
S. Zghal, M-L. Bouazizi, R. Nasri, N. Bouhaddi 

COMPDYN 2013 
4th ECCOMAS Thematic Conference on 

Computational Methods in Structural Dynamics and Earthquake Engineering 
S. Zghal, M-L Bouazizi, R.Nasri, N. Bouhaddi (eds.) 

Kos Island, Greece, 12–14 June 2013 

REDUCTION METHOD APPLIED TO VISCOELASTICALLY 
DAMPED FINITE ELEMENT MODELS  

S. Zghal1, 2, M-L. Bouazizi2, R. Nasri1, N. Bouhaddi3 

1 Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar, Tunisie 
BP 37,1002 Tunis Belvédère, Tunisie 

souhirzghal@yahoo.fr;Rachid.Nasri@enit.rnu.tn 
2 Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul, Université de Carthage, Tunisie 

8000 M’rezga, Nabeul-Tunisie 
lamjed.bouazizi@ipein.rnu.tn 

3 Institut FEMTO ST UMR 6174, Département Mécanique Appliquée, Université de Franche-Comté, 
Besançon-France 

 24 chemin de l’épitaphe 25000 Besançon-France 
noureddine.bouhaddi@univ.fcomte.fr 

 

Keywords: Sandwich, Viscoelastic Materials, Finite Element Modeling, Guyan condensation, 
Dynamic Condensation. 

Abstract. We propose in this paper to combine the GHM (Golla-Hughes-Mc Tavish) method 
with model reduction technique, especially direct condensation methods to resolve the prob-
lem of increased model order of viscoelastically structures. In fact, modeling structures using 
the GHM method leads to global systems of equation of motion whose numbers of degrees-of-
freedom largely exceeds the order of the associated undamped system. As result, the numeri-
cal resolution of such equations can require prohibitive computational (CPU) time. So, to 
overcome this problem, both Static and Dynamic methods are used to reduce the order of fi-
nite elements matrices while preserving its capability to represent the dynamic behavior of 
viscoelastically damped structures. This paper intends to compare these two methods in direct 
reduction. Numerical example applied to cantilever beam structure is presented. This exam-
ple will highlight the domain of validity of the studied methods. Results obtained from these 
two reduction methods are compared with the full model in order to illustrate its performanc-
es and its practical interest in the dynamic analysis of viscoelastically damped structures. 

 

 



1 INTRODUCTION 

In the design of large industrial structures, the use of viscoelastic sandwich structures [1, 2] 
can provide an effective means of vibration control. However, these structures are highly de-
pendent on the viscoelastic materials properties, which depend strongly on the excitation fre-
quency. Therefore, a correct modeling of the viscoelastic behavior is required for the analysis 
of such structures. One effective approach used to model the viscoelastic behavior is the 
Golla-Hughes Mc Tavish [3, 4] model (GHM) which is based on the addition of internal or 
dissipative variables. This approach leads generally to largely dimension systems. Therefore, 
a model reduction should be applied to the augmented GHM model.  

The present work presents an alternative two reduction methods for this problem. The first 
one is the Guyan condensation method [5, 6] which is applied to the structures through a par-
tition of the equation of motion in term of master and slave coordinates leading to a static 
transformation whose coordinates are a subset of the original coordinates system. The second 
reduction is the dynamic condensation method [7] in which some slave modes are retained 
and added to the Guyan static transformation leading to enriched basis. The reduced order 
models are compared in terms of accuracy, performance and computational efficiency for the 
cantilever beam structure.  

2 GHM FINITE ELEMENT MODEL 

The viscoelastic shear modulus is represented, in the GHM model, by a series of functions 
in the Laplace domain such that: 
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(1) 

Where: G0 is the static modulus; s is the Laplace complex variable;αi ,ξi ,ωi are the pa-

rameters of the i mini-oscillator, and NG is the number of mini-oscillators. This leads to de-

rive the equation of motion in term of structural dofs { }q and dissipative dofs { }zi  which are 

defined as follows: 
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(2) 

After some manipulations and back to time domain, the following equation of motion in 
the Laplace domain is obtained: 

[ ]
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(3) 

Or in compact form: 

{ }{ } { }2s M +s D + K q (s) = F (s)G G G G G
     
     

 (4) 

Where: MG
 
   ; DG

 
   and KG

 
  �ℝ��,��  are respectively the mass, damping and stiff-

ness matrices of viscoelastic GHM model with �� =� × (1 + ��) and � is the dimension of 
structural dofs (size of{ }q ). 
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 are respectively, the static or 

low frequency stiffness matrix and the dynamic or high frequency stiffness matrix. 

 
 
 
 
 
 
 
 
 
 
 

(5) 

 
Consequently, the inclusion of dissipative coordinates increases the order of the differential 
equation of motion such that the structural degrees-of-freedom are least doubled. This in-
creases the computational time of the system and motivates the use of reduction methods. 



3 CONDENSATION METHODS 

Models reduction procedures are used in order to reduce the GHM model dimension and 
his associated large computational times. This can be done based on the assumption that the 
exact responses given by the resolution of equation (4) can be approached by projections on a 
reduced vector basis as follows: 

{ } [ ]{ }q = T qcG  (6) 

Where: [ ]T  �ℝ��,��is the transformation matrix formed column wise by a vector basis,  

{ }qc  �ℝ��,� are the generalized coordinates, and NR≪ ��is the number of reduced vectors in 

the basis. The generalized coordinates representing the contribution of each column of [ ]T  

are chosen arbitrary in which the reduced model provides a reasonable predictive into the fre-
quency bandwidth. 

The reduced equation of motion can be written as follows: 

[ ]{ } [ ]{ } [ ]{ } { }M q + D q + K q = fc c c c c c cɺɺ ɺ  (7) 

Where:[ ]Mc ;[ ]Dc and[ ]Kc  �ℝ��,��are respectively the reduced mass, stiffness and damping 

matrices expressed as follows:[ ] [ ] [ ]T
M = T M Tc G

 
 

; [ ] [ ] [ ]T
D = T D Tc G

 
 

[ ] [ ] [ ]T
K = T K Tc G

 
  ;{ } [ ] { }T

f = T fc G  

Two reduction methods are adopted regarding the computation of reduction basis: Guyan 
condensation and Dynamic condensation. 

3.1 Guyan condensation method 

Guyan condensation method [5, 6] is based to divide the displacements vector of structural 
dofs { }q  into two subvectors:  

{ }mq  �ℝ�,�: Subvector of master dofs. 

{ }sq  �ℝ�,�: Subvector of slave dofs. 

With m+ s = N  being the order of the physical dofs of the viscoelastic structure and m≪ �. 
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By neglecting the inertia and the external load associated to the first equation of motion (3), 
partitioning it into master and slave coordinates (or dofs), the reduced model is obtained with 

the Guyan transformation which can be expressed as: [ ]
I 01

T = t t1 2
0 I2

 
 
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 
  
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      �ℝ�,��� 

In this case, the size of reduced mass, stiffness and damping matrices is NR= � + ���. 
Consequently, the reduced model have the follows dimension[ ]Mc ; [ ]Dc and [ ]Kc

 �ℝ�����,�����. 

3.2 Dynamic condensation method 

This method [7] consists to enrich the Guyan matrix transformation of some slaves modes 
obtained by the resolution of the slave eigenfrequencies problem as follows: 

           ( ){ }i i
ss ssK - λ M = 0q φ         i=1,…..,s (8) 

Where: ssKq 
  and ssM    are respectively the slaves’ structural stiffness and mass matri-

ces. 

[ ]1 2i sφ φ φ φ= ; 1( ,........., )i sdiagλ λ λ=  

This base is trounced to p first slave modes 1 2sp pφ φ φ φ =    �ℝ�,�(p ≪ �) which are re-

tained and added to the static basis to enrich it. Thereby, the dynamic transformation can be 
expressed as follows: 
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(9) 

In this case, the size of reduced mass, stiffness and damping matrices is NR= � + ��� +

� . Consequently, the reduced model have the follows dimension[ ]Mc ; [ ]Dc and[ ]Kc

 �ℝ�������,������� 

 



4 NUMERICAL APPLICATION 

In this section, numerical application is presented to illustrate the main features of the used 
condensation strategy of viscoelastic sandwich structures. We consider one mini-oscillator 
(��=1) of viscoelastic cantilever beam which is constituted by two elastic layers (faces) in 
Aluminum and a viscoelastic layer (core) of the nuance ISD112. All the calculations are de-
veloped using the software MATLAB®. The material and geometrical characteristics of the 
used structure are shown in Table1. The values of the parameters of the viscoelastic commer-
cially available ISD112, manufactured by3MTM used at 27°C for one mini-oscillator are pre-
sented in Table 2. 

 

   

Elastic layers 
(Aluminum) 
 
 
 
 
 
Viscoelastic layer  
    (ISD112) 
 
 
 
 
Beam 
 
 

Shear modulus: #$ = 9,6 × 10)*Pa 

Poisson ratio:  +$ = 0,3 

Density :ρ
-

= 2766Kg. m45 

Thickness: h- = 1,524mm 

Shear modulus: GHM modulus (1) 

Poisson ratio:  υ9 = 0,49 

Density :ρ
9

= 1600Kg. m45 

Thickness: h9 = 0,127mm 

Length: L=177,8mm 
Width: l=12,7mm 

 

   
   

Table 1: Material and geometrical properties of the used sandwich structures [8] 
 
 

Model GHM (i=1) Value 

:; 4.8278

<; 28045 

=; 22.013

#* [MPa] 0.1633
 

Table2. Parameters of the GHM viscoelastic model identified for material ISD112 3MTM for one mini-oscillator 
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The used FE mesh of the beam involves one element through the width and 20 elements 

along the length, containing in total 1000 dofs. The excitation point and the response point are 
selected at the extremity of the beam as shown in figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure1: Illustration of the FE model implemented for the Clamped-Free (C-F) viscoelastic beam 
The response of the damped GHM model (described by rational fraction) and his associat-

ed undamped model of the beam under a harmonic excitation are presented in figure 2.  
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure2: FRFs of GHM damped model and his associated undamped model of the viscoelastic sandwich beam 
 

The « blue » curve corresponds to the frequency response of the viscoelastic beam de-
scribed by the frequency dependent GHM model and the « Magenta » curve is his associated 
undamped model in the frequency range of [0-1000] Hz. Indeed, these curves show a shift of 
both amplitudes and frequencies between the GHM rational model and his associated 
undamped model. This resulting first in dimuniation of amplitudes of 40% of the viscoelastic 
damped structure compared to his associated undamped structure.  

This is explained by the damping effect introduced by the GHM model form (1) as a series 
of mini-oscillators while the associated undamped model is described by a static modulus 

( )G ω = 0 = G0which does not take account this effect. In second time, the shift of frequencies 

between the two models allows to determine the natural frequencies (which cannot determine 

 

Excited Point 

Response Point 

Clamped side 

y 

x 

 



them by the classical method such as eigenvalues standard problem or MSE method) and the 
damped frequencies of the viscoelastic sandwich beam described by rational GHM model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure3: FRFs for the rational and the developed GHM model of the viscoelastic sandwich beam 

The frequency response of the rational model (1) and the developed model (3) are confused. 
This leads to conclude that these two models are equivalent. They are used as reference in the 
modeling of the viscoelastic sandwich beam. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure4: FRFs for the full and the reduced systems by using >*)(a), >*?(b), >*5(c) 

 

 

  

a b 

c 
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The interest here is to verify the accuracy and the performance of the direct condensation 

methods applied to viscoelastically damped structure by comparing both Guyan static con-
densation and Dynamic condensation methods. 

The first test is intended to evaluate the Guyan condensation method by using T01base 

which contains the static modes; T = Θ01 0
 
 

(1000×520), with m=20 dofs and s=480 dofs. 

Then, the dynamic condensation method is tested by using T02  and T03bases which are ob-

tained by enriched the static base by some slave modes. For 1spT = Θ02 0 φ 
 

(1000×530), 

static Guyan transformation is enriched by 
1spT of 10 slave modes and for 2spT = Θ03 0 φ 

 

(1000×570), the static Guyan transformation is enriched by 
2spT of 50 slave modes. 

Figure 4 (a), (b) and (c) shows the frequency responses computed by using three reduction 
bases>*); >*?;  >*5 and compared to the amplitude of the response of the reference full model 
in the frequency band of interest [0-1000] Hz. As can be clearly seen, the accuracy is continu-
ously improved upon successive enrichment of the reduction basis by the inclusion of 10 
slave modes and 50 slave modes for >*?;  >*5 respectively. This leads to confirm that the use 
of dynamic condensation is sufficient to represent with good accuracy the dynamic behavior 
of viscoelastic sandwich structure.  

Table 3 provides the comparison between the time computation of full model and Guyan 
and dynamic condensation methods using>*); >*?;  >*5.It shows that the use of enrichment 
basis >*?;  >*5 take a little bit more time of computing FRF than the use of static base >*)but 
make a drastic reduction which up to 90% with >*? and 87% with >*5 compared to full model. 

Moreover, one can take advantage of dynamic condensation method which combines the 
compromise of accuracy and time performance leading to a drastic reduction for the structures 
incorporating viscoelastic materials. 

 

Model Full                  >*)                 >*?                >*5 

Computing FRF (s) 

% of reduction   
 

100                    6                    10                  12 

-                  94                   90                  87 

Table 3:  Times evaluations of full and reduced methods. 
 

The interest now is to compare the performance and the accuracy of the Guyan condensa-
tion method and the dynamic condensation method for the same order of both transformations. 
Indeed, we construct a Guyan transformation matrix with master dofs and slave dofs, having 
the same size with the dynamic transformation base>*5. We consider >�ABCD=>*5 (1000×570), 
in the frequency band of interest [0-1200] Hz. 

 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure5: FRFs for the full and the reduced systems-Guyan condensation/Dynamic condensation 
 
Figure 5 shows the FRFs responses of the viscoelastic sandwich beam for the Guyan con-

densation method and the dynamic condensation method compared with those of full model. 
It can be seen that the frequency response of the dynamic condensation stick with of full 
model more than which is derived from Guyan condensation. The observed differences be-
tween the two direct condensation method lead to conclude that the Guyan condensation basis 
is not capable of overall accurately representing of the dynamic behavior of viscoelastic 
sandwich structures compared to the dynamic condensation method which gives satisfactory 
significant more accurate prediction. In fact, the static method is limited by a certain frequen-
cy called cutoff frequency which defines the domain of validity of the method and from which 
the results are not acceptable. For this example the cutoff frequency is around 1000 Hz. This 
result confirms that the use of dynamic condensation method is more efficient to represent 
with good accuracy the dynamic behavior of viscoelastic sandwich structures.  
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5 CONCLUSIONS 

Finite element modeling procedures of structures incorporating viscoelastic materials are 
able to reproduce the FRFs responses before and after reduction was implemented, with em-
phasis placed on the GHM model and the implementation of two model order reduction 
methods: the Guyan condensation method and the dynamic condensation method. 

An academic example derived from the industrial interest for the viscoelastic sandwich 
structures was used to illustrate the efficiency and the performance of these methods for pre-
dicting the dynamic behavior of these structures. The obtained results demonstrated the effec-
tiveness of the two condensation strategy mainly in terms of the drastic reduction of the whole 
number of dofs and CPU time’s computations. 
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