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The Non-obstructive Particle Damping (NOPD) technology is an actuality research topic

in vibration attenuation. In spite of the simplicity of this technology, the large number of

NOPD parameters constitutes one of the problems in the computation of its damping

contribution. In this paper, an experimental characterisation of non-obstructive particle

damper under harmonic excitation was investigated. The experimental method which

was developed allows the quantification of NOPD’s loss factor independently of the

structure. Some system parameters such as excitation frequencies, excitation amplitudes

and geometry of granular cavity were examined. Afterward, the characterised damping

was converted to an equivalent viscous damping in order to predict the dynamic

behaviour of a damped structure. The good correlation between experimental and

numerical results illustrates the performance and the usefulness of the proposed

method.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Non-Obstructive Particle Damping (NOPD) technology is a passive vibration damping approach used to absorb
vibration energy. It consists of making small diameter holes or cavities at appropriate locations inside vibrating structures.
These holes are filled to appropriate levels with metallic or non-metallic [1] particles in spherical form which yields the
maximum damping effectiveness for the desired mode. The major energy dissipation mechanisms of granular particles are
related to friction [2,3] and impact [4–7] phenomena which are highly non-linear.

Due to its conceptual simplicity and low cost, this passive damping concept has been used successfully in many fields
(shuttle space [8], turbine blades [9] and industrial machine [11]) to reduce vibration. In addition, the NOPD passive
damping approach can operate in extreme temperature conditions when using a metallic, tungsten carbide or ceramic
particle which is not the case of viscoelastic materials.

The granular particle aspect, allowing interactions between grains and container walls, is the subject of a lot of research
([10–15]). As an example, Xu et al. [3] developed physical models to take into account the shear frictional forces between
particle layers. The authors also performed experimental tests of the beam and plate structures for various damping
treatments. As another way to estimate the performance of the particle damper, Liu et al. [13] converted the damping
contribution of NOPD to an equivalent linear viscous damping. The effectiveness of NOPD is determined by analysing the
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frequency response of a single degree of freedom system. It is noticed that most of the previous investigations characterise
the performance of the NOPD by the use of a primary structure.

Based on extensive experimental results, Lenzi [10] developed an approximate method to predict the damping achieved
by a beam filled with granular materials. In the complexity of the dynamic behaviour of granular materials, the parameters
referred to here are amplitudes of vibration, pressure, grain sizes, and dimension of cavities and frequency of vibration.

Despite the simplicity of this technology, the characterisation of NOPD is still complicated (the complexity interactions
in the particle damper). Besides, most of this research is based on experimental investigation. In fact, several parameters
affect the damper performance, such as pressure, particle size, compaction, the internal design of the enclosure, excitation
level and frequency band of interest. In particular, the internal design of the enclosure [13] and the quantity of granular
material [10] are the most important parameters.

The close dependence of the energy dissipation phenomenon on several parameters has led us to develop an original
approach in reference to literature studies. This approach consists in proposing an experimental method to characterise
the NOPD loss factor independently of mechanical structure. The basic idea of this experimental method is to determine
the total power and the dissipated power during the vibration damper. This approach, used by Yang [16] to characterise
the damping effect of granular materials, is based on the power flow method which was introduced by Fourier.

In this work, an experimental procedure was developed for a series of design dampers in order to measure the loss
factor of the non-obstructive particle dampers. A parametric study was used to describe the nonlinear characteristics of
the NOPD. Then the characterised damping was converted into an equivalent linear viscous damping coefficient depending
on frequency that can be easily introduced in a predicted model. In the second part, a numerical study of a beam treated
with NOPD was performed. Its purpose was to predict the dynamic behaviour of a primary structure using the loss factor
characterised by power measurements. An experimental study was conducted to check the capacity of this method to
predict the contribution of NOPD in the damping of a primary structure.
2. Experimental characterisation of non-obstructive particles damper

The Non-obstructive Particle Damper characterised in this study is a non-deformable cylindrical enclosure filled with
granular material (Fig. 1). Thanks to a swept-sine excitation provided by an electromagnetic shaker, the variation of both
force and velocity of the damper versus frequencies was measured. Afterwards, the measured quantities were used in the
computation of the NOPD’s loss factor. The measurement technique of the loss factor is presented in the next section.
2.1. Loss factor measurements technique

In order to measure the power dissipation energy conducted on the enclosure we used the method chosen by Yang to
characterise particle dampers. This theory is based on the Fourier-based power flow method. Basically, the work done in a
Fig. 1. Cylindrical enclosure.
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cycle to excite a mass is given as [17]

Wcycle ¼

Z T

0
f ðtÞvðtÞdt ð1Þ

where f(t) and v(t) are the force and velocity, respectively, and T is the length of one cycle. The term f(t) v(t) denotes the
instantaneous power. Then the average power transmitted is therefore given as

Pav ¼
Wcycle

T
¼

1

T

Z T

0
f ðtÞvðtÞdt ð2Þ

The representation of the force and velocity data set as a complex Fourier series in a discrete manner can be given by
the following equation:

Pc ¼
1

T

Z T

0

X1
n ¼ 0

f nejðnot�jFnÞ

 ! X1
m ¼ 0

vmejðmot�jvmÞ

 !
dt ð3Þ

where
�
 Pc is the complex power;

�
 fn and vm are the magnitudes of the force and velocity of the nth and mth harmonic, respectively;

�
 jFn and jvm are the phases of the force and velocity of the nth and mth harmonic, respectively.
The integrals between all cross-terms cancel out:

Pc ¼
1

2

X1
n ¼ 0

f nvnejðjFn�jvnÞ ð4Þ

Basically, the complex power associated to one harmonic cycle is expressed as

P¼ FrmsV
n

rms ð5Þ

where Frms and Vn

rms are respectively the complex force and conjugate of the complex velocity.
The real part of power Re alfPg also known as ‘‘active power’’ represents the dissipated power provided by the granular

material motions.

RealfPg ¼ FrmsVrms cosðjF�jV Þ ð6Þ

where (fF–fV) is the phase difference between the force and velocity signals in radians.
The imaginary part of power ImagfPg also known as ‘‘reactive power’’ is the trapped power. This power can be

expressed as follows:

ImagfPg ¼ FrmsVrmssinðjF�jV Þ ð7Þ

Thus, the definition of NOPD loss factor is given as [17]

Z¼
Edissipated

Emax imum
¼

RealfPg

ImagfPg
ð8Þ

where Edissipated is the amount of dissipated energy in a cycle per radian, and Emax imumis the maximum energy stored
in a cycle.

2.2. Experimental descriptions

The experimental arrangement is shown in Figs. 2 and 3. The non-obstructive particle damper represents a cylindrical
aluminium enclosure closed with a cover and fixed to electromagnetic shaker. To guarantee a better fixation of the cover
and the enclosure ceiling, four screws were used. The design of the cylindrical enclosure allows it to acquire a rigid
behaviour in the frequency band of analysis. The total mass of steel particles having 0.5 mm diameter was 52 g.
The measurement of the velocity and force were assured respectively by a laser vibrometer and a force sensor was placed
between the enclosure and the shaker. A multichannel dynamic signal analyser SIGLAB model 20-42 was used to collect
and process the data. The advantage of this arrangement is to measure both force and velocity without contact with the
structure.

The experimental process was organised in two steps:
In the first step, a series of measurements was conducted with an empty enclosure. The goal of this set of tests was to

check the computation of powers; this included the analysis and calibration of the experiment parameters which had an
effect on the measurement precision.

In the second step, steel particles were placed inside the enclosure and compacted by the cover through four screws.
The measurements of force and velocity were performed taking into account the instrument calibration done using the
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empty enclosure. It appears that these measurements are very sensitive to any phase error between force and velocity
signals. Therefore the calibration step is of major importance.

2.3. Experimental results

The computation of active and reactive power was done using Eq. (3). Fig. 4 represents the variations of both dissipate
and total power versus frequencies. These results were obtained for an enclosure having a diameter of 20�10�3 m and a
length of 38�10�3 m. The computation of the loss factor was carried out using Eq. (4). Fig. 5 represents the variations
of NOPD’s loss factor versus frequency. The analysis of these results allowed us to note that compared to the loss factor
of most structures which corresponds to 0.1, high values of loss factor were reached corresponding to 0.38, showing the
efficiency of this passive process to drastically reduce vibration.

The curve of the loss factor can be explained by the mechanism of friction. The friction between particles from one hand
and between the particles and the walls from the other dissipates the friction energy of the vibrating system. When the
frequency level is quite low, the relative motion between particle–particle and particle–wall appears which results in a
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Fig. 4. (a) Active power versus frequency and (b) reactive power versus frequency.
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small amount of dissipated energy and subsequently a relatively low loss factor. When the frequency level is increased, the
motion of the granular particle becomes more agitated. These motions induce (cause) an increase in the dissipated energy
by friction (Fig. 4) and subsequently a high value of the loss factor. With further increase in the frequency (as frequency
increases), the particles tend to roll over one another reducing eventually the dissipated energy. Indeed, the granular
friction interaction is substantially reduced which can be referred to as a decompaction phenomenon of the granular
materials.
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From this interpretation, two phenomena depending on the friction forces prevailing around the perimeter
of the enclosure wall and between particles are distinguished. Indeed, if the enclosure is secured on an electromagnetic
shaker delivering a sinusoidal excitation of amplitude asinðotÞ, then the maximum value of the reduced acceleration
will be G¼ao2/g and the sheet of mass dm will then experience a force of intensity Ggdm opposed to its weight [19].
Then,
�
 if the reduced acceleration G imparted to the sheet is insufficient to overcome the forces of friction, the granular
materials will remain compacted and no relative motion between them appears.

�
 In the opposite case, the sheet will be able to move, in case all upper sheets are also free to move, until eventually all

the particles in the enclosure display a form of convective motion (the granular materials are said to undergo
decompaction).

In short, sufficient accelerations obviously correspond to G greater than 1, for zones where the forces of friction exceed
the force Ggdm and others where they are not expected to be formed. With these assumptions, the condition that allows a
sheet to move freely with respect to the wall is simply

Ggdm�gdmZdFf riction

where g dm is the weight of the considered sheet. Its mass is given by dm¼rAdh, where A is the area of the sheet and r its
volumetric density. The elemental frictional force dFfriction can be written as dFfriction¼kmSpvPdh which will be further
detailed in Section 3.2.

This light interpretation of the loss factor curve will be continued by a dynamic model of the response in the future
work of this research. So, I will take into account the dynamic effect presented in the research works [20,21].

The damper efficiency depends on several parameters (enclosure design, dynamics, etc.) [10] which are studied in the next
section.
3. Parametric study

To reveal the influence of the damper parameters on the evolution of the loss factor, an experimental parametric study
was conducted. The main studied parameters were
�
 the excitation levels and

�
 the enclosure design
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3.1. Effect of the excitation levels on the loss factor evolution
Series of measurements was produced, with the same enclosure characteristic (diameter of 20�10�3 m and length of
38�10�3 m, steel particles), for different excitation levels. Fig. 6 shows the experimental variation of the loss factor
versus frequency for eleven excitation levels. The analyses of these results indicated that the fmax of the loss factor shifted
gradually with the increase of the enclosure’s excitation. In addition, the loss factor is not very sensitive to this parameter
compared to the frequency (Fig. 7).

Indeed, for a frequency of 700 Hz and with the increase of excitation level, the magnitude of the structure’s velocity
becomes more important (Fig. 8), which induces the increase of the local agitation of the particles in the enclosure. Then,
the loss factor increases from 0.004 to 0.06. But, at frequencies beyond about 3000 Hz, the variation of the loss factor is less
important (from 0.09 to 0.14).

Furthermore, there are two major mechanisms of energy dissipation: impact and friction damping between particles.
The percentage of the intervention of these phenomena can explain the variation of the loss factor. For the lower
excitation, the motion between particles is small; this would cause lesser friction energy. For the higher excitation level,
the particles are more agitated which induces an increase in the number of small impact between them; as a result, the
impact of energy dissipation will be added to the frictional dissipation and the level of the loss factor becomes more
important.
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Fig. 9 shows the evolution of the damping loss factor versus frequency and velocity measured during our experiment.
3.2. Effect of the enclosure design on loss factor

The performance of the NOPD depends on several parameters, such as pressure [10], particle size and frequency.
In particular, the cavity design (a¼L/D) is the most important parameter. In the two dimensional enclosure, this
dimensionless number (L/D) characterises the distribution of forces between particles. With the same volume and same
size of particles Liu et al. [13] tested five geometries on a SDOF (single degree of freedom) by comparing the FRFs
(frequency response function). It can observed that the cavity geometry has an influence on the pressure static distribution
in the cavity and then, on the movement of particle.
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In order to study the effect of this parameter, we consider three different geometries of the enclosure
(d¼0.5�10�3 m). Table 1 and Fig. 10 describe the enclosure’s dimensions.

The variation of the loss factor versus frequency shown in Fig. 11 corresponds to non-obstructive particle dampers
geometries with a fixed level excitation. Comparing the different curves, it can be observed that the interior volume cavity
has an important role in the dynamic behaviour of particle dampers. We can note that the enclosure presenting the most
important value of a¼L/D leads to the highest level of fmax.

This experimental result can be interpreted by considering the relative magnitude of the static pressure acting between
the layers of the particles in the enclosure.
Table 1
Designs of the enclosure used in the experimental studies.

Design of the enclosure 1 2 3

a¼L/D 0.72 1 1.9

L (mm) 20 25 38

D (mm) 28 25 20

Particle cavity volume (mm3) 12315 12271 11938

Mass of the enclosure (g) 131.7 121 136

Fig. 10. Design of cavity (dimensions in mm).
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Based on a standard procedure of powder mechanics, Janssen [18,19] proposed a heuristic model to calculate the static
pressure for a vertical cylindrical container filled with granular particles.

Referring to Fig. 12, we consider a sheet of thickness dh situated at a height h in a cylinder of surface area A and
perimeter P. Such a sheet is in equilibrium under the combined effect of several forces.
�
 Since pressure increases with depth, the slice of interest experiences a force directed toward the top and equal to Adpv

when pv is the vertical pressure.

�
 The weight of a particle’s layer of thickness dh constitutes a force directed toward the bottom and equal to rfgAdh,

where r is the mass density of the material, which is assumed constant throughout the slice. And f is the volume
fraction expressed by this equation:

f¼
volume ðparticleÞ

volume ðtotalÞ
¼

Np4=3pR3
p

Ah
ð9Þ

In these equations, Np is the number of particles, Rp the radius of a particle (the particles are assumed to be identical
and spherical), A the cross sectional area in squared metre (m2) and h the height of the layer’s particles i.e. h¼Dp¼2Rp.

�
 The force of friction at the walls results from infinitesimal movement of the granular particle’s layer. Its value is equal

to mSphPdh.
where pv is the vertical pressure applied to the material which automatically generates a proportional horizontal pressure
expressed as follows:

ph ¼ kpv ð10Þ

where k is called the coefficient of redirection toward the wall of a vertical stress applied to the material. In the case of a
compact triangular stack (Fig. 13), its value is approximately 0.58.

Taking into account (6), which related the horizontal and vertical components of the pressure, then, the friction forces
are given by the following equation:

dFf riction ¼ kmSpvPdh ð11Þ
→

+

Fig. 12. Pressure distribution model.

Fig. 13. Triangular lattice.
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where mS is the static friction coefficient of the particles.
The equilibrium equation for the particular slice considered can be written as follows:

AdpvþkmSpvPdh¼ rfgAdh ð12Þ

after division by dh and integrating the pressure, we obtain the equation:

pvexp kmS

P

A
h

� �
¼ rfgexp kmS

P

A
h

� �
þC ð13Þ

where C is a constant which can be determined from initial conditions. Assume that pv0 is the initial pressure on the top of
the structure, then Eq. (17) becomes

pv ¼
rfgA

PkmS

1�exp �kmS

P

A
h

� �� �
þpv0exp �kmS

P

A
h

� �
ð14Þ

In the particular case where pv0¼0, the particles are in equilibrium under their own weight. Thus

pv ¼
rfgA

PkmS

1�exp �kmS

P

A
h

� �� �
ð15Þ

The trend of this case is illustrated in Fig. 14. Near the top of the structure, i.e. for h-0, the pressure goes as pvErfgh,
which corresponds to the conventional hydrostatic pressure, similar to that applied by a column of water of depth h.
The vertical pressure pv saturates, as it approaches asymptotically a limit given by pv-psat-rg(A/PkmS), when hcA/PkmS.

It is noted that in the cylindrical Janssen model, Eq. (19) becomes

pv ¼
rf gD

4kms

1�exp �
4kms

D
z

� �� �
¼ psat 1�exp �

4kms

D
z

� �� �
ð16Þ

If we consider

w¼ ðPh=AÞkmS ð17Þ

Then referring to Eq. (20), the vertical pressure applied on a layer at that particular depth is equal to

pv ¼
1

A

mfg

w ð1�e�wÞ ð18Þ

where

f¼
2

3
Np

Rp

R

� �2

ð19Þ

pv ¼
2

3A

mgNp

w
ð1�e�wÞ

� �
Rp

R

� �2

ð20Þ

if it is assumed that the parameters in Eq. (16) are ms¼0.74 (steel to steel contact) [18], k¼0.58, r¼7800 kg/m3,
f¼0.58 (measured for enclosure a¼1.9). Fig. 15 indicates the evolution of the particles number versus normalised
pressure distribution for the three enclosures considered. For a fixed number of particles, it can be seen that the enclosure
0
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Fig. 14. Vertical pressure as a function of height.
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with the largest diameter (a¼0.72) presents the lowest value of the static pressure. This low static pressure applied on the
particles makes their motion easier, allowing then the achievement of the fMax value faster. This model can explain the loss
factor evolution for different enclosure designs.

4. Investigation of a beam treated by NOPD

The aim of this section of our investigation is to predict the damping of a primary structure treated with NOPD using the
loss factor characterised experimentally by the power method. An experimental study was conducted to compare experimental
results with the simulation ones and to verify the capacity of the developed method to predict the dynamic behaviour of the
primary structure treated with NOPD. The enclosure design presenting the highest loss factor and the least mass added is
selected. Here, we consider the NOPD as a localised damping depending on the excitation frequency. The chosen vibrating
structure is a free–free beam, which presents a bending eigenmode in the operating frequency band of the damper.

4.1. Experimental study

The experimental study (Fig. 16) consists of a primary structure and an enclosure (design: a¼1), fixed in the middle of
the beam, which contains steel particles. The material characteristics of the beam are mass density r¼7840 kg/m3,
Young’s modulus E¼2.1�1011 Pa and Poisson ratio n¼0.33. The beam dimensions are length L¼450�10�3 m, width
l¼40�10-3 m and thickness e¼10�10�3 m. The mass of the beam is 1.4 Kg. The steel particles have a diameter of
0.5�10�3 m and the total mass of the enclosure is 175.10�3 Kg. The beam is instrumented in free–free conditions.
An electromagnetic shaker was used to provide a harmonic excitation force. The beam dynamic response is collected with
a dynamic signal analyser: Siglab (Fig. 17). The location of the measurement point is chosen in order to describe
adequately the dynamic response of the beam in the frequency band of interest [100–3000] Hz.

The modal characteristics are identified from the frequency response function (FRF). The identification results are
presented in Table 2

Fig. 18 shows the frequency response function (acceleration/force) measured with and without particles. From this
result, we can estimate the performance of the enclosure damper to reduce the vibratory level of the beam in its operating
zone, where the loss factor is maximal (zone 2).

Furthermore, in the structure, the enclosure’s location coincides with the antinodes vibrations. But, it is noted, in
Table 2, that the presence of the particles causes an increase of the modal damping only for the third bending mode
without significant changes of the natural frequencies of the structure. This result confirms that the dynamic response is
reduced if the eigenfrequency is located in the operating frequency range of the enclosure dampers.
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Table 2
Experimental eigenfrequencies of the beam with and without the damper holes.

Mode no. Without particles With particles

Frequency (Hz) Modal damping (%) Frequency (Hz) Modal damping (%)

1 264.4 0.014 258.9 0.053

2 765 0.16 766.2 0.19

3 1388.8 0.17 1364.1 2.1

4 2513.1 0.42 2511 0.41
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4.2. Numerical study

In this section, the loss factor of NOPD which was determined experimentally is converted into an equivalent viscous
damping. The latter can be easily used in the dynamic prediction model. The contribution of NOPD is estimated as an
equivalent linear viscous damping coefficient c(o) determined for different levels of the excitation frequency.
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If we consider that the system is constituted by the enclosure mass me and the particles mass mp. Then the motion
equation can be expressed by

ðmeþmpÞ €xðtÞþcðoÞ _xðtÞ ¼ f ðtÞ ð21Þ

where c(o) is an equivalent linear viscous damping coefficient and f(t) represents the excitation force.
For the harmonic excitation, when o is the excitation frequency, the equation becomes

�o2ðmeþmpÞxðoÞþ jcðoÞxðoÞ ¼ FðoÞ ð23Þ

and the power of the damped system can be expressed by

PðoÞ ¼ 1

2

F2
ðoÞcðoÞ

�ðcðoÞÞ2�o2ðmeþmpÞ
2
þ j

oF2
ðoÞðmeþmpÞ

�ðcðoÞÞ2�o2ðmeþmpÞ
2

 !
ð24Þ

Then, using Eqs. (22) and (4), the loss factor is computed by

ZðoÞ ¼ cðoÞ
oðmeþmpÞ

ð25Þ

Finally, the loss factor characterised experimentally will be converted into an equivalent linear viscous damping
depending on the excitation frequency

In the second step, the aim of the numerical simulation is to predict the response of a primary structure treated with
NOPD using the damping coefficient characterised experimentally by the power method. Fig. 19 shows a schematic
of the adopted model treated with NOPD. The beam is modelled by the finite element method using 2-D beam elements.
The NOPD is modelled by equivalent frequency dependent viscous damping.

The equilibrium equation of the structure can be expressed by

½M�f €xgþ½CðoÞ�f _xgþ½K�fxg ¼ ff g ð26Þ

where {X}, {f} and [K] represent respectively the nodal displacement of the beam, the external force applied to the
structure and the stiffness matrix. [M] is the mass matrix of both the beam and the enclosure with the particles located at
the node (i).

½M� ¼ ½Mb�þ½Ma� ð27Þ

where [Mb] and [Ma] are respectively the mass matrix of the beam and the additional mass matrix.
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Fig. 20. Numerical FRF of the beam with and without the particles.
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Fig. 21. Experimental and numerical FRFs of the beam without the particles.
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We note also [C(o)]¼[C0(o)]þ[Cv(o)] the damping matrix of the global structure, where [C0(o)] is the proportional
damping matrix of the beam and [Cv(o)] represents the additional damping matrix carried by the particles.

½CvðoÞ� ¼ i

i

0 ^ 0

& ^

� � � � � � ceðoÞ � � � � � �
^ &

0 ^ 0

2
6666666664

3
7777777775

ð28Þ

ce(o) is the equivalent localised viscous damping of the experimental NOPD.
The implementation of this modelling was performed in a MATLAB environment.
Fig. 20 shows the calculated frequency response function of the beam with and without the effects of NOPD. It is

noticed that the NOPD can reduce the dynamic response of the third frequency of the structure which is in agreement with
the experimental results (Fig. 18).

Figs. 21 and 22 show a comparison between numerical and experimental FRFs for two configurations (with and without
particles). It appears that the modal damping effect is correctly predicted by the proposed model in the operating
frequency band of the damper.

5. Conclusions

The study proposed in this paper aimed at finding novice ways to ameliorate the characterisation of the NOPD
behaviour independently of the vibrating structure. Due to a large number of dynamic parameters, a simple and effective
experimental method was presented. The instantaneous experimental measurement of force and velocity allowed the
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Fig. 22. Experimental and numerical FRFs of the beam with the particles.
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identification of the loss factor in different designs of dampers. The friction particle damping is believed to be remarkably
effective. Although it is a non-linear behaviour, a strong rate of energy dissipation is achieved within a broadband
frequency range.

The non-obstructive particle damper characterised experimentally will be converted into an equivalent viscous
damping depending on the excitation frequency. The numerical and experimental studies of a beam treated by NOPD were
performed in order to verify that the loss factor identified by power measurements enabled us to predict the dynamic
behaviour of the vibrating structure. The results obtained show that the proposed characterisation and model prediction
can be generalised and used to reduce vibration response of more complex mechanical structures.

The optimal damping effect might be achieved by using a design of different types of particle enclosure involving an
appropriate combination of friction and shear phenomena. Our future research will be focused on the development of a
dynamic model of the loss factor response.
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