
MlBibTEX meets ConTEXt
JEAN-MICHEL HUFFLEN
LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 Besançon Cedex, France
hufflen (at) lifc dot univ dash fcomte dot fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract
This article reports a first experiment of using MlBibTEX — our reimplementation of BibTEX — with ConTEXt, a TEX
format more modern than LATEX. We show how to take as much advantage as possible of both ConTEXt and MlBibTEX
features when they are used together. Also, many end-users are accustomed to using LATEX commands inside values
of BibTEX fields, and such commands may be unrecognised by ConTEXt. We explain how patterns and preambles
allow us to solve such problems.

Keywords
ConTEXt, bib module, bibliographies, bibliography styles, BibTEX, MlBibTEX.

Introduction
Listing the bibliographical references cited within a
document can be done manually — if the LATEX word
processor is used, that consists of typing successive
\bibitem commands of a thebibliography envi-
ronment [18, § 4.3.2]— but such an approach leads
to texts difficult to maintain and reuse, because they
are tightly bound to bibliography styles. A publisher
or anthology editor might like authors’ last names of
a ‘References’ section to be typeset using small capi-
tals, whereas another publisher would require the use
of standard Roman letters for these last names. Like-
wise, first names may be abbreviated or put in ex-
tenso, w.r.t. the bibliography style used. In addition,
doing a document’s bibliography manually is error-
prone: if this bibliography is unsorted, that is, if the
order of items is the order of first citations of these
items throughout the document, some change within
the document’s body can cause the bibliography to be
reorganised. Likewise, keys based on the author-date
system [19, § 12.3] may need to be recomputed if the
bibliography is enriched.

A better method is to use a bibliography processor:
such a program is given citation keys, searches bibliog-
raphy database files for resources associated with these
keys, and arranges them according to a bibliography

style, the result being a source file for a ‘References’
section, suitable for a word processor. A well-known
association between a word and bibliography proces-
sor is given by LATEX and BibTEX [21], working in
tandem, although this example is not unique. As an-
other example, Tib [1] has sometimes been used with
Plain TEX [17]; more generally, other examples of bib-
liography processors are given in [25].

‘Historically’, BibTEX was initially designed to
work with Scribe1 [24]. In fact, only a few points
related to TEX are hard-wired within BibTEX: us-
ing braces as delimiters, considering a group such as
‘{\command ...}’ as an accent command applied to
arguments in order to produce a single character [19,
§ 13.2.2], the use of the ‘~’ character for unbreak-
able spaces when names are formatted [20, § 5.4], the
width$ function, provided by the style language, that
returns the width of a string, expressed using TEX
units [19, Table 13.8]. Thus bibliographic entries spec-
ified with BibTEX should be usable with any format
built from TEX, provided that end-users do not put
LATEX-specific commands inside field values. Let us re-
call that TEX basically provides a powerful framework

1That is why BibTEX uses the ‘@’ character for specifying its com-
mands and entry types: this character introduces a command name
in Scribe, like ‘\’ in TEX. This convention is also used within
Texinfo [3], the GNU documentation format.

74 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

MlBibTEX meets ConTEXt

@BOOK{meaney2003,
AUTHOR = {John Meaney},
TITLE = {Context},
PUBLISHER = {Bantam Books},
YEAR = 2003,
NUMBER = 2,
SERIES = {The \emph{Nulapeiron}

Sequence},
NOTE = {The Sequel to ‘‘Paradox’’.

[Pas de version française
connue!] ! french},

LANGUAGE = english}

Figure 1: Example of a bibliographical entry.

to format texts nicely, but to be fit for use, the defini-
tions of this framework need to be organised in a for-
mat. The first formats were Plain TEX and LATEX; an-
other format, more modern, is ConTEXt [5]. A bibli-
ographic module, usable in conjunction with BibTEX,
has been added to ConTEXt [6, 8]. This module de-
fines ConTEXt commands to deal with the compo-
nents (metadata) of bibliographical information.2

Over the last few years, we have designed and
implemented a ‘new BibTEX’ — MlBibTEX, for ‘Mul-
tiLingual BibTEX’. Of course, it has been designed
to work with LATEX, but we plan to use it for other
output formats, too [10]. This article is a revised
and extended version associated with the presentation
given at EuroTEX. It aims to report a first experi-
ment of using MlBibTEX to build outputs suitable for
ConTEXt.3 First, we show how ConTEXt can be easily
used to pretty-print bibliography database (.bib) files.
Then we explain how an interface between ConTEXt
and BibTEX can be improved when MlBibTEX is used.
This article should be read without any difficulty by
any user familiar with LATEX and BibTEX: it requires
only basic knowledge of ConTEXt and its bib mod-
ule. It also refers to some basic notions of XML4 and
Scheme, the implementation language for MlBibTEX.5

2If we compare this module to what is provided for LATEX, its ap-
proach is close to the jurabib package [19, § 12.5.1], in the sense
that items of bibliographical information are given as arguments
of new commands. If you would like to redefine the layout of a
bibliography’s items, just redefine these new commands.
3We have used the most recent version of ConTEXt at the time of
writing, included in TEX Live 2005, available on DVD-ROM.
4EXtensible Markup Language. Readers interested in an introduc-
tory book to this formalism can consult [23].
5The version used is described in [14].

<mlbiblio>
...
<book id="meaney2003" language="english">

...
<series>

The <emph>Nulapeiron</emph> Sequence
</series>
<note>

The Sequel to
<emph emf="no" quotedf="yes">

Paradox
</emph>.
<group language="french">

Pas de version française connue!
</group>

</note>
</book>
...

</mlbiblio>

Figure 2: XML tree for the bibliographical entry shown in
Figure 1.

Pretty-print bibliographies
MlBibTEX’s new syntactic features for bibliographi-
cal entries are detailed in [9]. Roughly speaking, any
.bib file suitable for ‘old’ BibTEX can be processed
by MlBibTEX, except that square brackets are ordinary
characters for the former, syntactic delimiters for the
latter. Figure 1 gives an example of a bibliographical
entry for a book written in English (the value of the
LANGUAGE field, handled by MlBibTEX). The value of
the NOTE field includes a text to be put down only
in French-speaking bibliographies, this text being en-
closed by square brackets and labelled by the french
language identifier.

As mentioned in [9], the result of parsing a .bib
file can be viewed as an XML tree. For example, pars-
ing a file containing the meaney2003 entry results in
the XML tree sketched in Figure 2. Such a tree can be
saved into a file and displayed verbatim or handled by
tools belonging to XML’s world. ConTEXt provides
a way to handle XML texts [22], so it can deal with
such files. Figure 3 sketches a pretty-printer for bib-
liographical entries by means of ConTEXt commands
documented in [7, 22], other basic TEX commands —
such as \expandafter or \uppercase — being doc-
umented in [17]. These bibliographical entries are
displayed using MlBibTEX’s syntax. In addition, Ml-
BibTEX’s new syntax for emphasising the parts of per-

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 75

Jean-Michel Hufflen

\enableregime[il1]

\def\ProcessMlBibTeXFieldName[#1]{{\tt \expandafter\uppercase{#1} = \textbraceleft}}
\def\CloseMlBibTeXFieldValue{{\tt \textbraceright},\par}
\def\ProcessMlBibTeXLanguagePart[#1]{\PutLanguageCommand[#1]{\tt LANGUAGE =} #1,\par}
\def\ProcessMlBibTeXNamePart[#1]{{\tt #1 =>} }
\def\PutLanguageCommand[#1]{\doifelse{#1}{english}{\language[en]}{%

\doifelse{#1}{french}{\language[fr]}{\doif{#1}{magyar}{\language[hu]}}}}

\defineXMLenvironment[mlbiblio] \startitemize \stopitemize
\defineXMLenvironment[book] {\item {\tt @BOOK\textbraceleft}\XMLpar{book}{id}{*unkeyed*},%
\startnarrower[left] \ProcessMlBibTeXLanguagePart[\XMLpar{book}{language}{english}]} {%
\stopnarrower {\tt \textbraceright}}

...
\defineXMLenvironment[author] {\ProcessMlBibTeXFieldName[author]} \CloseMlBibTeXFieldValue
...
\defineXMLenvironment[first] {\ProcessMlBibTeXNamePart[first]} {, }
\defineXMLenvironment[von] {\ProcessMlBibTeXNamePart[von]} {, }
\defineXMLenvironment[last] {\ProcessMlBibTeXNamePart[last]} \unskip
\defineXMLenvironment[junior] {, \ProcessMlBibTeXNamePart[junior]} \unskip

\defineXMLenvironment[asitis] {{\tt \textbraceleft}} {{\tt \textbraceright}}
\defineXMLenvironment[emph] {\doifelse{emph}{quotedf}{yes}{{\tt ‘‘}}{%
\doifelse{emph}{emf}{yes}{{\tt \textbackslash emph\textbraceleft}\bgroup\em}{}}} {%
\doifelse{emph}{emf}{yes}{{\tt \textbraceright}\egroup}{%
\doifelse{emph}{quotedf}{yes}{{\tt ’’}}{}}}

\def\GroupMarker{! }
\defineXMLenvironment[foreigngroup] {{\tt [}%
\bgroup\PutLanguageCommand[\XMLpar{foreigngroup}{language}{*error*}]} {%
\egroup{\tt] : \XMLpar{foreigngroup}{language}{*error*}} }

\defineXMLenvironment[group] {\startnarrower[left]{\tt [}%
\bgroup\PutLanguageCommand[\XMLpar{group}{language}{*error*}]} {%
\egroup{\tt] \GroupMarker \XMLpar{group}{language}{*error*}} \stopnarrower}

\defineXMLenvironment[nonemptyinformation] {{\tt []}\def\GroupMarker{* }} {}

\starttext
\processXMLfilegrouped{...}
\stoptext

Figure 3: Pretty-printing an XML tree resulting from parsing .bib files.

son names [21, § 4], based on keywords, is used. For
example:

AUTHOR = {first => John, last => Meaney},

We can notice that keywords, syntactic delimiters,
and field names are typeset using a typewriter font,
whereas the Roman typeface is used for metadata. As
another pretty-printing feature, typographical effects
are put into action. For example, the value of the
SERIES field will be rendered as follows:

SERIES = {The \emph{Nulapeiron} Sequence},

Likewise, any information is typeset using the typo-
graphical conventions of its own language:

NOTE =
{ ... [Pas de version française connue !] ... }

where the exclamation mark is preceded by a thin
space character, as in French.

If we look at the text given in Figure 3, we notice
that the only heavy part concerns language identifiers.
ConTEXt uses ISO codes for languages [5, Ch. 7] and
can switch to any language via the \language[...]
command, without any preliminary declaration such
as LATEX needs when the babel package is loaded [19,
§ 9.2]. MlBibTEX’s language identifiers are unambigu-
ous prefixes of packages or options of the babel pack-
age, as explained in [12]. For example:

76 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

MlBibTEX meets ConTEXt

• polish is for the option of the babel package,

• polski is for the polski package [4, App. F],

• pol is for either of these last two, the final choice
depends on what a user puts in the document’s
preamble,

• po is ambiguous because it may be the prefix of
‘Polish’ or ‘Portuguese’.

In fact, we need a complete correspondence table, with
our \PutLanguageCommand command given in Fig-
ure 3 implementing it only partially.6 Let us remark
that such a correspondence table could be useful for
other purposes, e.g., generating bibliographies for doc-
uments written using DocBook7 [27]. This table be-
tween the structure managing MlBibTEX’s language
identifiers [12] and ISO codes for languages [2] has
been implemented within the Scheme functions of Ml-
BibTEX.8

Figure 3 gives a rough version of such a pretty-
printer, which may be improved.9 For example, the
error cases are just labelled within the source text by
identifiers surrounded by ‘*’, which could be refined
into a more efficient marking of errors. We can also
align ‘=’ signs vertically between field names and val-
ues. That can be done in a tabulate environment, but
leads to slighly complicated ConTEXt commands, be-
cause we need to collect the content of a table before
formatting it.

ConTEXt and MlBibTEX together
If you would like BibTEX to generate specifications of
publications suitable for ConTEXt from bibliographi-
cal entries, you may use the \setupbibtex command,
as explained in [8, § 2.4]. This command gets access
to bibliography styles suitable for ConTEXt, that is,
handled by the bib module. Since MlBibTEX can pro-
cess bibliography styles using the bst language [20] in
compatibility mode [13], it can deal with these styles.

6In fact, this \PutLanguageCommand command could be written
in an easier way, since complete names such as english, french, . . .
also work as arguments of the \language command of ConTEXt.
However, this feature is not described in [5].
7DocBook is an XML-based system for writing structured docu-
ments.
8How to put this implementation into action is shown in Figure 4.
9A more elaborated version can be downloaded from MlBibTEX’s
home page: http://lifc.univ-fcomte.fr/~hufflen/texts/
mlbibtex/contextstuff/.

However, we do not recommend this solution, which
should be temporary, from our point of view. In addi-
tion, the compatibility mode is not very efficient for
sake of implementation issues.10 A first improvement
could be the development of new bibliography styles,
using the nbst11 language, close to XSLT12 [26] and
described in [9].

As mentioned in [19, § 13.5.2], the choices among
different styles for displaying person names, work ti-
tles, . . . causes a combinatorial explosion. Besides,
all the functions of a bibliography style of BibTEX
must be grouped into a unique file, so a rich library
of bibliography styles for BibTEX should include a
huge number of styles, each being monolithic. As
explained in [11], several fragments of a bibliography
style written using the nbst language can be assembled
dynamically, provided that there is no conflict among
the templates programmed using nbst. Consequently,
designing styles according to a modular approach is
easier in MlBibTEX than in BibTEX. Moreover, an ex-
tended version of the \setupbibtex command could
allow the use of several complementary files for a bib-
liography style.

ConTEXt vs LATEX
End users sometimes put LATEX commands within the
values of BibTEX fields. Some commands aim to in-
crease the expressive power of the information put
into .bib files, an example being given by the value
of the SERIES field in Figure 1. Other examples are
related to some features of BibTEX:

{Maria {\MakeUppercase{d}e La} Cruz}
— given in [19, p. 767] about person names — allows
BibTEX to interpret ‘{de La}’ as a particle,13 because
this group, surrounded by braces, begins with a low-
ercase letter, even if this particle should be typeset as
‘De La’. Some commands are recognised by ConTEXt,
some not. There are two solutions to this problem:

• when outputs for ConTEXt are produced, the con-
tents of @preamble rubrics included in .bib files

10When MlBibTEX parses a .bib file, it tries to organise informa-
tion into a deep tree, as far as possible. For example, the compo-
nents of a person name are split into subtrees. When the compat-
ibility mode is used, these components are serialised into a string,
and destructured again by the format.name$ function of bst [20].
11New Bibliography STyles.
12eXtensible Stylesheet Language Transformations, the language of
transformations used for XML texts.
13‘Maria’ being the first name, ‘Cruz’ the last name.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 77

Jean-Michel Hufflen

(and-let* ((((log-output-p-pv ’open) jobname)) ; Opening the log (.mblg) file.
(((bibtexkey-alist-pv ’add-key) "hoekwater2001")) ; Citation key to be processed.
...
(((bibtexkey-alist-pv ’extend))) ; If we want to process all the entries (\nocite{*}).
((let ((bib-suffix ".bib"))

(every (lambda (filename) ; Parsing .bib files. If the suffix is not given, the filename-plus
; function adds it.

(s-parse-bib-file (filename-plus filename bib-suffix #f)))
bibliographyfilename-list)))

(sxml-mlbiblio-tree (s-get-sxml-mlbiblio-tree)) ; Build the SXML tree.
(((language-trie-pv ’use-iso-code-table))) ; Using ISO codes for all the languages.
(((preamble-pv ’set) "contextpreamble")) ; Using @contextpreamble{...} as preambles.
(k1 (n-assemble-nstyles stylefilename-list)) ; Styles are assembled and compiled into a

; so-called k1 function.
(((output-encoding-pv ’set) ’latin1)) ; Accented letters of Latin-1 allowed in the output file.
(((bbl-output-p-pv ’open) jobname))) ; Opening the output file.

(k1 sxml-mlbiblio-tree) ; Applying the whole style to the SXML tree.
((bbl-output-p-pv ’close)) ; Closing files.
((log-output-p-pv ’close))
#t) ; Final result.

Figure 4: MlBibTEX’s kernel for use with ConTEXt.

are not written as BibTEX would do; instead, Ml-
BibTEX uses @contextpreamble rubrics,14 which
can be used to implement some LATEX commands
in ConTEXt; switching to another preamble is
controlled by an option of the MlBibTEX pro-
gram;15

• a better solution is given by patterns, expressed in
Scheme, replacing substrings by XML-conformant
strings; for example:16

(define-pattern "\\emph{#1}"
"<emph>#1</emph>")

Patterns aim to process any LATEX command in-
cluded in a .bib file, including user-defined com-
mands, as explained in [10]. ‘General’ patterns
are planned for the next version, only some pre-
defined patterns are implemented now, mostly for
letters accented by means of TEX commands.17

14This new command does not interfere with parsing .bib files by
‘old’ BibTEX, because it looks like:

@...{〈string〉 (# 〈string〉)*}
where ‘〈string〉’ is surrounded by braces or double quotes. Such
a command is ignored by ‘old’ BibTEX.
15. . . or see how to process in Scheme in Figure 4.
16Let us recall that in Scheme, the ‘\’ character is used to escape
special characters in constant strings. To include it within a string,
it must be itself escaped.
17The internal representation uses Latin-1, accented letters of this
encoding being viewed as single characters.

This solution is more general, not limited to bibli-
ographies usable by ConTEXt. Let us assume that
you have to convert a .bib file into HTML,18, and
consider the following title:

\ConTeXt, the Manual

Even if displaying ‘\ConTeXt’ on a Web page does
not cause any error, it is better to introduce this
pattern:

(define-pattern "\\ConTeXt"
"<symbol name=’ConTeXt’/>")

Now you can define a way to display this symbol
within a bibliography style.

Direct interface
ConTEXt does not deal with the same auxiliary files
as LATEX. Moreover, it builds an .aux file only if the
\setupbibtex command is activated. Let us recall
that BibTEX reads only .aux files, never .tex files.
However, MlBibTEX may need to parse the preamble
of a source file, as explained in [12]. Concerning out-
puts suitable for ConTEXt, the information of interest
is the encoding: can MlBibTEX put accented letters of
Latin-1 directly into the resulting file? Or does it have
to use TEX accent commands?

18HyperText Markup Language.

78 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

MlBibTEX meets ConTEXt

A better solution than making useless .aux files
and the parsing of preambles of ConTEXt documents
(parts between the beginning of a document and the
\starttext command) is to build a driver directly
written in Scheme. Of course, this task requires some
knowledge of both the Scheme programming language
and the broad outlines of MlBibTEX’s implementa-
tion, but the result is a small-sized program, as shown
in Figure 4. You can see how to add a citation key as
if it were caught from an .aux file, and how to get
all the entries of .bib files as the \nocite{*} com-
mand of LATEX would cause to. We also show how to
use a preamble command — @...{...} — specific for
ConTEXt. Other information to be supplied is:

jobname (string) the base name of the main input file
processed by ConTEXt;

bibliographyfilename-list (string list) all of the
.bib file names to be searched;

stylefilename-list (string list) all the fragments
of a bibliography style.

The and-let* macro [15] causes the sequential evalu-
ation of the clauses of its first argument to be stopped
as soon as a false value (for a failure) is returned. For
example, the evaluation of the whole expression given
in Figure 4 stops and returns the false value if a log file
(.mblg file) cannot be opened. Otherwise, the non-
false result of a clause may become the value of a local
variable. For example, the sxml-biblio-tree vari-
able is given the bibliographical entries in the SXML19

format. Then the other arguments of the and-let*
macro are evaluated sequentially if all the clauses suc-
ceed, that is, if there is no error in parsing .bib
files and building the bibliography style. In our case,
the style — which results in a Scheme function — is ap-
plied to the bibliographical entries, and output files
are closed. Finally, the true value is returned.

Going further, the texexec script, which launches
successive run phases of ConTEXt, could be extended
to launch the MlBibTEX program.

Conclusion
When we began this task, we had written only some
small-sized examples using ConTEXt and emphasising
its differences with LATEX. And we were afraid we

19Scheme implementation of XML. See [16] for more information.

would have to reprogram some important parts of Ml-
BibTEX. To be honest, changes were needed, but not
as many as we believed. Concerning the bib mod-
ule, we learned it more quickly than we planned. The
first meeting between MlBibTEX and ConTEXt has
succeeded.

Acknowledgements
Many thanks to Hans Hagen and Taco Hoekwater,
who kindly answered my very ConTEXt-nical ques-
tions. I am also grateful to Karl Berry, who proofread
this article.

References
[1] James C. Alexander: Tib: a TEX Bibliographic

Preprocessor. Version 2.2, see CTAN:
biblios/tib/tibdoc.tex. 1989.

[2] Harald Tveit Alvestrand: Request for
Comments: 1766. Tags for the Identification
of Languages. UNINETT, Network Working
Group. March 1995. http://www.cis.
ohio-state.edu/cgi-bin/rfc/rfc1766.
html.

[3] Robert J. Chassell and Richard M. Stallman:
Texinfo. The GNU Documentation System.
Version 4.8. http://www.gnu.org/software/
texinfo. December 2004.

[4] Antoni Diller: LATEX wiersz po wierszu.
Wydawnictwo Helio, Gliwice. Polish
translation of LATEX Line by Line with an
additional annex by Jan Jelowicki. 2001.

[5] Hans Hagen: ConTEXt, the Manual. November
2001. http://www.pragma-ade.com/
general/manuals/cont-enp.pdf.

[6] Taco Hoekwater: “The Bibliographic Module
for ConTEXt”. In: EuroTEX 2001, pp. 61–73.
Kerkrade (the Netherlands). September 2001.

[7] Taco Hoekwater: ConTEXt System Macros.
Part 1: General Macros. 2002. http://tex.
aanhet.net/context/syst-gen-doc.pdf.

[8] Taco Hoekwater: ConTEXt. Module
Documentation. March 2006. http:
//dl.contextgarden.net/modules/t-bib/
doc/context/bib/bibmod-doc.pdf.

TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006 79

Jean-Michel Hufflen

[9] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.
July 2003.

[10] Jean-Michel Hufflen: “MlBibTEX: beyond
LATEX”. In: Karl Berry, Baden Hughes and
Steven Peter, eds., Preprints for the 2004 Annual
Meetings, pp. 77–84. TUG, Xanthi, Greece.
August 2004.

[11] Jean-Michel Hufflen: “Making MlBibTEX Fit
for a Particular Language. Example of the
Polish Language”. Biuletyn GUST, Vol. 21,
pp. 14–26. 2004.

[12] Jean-Michel Hufflen: Managing Languages
within MlBibTEX. To appear. June 2005.

[13] Jean-Michel Hufflen: “BibTEX, MlBibTEX and
Bibliography Styles”. Biuletyn GUST, Vol. 23,
pp. 76–80. In BachoTEX 2006 conference. April
2006.

[14] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson, Norman I.
Adams IV, David H. Bartley, Gary Brooks,
R. Kent Dybvig, Daniel P. Friedman, Robert
Halstead, Chris Hanson, Christopher T.
Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5 Report
on the Algorithmic Language Scheme”. HOSC,
Vol. 11, no. 1, pp. 7–105. August 1998.

[15] Oleg B. Kiselyov: and-let*: an and with local
bindings, a guarded let* special form. March
1999. http://srfi.schemers.org/srfi-2/.

[16] Oleg E. Kiselyov: XML and Scheme. September
2005. http://okmij.org/ftp/Scheme/xml.
html.

[17] Donald Ervin Knuth: Computers & Typesetting.
Vol. A: The TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

[18] Leslie Lamport: LATEX. A Document
Preparation System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[19] Frank Mittelbach and Michel Goossens, with
Joannes Braams, David Carlisle, Chris A.
Rowley, Christine Detig and Joachim
Schrod: The LATEX Companion. 2nd edition.
Addison-Wesley Publishing Company, Reading,
Massachusetts. August 2004.

[20] Oren Patashnik: Designing BibTEX Styles.
February 1988. Part of the BibTEX
distribution.

[21] Oren Patashnik: BibTEXing. February 1988.
Part of the BibTEX distribution.

[22] PRAGMA ADE, http://www.pragma-ade.
com/general/manuals/example.pdf: XML in
ConTEXt. November 2001.

[23] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[24] Brian Keith Reid: SCRIBE Document Production
System User Manual. Technical Report,
Unilogic, Ltd. 1984.

[25] David Rhead: The “Operational Requirement”
(?) for Support of Bibliographic References by
LATEX 3. Technical Report L3–005, LATEX 3.
August 1993.

[26] W3C: XSL Transformations (XSLT). Version 1.0.
W3C Recommendation. Edited by James Clark.
November 1999. http://www.w3.org/TR/
1999/REC-xslt-19991116.

[27] Norman Walsh and Leonard Muellner:
DocBook: The Definitive Guide. O’Reilly
& Associates, Inc. October 1999.

80 TUGboat, Volume 27 (2006), No. 1 — Proceedings of EuroTEX 2006

