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Abstract 

In this paper, an experimental characterisation of a particle impact damper (PID) under 

periodic excitation is investigated. The developed method allows the measurement of 

damping properties of PID without the supplementary use of a primary structure. The passive 

damping of PID varies with the excitation frequency and its design parameters. The nonlinear 

damping of PID is then interpreted as an equivalent viscous damping to be introduced in a 

finite element model of a structure to predict its dynamic response. The results of numerical 
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simulations are in good agreement with those of experiment and show the relevance of the 

developed method to predict the dynamic behaviour of a structure treated by PID’s. 

Key Words: Vibration / Particle / Impact / Damping / Loss factor / Dynamic Response.   

Nomenclature: 

g - Gravity, 

d - Gap, 

m - Total mass of particles, 

M - Mass of the enclosure, 

( )f t - Excitation force, 

ω  - Frequency of excitation, 

( )eC ω - Linear viscous damping coefficient, 

P  - Total power of PID, 

( )η ω  - Loss factor, 

{ }X - Nodal displacement of the plate, 

[ ]0C  - Proportional damping matrix of the plate,   

( )dC ω   - Contribution in damping of PIDs, 

[ ]M  - Mass matrix of both plate and the enclosures, 

pM    - Mass matrix of the plate, 

[ ]dM  - Mass matrix of the enclosures, 

[ ]K  - Stiffness matrix of the plate, 
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1. Introduction 

Particle impact damping (PID) is a passive means of providing high damping to the vibrating 

structure. This process consists to introduce metallic particles in voids or enclosures attached 

to the primary structure. When the structure moves, the particles collide with each other and 

with the enclosure causing damping through friction and inelastic collisions. The dynamic 

response of the primary structure is modified by such an additional damping and mass.  

Despite the increasing use of particle damping technology (Panossian et al., 2008 [1]; 

Simonian et al., 2008 [2]) the modelling of PID remains difficult due to a number of 

problems. One of the principal complexities in using PID is the remarkable nonlinear 

behaviour making them complicated to design (Popplewell et al., 1991 [3]; Papalou et al., 

1998 [4]; Bapart et al., 1985 [5]; Park et al., 2009 [6] and Cempel et al., 1993 [7]). The 

design problem is explained by the large number of parameters, such as the geometry of the 

enclosure, the shape and material of particles, the amount of free space (gap size or volume 

fraction) given to the particles, the level of displacement and acceleration of the primary 

structure.  

In order to circle these issues, most of the modelling effort has been concentrated in the 

simplification of the problem, without considering what is happening internally in the PID in 

detail. As an example, many authors model a bed of particles as a single particle (Marhadi et 

al., 2005 [8]), estimating the performance of the PID on this effective particle. Another way to 

simplify the problem is to linearise the model for different operating conditions, as Liu et al 

(2005) [9] who estimated the damping contribution of PID as an equivalent linear viscous 

damping. It is noticed that most of the previous investigations characterise the performance of 

the PID by the use of a primary structure. Therefore, the effectiveness of PID is determined 

by analysing the frequency response of the structure around its resonance frequencies. This 

technique allows for understanding the energy dissipation mechanisms of the PID, however, 
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the identified damping cannot be explored in other structures. This is because the dissipation 

mechanism of the underlying global model is different from one model to the next one. While 

it is possible to calculate the correct dissipated energy from any equivalent model at each 

operating point it is more satisfactory to extract the information directly from vibration data. 

Such a method is the Fourier Transform-based power flow theory used by Yang (2003) [10] 

and Wong (2009) [11]. This method allows the measurement of both the mass and damping 

properties of the PID without the supplementary use of a primary structure. In this 

application, the average dissipated power (known as active power) and maximum trapped 

power (known as reactive power) by the vibrating particle damper can be estimated directly 

via the cross spectrum of the force and response signal of the PID. The power flow method is, 

however, a time-averaged method and requires the excitation of the damper to be periodic. 

The latter method is attractive; firstly, it allows the characterisation of the design variables to 

be done quickly. Secondly the determined damping coefficient which depends on the 

excitation level can be used in any primary structure. 

In this work, the power flow method is used to characterise the damping of a vertical PID 

under harmonic excitation. The loss factor of the particle damper is characterised 

experimentally with respect to both the frequency and the level of displacement. Then the 

damping of the characterised PID is converted into an equivalent linear viscous damping 

coefficient for different levels of excitation. In the second part of this investigation, the 

numerical study of a plate treated with PIDs was performed; its purpose was to predict the 

dynamic behaviour of a primary structure using the loss factor determined by power 

measurements. An experimental study was conducted to verify the capacity of this method to 

predict the contribution of PID in the damping of the primary structure. 
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2. Experimental characterisation of the particle impact damper  

A schematic of the experimental apparatus is shown in Figure 1. The characterised PID is 

similar to the one used by Yang (2003) [10] and Wong (2009) [11]. It consists of a 

cylindrical casing (enclosure) with a regulated top lid. Indeed, four screws are used to adjust 

the gap d which represents the distance between the top of the bed of particles and the ceiling 

of the enclosure (Figure 2). The total mass of the enclosure is 23 x 10-3 Kg. The enclosure 

which is partially filled with lead particles was attached to a force cell which was itself 

attached to an electromagnetic shaker. The force and velocity signals were measured with the 

force cell and laser vibrometer, respectively. A Dynamic Signal Analyser DSP Siglab model 

20-42 was used to collect and process the data. 

Figure 1. 

The developed experimental method for identification of damping of PID consisted in 

measuring the evolutions of both force and velocity of the system versus the frequency of 

excitation. In order to characterise the PID with a high precision, a sine-sweep excitation was 

used with a small frequency step. 

Figure 2. 

2.1. Theoretical background  

Basically, it is known that the complex power associated to one harmonic cycle is given as   

                                                                   *.rms rmsP F V=                                                           (1) 

where F and *V are respectively the complex force and the conjugate of the complex velocity.   

The average dissipated power (also known as active power in electrical engineering) can be 

extracted from the real part of the complex power 
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                                                   Re( ) . .cos( - )rms rms F VP F V φ φ=                   (2) 

where ( - )F Vφ φ  is the phase difference between the force and velocity signals in radians. 

The imaginary part of power corresponds to a term usually known as reactive power (also a 

term borrowed from electrical engineering) and can be written as  

                                                  Im( ) . .sin( - )rms rms F VP F V φ φ=                                              (3) 

The loss factor contribution of the PID can be predicted as 

                                                         

Re( )
  

Im( )

P

P
η =                                                               (4) 

2.2. Experimental process   

The experimental process is organised in two steps: 

In the first step, the particles are replaced by an equivalent mass (equal to the total mass of 

particles) fixed to the ceiling of the enclosure. The goal of this set of tests is to verify the 

measurement of powers; this includes the analysis and calibration of the experiment 

parameters which have an effect on the measurement precision. 

In the second step, the equivalent mass is replaced by lead particles moving inside the 

enclosure, the gap being adjusted by the four screws. The measurements of force and velocity 

are performed taking into account the instrument calibration done using the equivalent mass. 

It appears that these measurements are very sensitive to any phase error between force and 

velocity signals. Therefore the calibration step is of major importance.  

2.3. Experimental results 

The impacting mass of PID consisted of lead particles. The tests were conducted by keeping 

both gap and mass of particles constant (the gap was 2 x 10-3m, the size of lead particles was 

2 x 10-3m and the total mass of particles was 10.5 x 10-3 Kg) while varying the excitation 

frequency from 20 to 70Hz with steps of 3.3Hz. The measurement of force and velocity 
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allowed the computation of the trapped and dissipated powers, afterward the loss factor was 

carried out using equation (4).  

Figure 3 shows the evolution of the loss factor of the PID versus the excitation frequency. 

Four levels of excitation level are considered.  

Figure 3. 

For a significant explanation of the obtained results, it was desired to choose for the x-axis, a 

non-dimensional term that could describe the motion of the particles inside the enclosure. It is 

known that the power dissipation changes considerably once the particles begin to impact the 

ceiling. This condition is controlled by the amplitude of the enclosure motion and the gap 

size. Therefore, displacement/gap was chosen as the x-axis. Figure 4 shows the evolution of 

the loss factor of the PID versus the non-dimensional (displacement / gap).  

These results reveals that a high values of loss factor were reached, showing the efficiency of 

this passive process. In addition, the level of loss factor increases when the displacement 

amplitude increases. 

Figure 4. 

2.4. Expression of loss factor via viscous damping coefficient 

In this section, the loss factor of PID which was determined experimentally is converted into 

an equivalent viscous damping. Figure 5 represents a schematic of both the PID and the 

adopted model. The contribution of PID is estimated as an equivalent linear viscous damping 

coefficient ( )c ω determined for different levels of excitation and depending on the excitation 

frequency. 

Figure 5. 
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As one would expect, the system constituted by the enclosure M and the impact mass m does 

not exhibit any stiffness, then its motion equation can be expressed by 

                                               . ( ) ( ). ( ) ( )M x t c x t f tω+ =&& &                          (5) 

where ( )f t  represents the excitation force and M is the mass of PID.  

For a periodic excitation, the power of the dissipated system can be expressed by 

              ( ) ( )
2 2

2 22 2 2 2

1 ( ). ( ) . ( ).( )
( )   

2 - ( ) -  ( ) - ( ) -  ( )

F c F M m
P i

c M m c M m

ω ω ω ωω
ω ω ω ω

 += + 
 + + 

            (6) 

where ω  represents the excitation frequency. 

Using equations (4) and (6), the loss factor is computed by 

                                          

( )
( ) ( )

Re ( ) ( )
( )

Im ( ) .

P c

P M m

ω ωη ω
ω ω

= =
+

                           (7) 

This relation allows the conversion of the loss factor which was characterised experimentally 

into viscous damping depending on the frequency and the level of the excitation. In order to 

use these results in a structural model, the viscous damping coefficient is fitted by a 

polynomial equation depending of the frequency (see figure 6). 

Figure 6. 

3. Investigation of a plate treated by PID’s 

The aim of this second part of our investigation is to predict the response of a primary 

structure treated with PIDs using the damping coefficient characterised experimentally by the 

power method.  An experimental study was conducted to compare experimental results with 

the simulation ones and to verify the capacity of the developed method to predict the dynamic 

behaviour of the primary structure treated with PIDs. 

The chosen primary structure is a free-free plate, which was preferred to a beam-like structure 

in order to ensure a rich spatial behaviour under dynamic loading.  
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3.1. Experimental study   

In order to reveal the impact of PIDs locations on the dynamic response of the plate, two 

configurations of PIDs positions were considered (see figure 7). The four PIDs used in this 

experiment have the same design parameters (particles mass and gap). The plate is made of 

aluminium specified with a mass density ρ = 2700 kg/m3, Young’s modulus E = 7 x 1010 Pa 

and Poisson ratio ν = 0.3. The plate dimensions are length L = 560 mm, width l = 460 mm and 

thickness e = 2 mm. The mass plate is 1.39 Kg which represents 34 times the total mass of all 

particles used in PIDs. 

Figure 7. 

Figure 8 shows the experimental apparatus according to the considerations mentioned above. 

The aluminium plate was suspended horizontally by three elastic cables. The PIDs were fixed 

on the plate according the two configurations described in figure 7. A magnetic shaker was 

used to provide a harmonic excitation force with varying excitation frequency. The signals of 

both velocity and force of the excited structure were measured, respectively using a laser 

vibrometer and force cell. The plate responses were collected with a multichannel Dynamic 

Signal Analyser Siglab model 20-42. Then the measurements were carried out successively at 

9 points distributed on the plate according to figure 9. The locations of these nodes are chosen 

in order to describe adequately the dynamic behaviour of the structure in the considered 

frequency band. 

Figure 8. 

Figure 9. 
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3.1.1. Experimental process 

The experimental process for the two PIDs configurations is organised in two parts. The PIDs 

enclosures are first kept empty in order to characterise the modal behaviour of the primary 

structure. Then the measurements are repeated with the enclosures containing 10.5 x 10-3Kg 

of lead particles with a gap of 2 mm. The excitation level is kept the same as the one used in 

the characterization of the PID. For each one of these two situations, the Frequency Response 

Functions (FRFs) velocity/force of the plate are successively measured at 9 points of the plate 

by moving the Laser vibrometer at each location. For each measurement, a stepped-sine 

excitation generated by Siglab data acquisition system is amplified and then input into the 

shaker. A predefined level of force is chosen and maintained throughout the test thanks to a 

closed-loop control. After the measurement, the modal characteristics are identified from the 

9 FRFs using the software MODAN ® which was developed in the Applied Mechanics 

Department of FEMTO-ST Institute in Besançon, France. The identification is based on a 

single-mode approach.  

3.1.2. Experimental results 

Figures 10 and 11 show the FRFs (acceleration / force) measured for the two configurations 

of the system at the 9 points described above. The examination of these FRFs (with and 

without particles) shows the effectiveness of PIDs in reducing the vibratory levels of the 

structure over a wide frequency band: the effects of PIDs are visible on each one of the five 

first modes of the plate 

Figure 10. 

Figure 11. 
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Table 1 shows a comparison of the identified modal characteristics with and without particles 

for the first configuration. It is found that the presence of particles causes an increase of 

modal damping which can reach quite high levels without significant changes of the natural 

frequencies and mode shapes. For example, for the first mode, the modal damping increases 

from 1.5% to 2.9% with a frequency variation of 3.7%. 

Table1. 

The same results are presented for the second configuration in Figure 11 and Table 2. It is 

noticed, when comparing the modal damping of the system for the two configurations, that 

the first one provides greater modal damping for all modes. For the second configuration, the 

damping is nearly unchanged for the first mode. This is due to the PIDs positions of the 

second configuration which coincide with the nodal lines of the first mode. This result 

confirms that the damper efficiency depends on the mode shapes of the plate.  

Table2. 

3.2. Numerical study   

Figure 12 shows a schematic of the considered plate treated with PIDs and the adopted model. 

The plate is modelled by finite element method using Discrete Kirchhoff Quadrilateral (DKQ) 

element. The damping contributions of PIDs are modelled by frequency dependent viscous 

damping coefficients.  

Figure 12. 

The motion of the global system is governed by  

                                        [ ] { } [ ] { } [ ] { } { }. ( ) . .M X C X K X fω+ + =&& &                    (8) 
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where { }X  is the nodal displacement of the plate, { }f is the external force applied to the 

system. [ ]K
 
and [ ]M  represent respectively the stiffness and mass matrix of both the plate 

and the PIDs 

[ ] [ ]p dM M M = +                                   (9) 

where pM    is the mass matrix of the plate and [ ]dM is the additional mass matrix caused by 

the presence of the PIDs.  
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where eM represents the mass of PID without particles. 

[ ]( )C ω  which represents the damping matrix of the global system is given by  

                                                      [ ] [ ] [ ]0( ) dC C Cω = +                           (11) 

where [ ]0C  is the proportional damping matrix of the plate and [ ]dC represents the additional 

damping matrix caused by PIDs  
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Ce (ω) represents the equivalent punctual viscous damping of each PID (characterised 

experimentally and depending of the excitation frequency) located at the nodes i, j , k and l of 

the plate.  

It is noticed that the dependence of the PID contribution to the amplitude excitation is not 

considered here, this significant simplification can affect the quality of the numerical 

predictions, but it was retained because it leads to a simple technique for calculating the 

dynamic responses of the primary structure. The implementation of this modelling was 

performed in the MATLAB environment.  

3.2.1. Numerical results 

To validate the finite element model, the first five natural frequencies of the system formed by 

the plate and the four empty enclosures are compared with those of the experiment (Table 3). 

The variations do not exceed 4% showing a good agreement for the two considered 

configurations. It is noticed that the studied frequency band of the plate is in accordance with 

the one used during the PID characterisation.  

Table3. 

Once the finite element model is validated, the frequency dependent damping contributions of 

PIDs are introduced thanks to the polynomial equation illustrated in Figure 6. 

Figures 13 and 14 show a simulation of the FRF (acceleration / force) of the undamped plate 

(without effects of PIDs) and of the plate treated with PIDs respectively for the first and the 

second configuration, calculated at the nine nodes shown in figure 9. It is noticed that the 

PIDs can reduce the vibratory level of the five first natural’s frequencies of the system which 

agrees with the experimental results.  

Figure 13. 
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Figure 14. 

Figure 15 shows a comparison of numerical and experimental responses of the system with 

and without particles determined at points 6 and 9 for the configuration 1. A slight shift is 

observed between the calculated natural frequencies and those of the experiments. For the 

case of the system with the particles, the shift is more visible and shows the effect of the 

particles mass which has been neglected in the model. There are also differences at the peaks 

amplitudes in the vicinity of the natural frequencies between the numerical and experimental 

responses for the system with and without particles. These differences stem from the 

hypothesis considered when modelling the system. The dependence of the amplitude of 

vibration damping is not taken into account and then it necessarily influences the dissipation 

of energy in PID. In addition, the model does not include damping provided from enclosures-

plate connections ensured by screws. 

Nevertheless, the analysis of simulation results of the structure with and without particles 

shows the ability of the model developed in this work to predict the dynamic behaviour of the 

structure taking into account the effect of damping by particles. First, the effectiveness of the 

PIDs is visible on all the studied modes as observed experimentally.  

Figure 15. 

In order to reveal the influence of the excitation levels plate on its dynamic response, a case 

study was conducted. Four excitations level are used, the intensity of those excitations are the 

same one used in the experimental PID characterisation as presented in Figure 3 and 4. The 

Figure 16 shows the FRF’s of the plate calculated at three points 1, 5 and 6 for the four 

considered excitation levels (configuration1). The influence of the excitation levels is 

observed by comparing picks levels in the vicinity of natural frequencies. However the 
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frequency effects on the PID performance are more significant than the influence of excitation 

levels. Indeed, the optimal damping value of the PID is more pronounced at 50 to 60 Hz 

indicating that the damping of the third, fourth and fifth plate mode are more visible then the 

first and the second one. 

Figure 16. 

Tables 4 and 5 show the simulated modal damping respectively for the two configurations 

studied, as well as the modal damping increase due to the particles effect. Figure 17 shows 

this modal damping increase for the five first modes of the two configurations, comparing the 

numerical and experimental values. Is appears clearly that the modal damping increase is 

correctly predicted by the proposed model.  

Table4. 

Table5. 

Figure 17. 

4. Conclusion 

The work reported in this paper aimed at finding ways to better characterise a particle impact 

damper. The loss factor of the particle damper was characterised with respect to both the 

frequency and the level of displacement by the use of power measurements. It has been shown 

that a high value of loss factor can be achieved which explains the effectiveness of this type of 

vibration damper. The nonlinear behaviour of the particle impact damper was then 

approximated to a frequency dependent equivalent viscous damping. The numerical and 

experimental study of a plate treated by PID was performed in order to verify that the loss 
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factor identified by power measurements allowed predicting the dynamic behaviour of the 

structure. The good agreement of the result shows that the proposed characterisation and 

modelling are efficient in spite of the approximations they contain. 
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Fig. 2.  Schematic of the Particle Impact Damper.  
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Fig. 3.  Loss factor of PID versus frequency.  

 

  

 

 Fig. 4.  Loss factor of PID versus displacement / gap.  
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Fig. 6. Viscous damping versus frequency.  
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Fig. 10. Comparison of frequency responses of the plate with and without particles. (configuration 1).  
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Fig. 11. Comparison of frequency responses of the plate with and without particles. (configuration 2).  
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Fig. 12. (a) Schematic of plate treated with PIDs, (b) Adopted model.  
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Fig. 13. Comparison of numerical results of frequency responses of plate 

with and without particles. (configuration1). 
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Fig. 14. Comparison of numerical results of frequency responses of plate 

with and without particles. (configuration 2). 
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Fig. 15. Comparison of numerical and experimental frequency responses of plate 

with and without particles. (configuration 1). 
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Fig .16.  FRF plate with different excitation levels. 
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Fig. 17.  Experimental and numerical modal damping for the first five modes.  
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Mode 
Number 

Without particles With particles Gain in 
damping % 
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4 54.1 0.43 53.2 2.4 1.97 
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Table 1. Modal characteristic of the experimental system, configuration 1. 

 

Mode 
Number 

Without particles With particles Gain in 
damping % 

Frequency (Hz) Modal damping (%) Frequency (Hz) Modal damping (%) 

1 26.3 1.2 26.3 1.2 0 

2 31.3 0.74 30.5 1.9 1.16 

3 49.9 1.09 49.9 1.7 0.55 

4 57.7 0.35 57.1 1.6 1.25 

5 67 1.2 66.1 1.9 0.7 

Table 2. Modal characteristic of the experimental system, configuration 2. 

 

Natural 
frequencies 

Configuration 1 Configuration 2 

Numerical Experimental Variation (%) Numerical Experimental Variation (%) 

1 21.7 22.7 3. 3 25.4 26.3 3.7 

2 31.4 31.1 0.92 30.1 31.3 3.8 

3 47.6 47.5 0.34 51.3 49.9 2.8 

4 53.8 54.1 0.01 58.4 57.7 1.2 

5 63.5 63 1.13 66.7 66.9 0.2 

Table 3. Comparison of natural frequencies system. 
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Mode 
Number 

Without particles With particles Gain in 
damping % 

Frequency (Hz) Modal damping (%) Frequency (Hz) Modal damping (%) 

1 21.7 1.1 21.7 2.3 1.2 

2 31.4 0.81 31.4 1.6 0.79 

3 47.6 0.71 47.5 1.5 0.79 

4 53.8 0.57 53.6 2.9 2.33 

5 63.5 0.53 63.6 3.5 2.97 

Table 4. Modal characteristic of the numerical system, configuration 1. 

 

Mode 
Number 

Without particles With particles Gain in 
damping % 

Frequency (Hz) Modal damping (%) Frequency (Hz) Modal damping (%) 

1 25.4 0.94 25.4 0.94 0 

2 30.1 0.83 30.1 2 1.17 

3 51.3 0.63 51.3 1.1 0.47 

4 58.4 0.61 58.3 2 1.39 

5 66.7 0.85 66.9 1.6 0.75 

Table 5. Modal characteristic of the numerical system, configuration 2. 


