

A. Sprowitz, S. Pouya, S. Bonardi, J. van den Kieboom, R. Mockel,
A. Billard, P. Dillenbourg, A. Ijspeert, Roombots: Reconfigurable robots
for adaptive furniture, IEEE Computational Intelligence Magazine, spe-

cial issue on ”Evolutionary and developmental approaches to robotics”
5 (3) (2010) 20-32.

V. Zykov, E. Mytilinaios, M. Desnoyer, H. Lipson, Evolved and designed
self-reproducing modular robotics, IEEE Transactions on robotics 23 (2)

(2007) 308-319.

J. Neubert, A. P. Cantwell, S. Constantin, M. Kalontarov, D. Erickson,
H. Lipson, A robotic module for stochastic fluidic assembly of 3d self-
reconfiguring structures, in: Proc. of the IEEE Int. Conf. on Robotics
and Automation, 2010, pp. 2479-2484.

23

[12] K. Gilpin, A. Knaian, D. Rus, Robot pebbles: One centimeter mod-
ules for programmable matter through self-disassembly, in: Proc. of the
IEEE Int. Conf. on Robotics and Automation, 2010, pp. 2485-2492.

[13] D. Dhoutaut, B. Piranda, J. Bourgeois, Efficient simulation of dis-
tributed sensing and control environment, in: IEEE International Con-
ference on Internet of Things (iThings 2013), Beijing, China, 2013, pp.
1-8.

24

