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Abstract The propagation of wave modes in elastic

structures with shunted piezoelectric patches is dealt

with in this work. The Wave Finite Element(WFE) ap-

proach, which is based on the finite element(FE) method

and periodical structure theory, is firstly developed as a

prediction tool for wave propagation characteristics in

beam like structures, and subsequently extended to con-

sider shunted piezoelectric elements through the Diffu-

sion Matrix Model(DMM). With these numerical tech-
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niques, reflection and transmission coefficients of prop-

agating waves in structures with shunted piezoelectric

patches can be calculated. The performance of shunted

piezoelectric patches on the control of wave propaga-

tion is investigated numerically with the DMM. Forced

response of the smart structure can also be calculated,

and based on which the time response of the structure

can be obtained via an Inverse Discrete Fourier Trans-

form(IDFT) approach. These general formulations can

be applied to all types of slender structures. All these

numerical tools can facilitate design modifications and

systematic investigations of geometric and electric pa-

rameters of smart structures with shunted piezoelectric

elements.

Keywords Wave propagation · smart structure ·

piezoelectricity · energy diffusion · semi-active control
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1 Introduction

Recently, a revolution has taken place in the field of in-

tegrated micro-electromechanical systems(MEMS) that

offers new opportunities for smart structure design and

optimization. The next generation of smart composite

structures [1,2] is able to be created via the mechan-

ical integration of active smart materials, electronics,

chip sets and power supply systems. The material’s in-

trinsic passive mechanical behavior can be controlled

through electromechanical transducers in order to at-

tain new desired functionalities [3]. Among the control

configurations found in published works, a well-known

technique is the piezoelectric damping using external

resistor-inductor shunt circuit [3–9]. This semi-active

configuration has the advantage of guaranteeing stabil-

ity, and can be obtained by bonding piezoelectric ele-

ments onto a structure and connecting the electrodes

to the external shunt circuit. Due to straining of the

host structure, and through the direct piezoelectric ef-

fect, a portion of the mechanical energy is converted

into electrical energy and subsequently be dissipated

by Joule heating via the connected resistor. The R−L

shunt circuit on piezoelectric patches can be regarded

as light oscillators instead of heavy mass-spring struc-

tures. By varying the inductance L in the shunt circuit,

the tuning frequency can be adjusted to desired fre-

quency band.

In order to analyze and design structures with piezo-

electric elements, techniques for the prediction of dy-

namical behavior of this kind of structure have been de-

veloped. At first, analytical models have been proposed.

A uniform strain model for a beam with piezoelectric

actuators bonded on the surface or embedded in it was

developed in the work of Crawley and de Luis [10]. This

model also incorporated shear lag effects of the adhesive

layer the piezoelectric actuator and the beam. In the

work of Lee [11], induced strain was treated as equiv-

alent thermal effects, and a model based on classical

laminate theory was presented. Zhang and Sun [12] con-

structed a new adaptive sandwich structure using the

shear mode of piezoelectric materials. Governing equa-

tions for the proposed beam and its surface-mounted

counterpart are derived based on the variational prin-

ciple. And later, Hu and Yao [13] derived the elasticity

solution of PZT generated wave propagation in terms

of the wave reflection and transmission matrices based

on the Timoshenko beam theory. Hagood and von Flo-

tow [4] provided a comprehensive description of the dy-

namic of shunted piezoelectric patch. Based on the work

of Hagood and von Flotow [4], Park [14] studied the vi-

bration attenuation of beams via shunted piezoelectric

elements, and proposed a mathematical model to de-

scribe the flexural vibration behavior of a cantilevered
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beam system with resonant shunt circuits.

The development of the finite element method(FEM)

enabled the numerical modeling of various structures

with piezoelectric elements [15]. It is an effective tool

for the prediction of structural dynamic behavior as

it possesses the advantages of widespread use in the

engineering domain and the capability of treating com-

plex geometry. Structures with shunted piezoelectric el-

ements were treated properly with FEM [7,8]. However,

the excessive computational time associated with large

models constitutes one of the major limitations of this

method. As an alternative, the numerical description of

waves traveling into waveguides and slender structures

like beams can be applied. This description provides a

low cost and efficient way to capture the dynamic be-

havior of those structures as it only requires the treat-

ment of a typical unit subsystem [16] whose sizes are

related to the cross-section dynamics only. The Wave

Finite Element(WFE) method [17–19], which is based

on the classic finite element description of a typical cell

extracted from a given global system, is an appropriate

tool for the prediction of wave propagation in waveg-

uides such as beams [20,21] and plates [22,23] in a wide

frequency band. It is also known that the transfer ma-

trix method can be applied to calculate the wave prop-

agation in periodic or nearly periodic structures [24,

25]. However, this method is less advantageous than the

WFE and DMM approaches, as the latter give full finite

element description of the waveguide’s cross-section dy-

namics, for the coupling element as well. Model reduc-

tion techniques can also be applied in the WFE and

DMM approaches.

Recently, Spadoni et al. [6] and Casadei et al. [9] have

studied the control of wave propagation in plates with

periodic arrays of shunted piezoelectric patches. Efforts

have been dedicated firstly to developing the finite el-

ement formulation of shunted piezoelectric elements,

then to characterizing the dispersion relation of waves

propagating over the surface of plate structures and the

band gaps in the frequency domain. An experimental

investigation was carried out in the work of Casadei et

al. [9] to test the performance of shunted piezoelec-

tric patches via the forced response of the structure.

Wang et al. [26] has realized the same analysis on a

beam with periodic shunted piezoelectric patches through

an analytical model and corresponding experimental

tests. Collet et al. [3] provided a full finite element de-

scription of a beam with periodic shunted piezoelec-

tric patches via the WFE method, but emphasis was

placed on the optimization of shunt impedance. The

energy diffusion is supposed to occur at the interface be-

tween the part of the beam without shunted piezoelec-

tric patches and the part of the beam with a set of peri-

odic shunted piezoelectric patches. The energy diffusion
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related to a unit cell in the set of periodic patches is

not analyzed. Suitable numerical tools which can char-

acterize energy diffusion properties for structures with

shunted piezoelectric elements still need to be properly

developed. These tools will be applied for intensive com-

putations aiming at the design of the piezoelectric patch

and the electronic shunt circuit on the patch.

In this work, general formulations for smart structures

with shunted piezoelectric patches are proposed. These

formulations can be applied for all kinds of slender

smart structures. On the whole, this paper focuses on

two main objectives:

1. Offering efficient numerical tools for the prediction

of wave propagation characteristics and dynamic be-

havior such as reflection and transmission coeffi-

cients of the wave modes, frequency and time re-

sponses of beam structures with a pair of shunted

piezoelectric patches so as to design properly this

kind of smart structures. Optimization of the unit

cell in the periodic set of piezoelectric patches can

be carried out with these tools to obtain optimal

geometric and electric parameters.

2. Providing effective verification and validation ap-

proaches to evaluate wave propagation characteris-

tics and dynamic behavior in order to test the effi-

ciency of all the numerical techniques.

This article is organized as follows: in Section 2, a brief

outline of the WFE approach is provided (Subsection 2.1).

Then the numerical tool to predict the energy diffusion

of the flexural wave mode in the beam with shunted

piezoelectric patches is presented (Subsection 2.2). There-

after, the numerical tool to evaluate the forced response

of the structure, namely the Forced Wave Finite Ele-

ment(FWFE) approach, is described (Subsection 2.3).

The approach to acquire time response of the struc-

ture is introduced in Subsection 2.4. All these numerical

techniques are applied in Section 3, where 3 study cases

are investigated carefully. Besides the performance of

the shunted piezoelectric patches on the control of flex-

ural wave mode in the beam, the influence of the orien-

tation (longitudinal or transversal) of these patches is

tested as well. Subsequently, the beam is excited in the

tension/compression mode with a wave packet excita-

tion, and corresponding frequency and time responses

are calculated, based on which the reflection coefficients

can be extracted to verify DMM simulation results.

Concluding remarks and perspectives of this work are

presented in Section 4.
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2 Outline of the numerical prediction tools for

smart structures with shunted piezoelectric

elements

In this section, firstly the WFE formulation and the

DMM are presented. Then the numerical models of

beams with shunted piezoelectric elements are described

in detail. The finite element diffusion model proposed

in the work of Mencik and Ichchou [17] was extended

to consider piezoelectric elements. All these techniques

enable the calculation of parameters like reflection and

transmission coefficients, the frequency response func-

tion, and the time response of the structure under wave

packet excitation, so as to investigate the influence of

the shunted piezoelectric patches on the propagation of

wave modes in the beam. The formulations developed

are general and can be employed for all types of slender

structures with shunted piezoelectric patches.

2.1 Wave propagation and diffusion in structures

through finite elements

The WFE method was employed to study the energy

diffusion problem [17,27,28]. These references provide

a detailed description of the dynamical behavior of a

slender structure, as illustrated in Figure 1, which is

composed, along a specific direction (say X−axis), of

N identical substructures. Note that this general de-

scription can be applied to homogeneous systems whose

cross-sections are constant. The dynamic of the global

system is formulated from the description of the waves

propagating along the X−axis.

Figure 1

Let us consider a finite element model of a given sub-

structure k (k ∈ {1, . . . , N}) belonging to the waveg-

uide (cf. Figure 1). The left and right boundaries of the

discretized substructure are assumed to contain n de-

grees of freedom (DOFs). Displacements q and forces F

which are applied on these boundaries are denoted by

(qL,qR) and (FL,FR), respectively. It is assumed that

the kinematic quantities are represented through state

vectors u
(k)
L = ((q

(k)
L )T(−F

(k)
L )T)T and u

(k)
R = ((q

(k)
R )T(F

(k)
R )T)T,

and that the internal DOFs of substructure k are not

submitted to external forces. According to Mencik and

Ichchou [17], the continuity conditions between the sub-

structures combined with the periodicity condition and

the dynamical equilibrium of each substructure can fi-

nally lead to the following boundary value problem:

SΦi = µiΦi , |S− µiI2n | = 0. (1)

According to [3], the eigenvalues µi and wavenumbers

ki are linked through the relation µi = e−ikidx , where

dx denotes the length of the unit cell in X-axis. The real

part of the wavenumber ki ,Re(ki), represents the direc-

tion of the phase velocity of the corresponding waves:
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if Re(ki) > 0, the phase propagates in the positive x

direction; if Re(ki) < 0, the phase propagates in the

negative direction, and if it is zero, ki corresponds to

the wavenumber of a pure evanescent wave that only

occurs when an undamped system is considered [23].

The matrix Φ of the eigenvectors can be described in

this way:

Φ =

Φinc
q Φref

q

Φinc
F Φref

F

 , (2)

where subscripts q and F refer to the components which

are related to the displacements and the forces, respec-

tively; ((Φinc
q )T(Φinc

F )T)T and ((Φref
q )T(Φref

F )T)T stand

for the modes which are incident to and reflected by a

specific boundary (left or right) of the heterogeneous

waveguide, respectively. Finally, assuming modal de-

composition, state vectors u
(k)
L and u

(k)
R of any sub-

structures k can be expressed from eigenvectors {Φi}i=1,...,2n

[16]:

u
(k)
L = ΦQ(k) , u

(k)
R = ΦQ(k+1) ∀k ∈ {1, . . . , N}.

(3)

Here, vector Q stands for the amplitudes of the wave

modes, which can be expressed by (cf.Equation (2)):

Q =

Qinc

Qref

 . (4)

The dynamical behavior of a periodic waveguide

can be simply expressed from a basis of modes rep-

resenting waves traveling in the positive and negative

directions of the system. An analysis of the dynami-

cal response consists of evaluating a set of amplitudes

{(Qinc(k), Qref(k))}k associated with the incident and

reflected modes. Nevertheless, to evaluate energy dif-

fusion, the formulation of the boundary conditions of

the system is needed, and particularly at a coupling

junction where several waveguides can be considered.

It should be mentioned that the whole system has free

boundary conditions, and the coupling conditions are

in fact boundary conditions for subsystems(waveguides

and coupling element).

In order to characterize, in terms of wave modes,

the coupling conditions between two different periodic

waveguides, the two systems are assumed to be con-

nected, in a general manner, via an elastic coupling el-

ement (see Figure 2). This study aims to predict the

dynamics of complex systems which are composed of

two periodic waveguides.

Figure 2

Let us consider two periodic waveguides which are cou-

pled through a coupling element and let us consider

two corresponding substructures (1 and 2) which are

located at the ends of the waveguides (see Figure 2).

These substructures are coupled with the coupling el-

ement at surfaces Γ1 and Γ2 and are coupled with the

other substructures, into waveguides, at surfaces S1 and

S2. It is assumed that the coupling element is only sub-
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ject to the coupling actions (i.e. there is no force inside

the element).

According to Mencik and Ichchou [17], with the dynam-

ical equilibrium of the wave guides and the coupling ele-

ment, and their continuity conditions of nodal displace-

ment and force expressed in the modal basis, it can be

demonstrated that the dynamical behavior of a given

coupled periodic waveguide i (i = 1, 2) can be simply

expressed in terms of wave modes incident to the cou-

pling element ((Φ
inc(i)
q )T(Φ

inc(i)
F )T)T, and wave modes

reflected by the coupling element ((Φ
ref(i)
q )T(Φ

ref(i)
F )T)T

. In this sense, it can be proved that amplitudes

(Qref(1),Qref(2)) of the modes reflected by the coupling

element can be related to amplitudes (Qinc(1),Qinc(2))

of the modes incident to the coupling element via a

diffusion matrix, namely C, which relates the reflection

and transmission coefficients of the wave modes through

the dynamical behavior of the coupling element:

Qref(1)

Qref(2)

 = C

Qinc(1)

Qinc(2)

 , (5)

The diffusion matrix C directly depends on the normal-

ization of eigenvectors {Φ(1)
j }j and {Φ(2)

k }k. It seems

advantageous to normalize the eigenvectors of the two

waveguides in a similar manner.

2.2 Piezoelectric finite element formulation for the

coupling element

In the Diffusion Matrix Model(DMM) [27], in order

to consider properly a coupling element with shunted

piezoelectric patches, an appropriate formulation should

be used. Firstly, the three-dimensional piezoelectric con-

stitutive law can be written as:

T = cES − eTE (6a)

D = eS + εSE (6b)

where E denotes the electric field vector, T the me-

chanical stress vector, S the mechanical strain, and D

the electric displacement vector; cE represents the ma-

terial stiffness matrix, e denotes the piezoelectric stress

coupling matrix, and εS is the permittivity matrix un-

der constant strain. Equation (6a) represents the indi-

rect piezoelectric effect, whereas Equation (6b) charac-

terizes the direct piezoelectric effect. A finite element

model of the coupled system consisting of a beam and

a pair of identic piezoelectric patches with shunted cir-

cuit is then established, as displayed in Figure 3.

Figure 3

This model contains two waveguides with 3D linear

brick finite elements and a coupling element with 3D

linear brick piezoelectric finite elements. The piezoelec-

tric element has 8 nodes and 4 degrees of freedom(DOF)
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per node. Each node has 3 structural DOF and 1 elec-

trical DOF (electrical potential). All electrical poten-

tial DOF that are placed on electrode surfaces of the

patches are reduced such that only one potential mas-

ter DOF remains. All electrical potential DOF on the

patch surfaces bonded to the beam are grounded. The

whole structure has free mechanical boundary condi-

tions. For the sake of simplicity, detailed deductions of

strain energy, mass and stiffness matrices for the piezo-

electric elements (without shunt circuit), which can be

found in the work of Casadei et al. [9], are not presented

in this paper. The discretized electro-elastic system of

equations can be written in the form shown in Equa-

tion (7a) and Equation (7b).

Mdd d̈ + Kddd + KdvV = f (7a)

KT
dvd + KvvV = Q (7b)

where d and V represent the structural and electrical

DOF respectively, and:

Mdd =

∫
Vs

N
T
d ρNddV, Kdd =

∫
Vs

B
T
d c

E
BddV, Kdv =

∫
Vs

B
T
d e

T
BvdV

Kvv =

∫
Vs

B
T
v ε

s
BvdV, f =

∫
Sf

N
T
d f dS, Q =

∫
Sq

N
T
v qdS. (8)

in which Nd and Nv are the shape functions, Bd =

DNd and Bv = ∇Nv. D is the linear differential oper-

ator matrix which relates the strains to the structural

displacements U . In this case, the matrix D is given in

Equation (9).

D =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x



(9)

After finite element assembly, the discretized coupled

piezoelectric and structural field equations are finally

given in terms of nodal displacements u and nodal elec-

tric potential ϕ. Following the electrode definitions men-

tioned in the work of Becker et al. [8], the electrical po-

tential DOF in the piezoelectric patches are partitioned

into three different groups:

– For nodes on the outer surfaces of the piezoelectric

patches, their associated electrical DOF are called

ϕp, and they have the same electrical potential;

– For nodes on the inner surfaces of the piezoelectric

patches bonded to the beam, their associated elec-

trical DOF are called ϕg, and they are grounded;

– For nodes inside the piezoelectric patches, their as-

sociated electrical DOF are called ϕi.

The equations of motion are subsequently written in

the form shown in Equation (10).



Muu 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





ü

ϕ̈i

ϕ̈p

ϕ̈g


+



Kuu Kui Kup Kug

KT
ui Kii Kip Kig

KT
up KT

ip Kpp Kpg

KT
ug KT

ig KT
pg Kgg





u

ϕi

ϕp

ϕg


=



F

Qi

Qp

Qg


(10)
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As ϕg = 0, the fourth equation and fourth column in

the mass and stiffness matrices can be eliminated. In-

ternal potential DOF can be determined by exact static

condensation from Equation (10) since internal electric

charges Qi = 0:

ϕi = −K−1ii KT
uiu−K−1ii Kipϕp (11)

Since all the nodes on the potential electrode surfaces

have identical potentials, an explicit transformation ma-

trix Tm can be used to define the master potential DOF

ϕm, as shown in Equation (12).

ϕp = Tmϕm (12)

The use of Equation (12) yields the fully coupled dy-

namics:

Muu 0

0 0


 ü

ϕ̈m

 +

Huu Hup

HT
up Hpp


 u

ϕm

 =

 F

Qm


(13)

with

Huu = Kuu −KuiK
−1
ii KT

ui (14a)

Hup = (Kup −KuiK
−1
ii Kip)Tm (14b)

Hpp = TT
m(Kpp −KT

ipK−1ii Kip)Tm (14c)

Qm = TT
mQp (14d)

After the definition of the master DOF, the R-L shunt

circuit can be considered. The electrical impedance of

the circuit under harmonic excitation can be written

as:

Zsh = R+ jωL (15)

The current Ish in the shunt circuit can be expressed

as Equation (16)

Ish = jωQm =
ϕm
Zsh

(16)

By substituting Equation (16) into Equation (13), the

electrical DOF can be condensed and the equation that

governs the structural dynamics under harmonic exci-

tation is shown in Equation (17).

[Huu−ω2Muu+Hup(
1

jωZsh
−Hpp)

−1
HT

up ]u = Du = F

(17)

Equation (17) gives a full finite element description

of the beam with two symmetric shunted piezoelectric

patches as a coupling element for the DMM calculation.

Matrix D represents the dynamical stiffness matrix of

the coupling element.

2.3 Forced Wave Finite Element formulation

The WFE formulation provides wave propagation pre-

dictions under free boundary conditions. In order to

obtain the forced response of the structure, the Forced

Wave Finite Element(FWFE) formulation [18,29,30] can

be employed. As mentioned in section 2.1, based on Equa-

tion (3) and Equation (4), amplitudes Q(k) which reflect



10 T.L.Huang et al.

for instance the kinematic variable u
(k)
L for substruc-

ture k, are described from amplitudes Q(1) and Q(N+1)

representing kinematic variables u
(1)
L and u

(N)
R at the

waveguide boundaries. According to the coupling rela-

tions between two consecutive substructures k and k−1

(k ∈ {2, . . . , N}),q(k)
L = q

(k−1)
R and −F

(k)
L = F

(k−1)
R ,

the following relation can be found:

u
(k)
L = u

(k−1)
R ∀k ∈ {2, . . . , N} (18)

which leads to

u
(k)
L = Su

(k−1)
L ∀k ∈ {2, . . . , N} (19)

Equation (19) allows to write:

u
(k)
L = Sk−1u

(1)
L ∀k ∈ {1, . . . , N} (20)

with S0 = I2n, and:

u
(N)
R = SNu

(1)
L (21)

Equation (20) and Equation (21) are projected on the

basis {Φi}i considering Equation (3). Since matrix Φ

is invertible (it has been assumed that det[Φ] 6= 0), one

obtains [31]:

Q(k) = Φ−1Sk−1ΦQ(1) ∀k ∈ {1, . . . , N + 1} (22)

that is (cf. Equation (1))

Q(k) =

Λ 0

0 Λ−1


k−1

Q(1) ∀k ∈ {1, . . . , N + 1} (23)

where Λ stands for the (n×n) diagonal eigenvalue ma-

trix for wave modes propagating in x positive direction,

expressed by Equation (24) [31].

Λ =



µ1 0 . . . 0

0 µ2 . . . 0

...
...

. . .
...

0 0 . . . µn


(24)

Expressing the boundary conditions of the waveguides

in terms of amplitudes Q(1) and Q(N+1) allows us to

express, from Equation (23), the dynamics of a given

substructure k. In a general manner, the boundary con-

ditions at a specific boundary of the waveguide can be

formulated in this way:

Qref |lim= CQinc |lim +F (25)

where C stands for the diffusion matrix of the cou-

pling element, and F denotes the effects of the exci-

tations sources [18,32]. It is demonstrated in the work

of Mencik et al. [32] that the general relation in Equa-

tion (25) can be applied to describe classical Neumann

and Dirichlet boundary conditions. These conditions

can be expressed as follows:

[0 | I] u = F0 (Neumann) (26a)

[I | 0] u = q0 (Dirichlet) (26b)

They can be rewritten in the following manner via the

projection of the state vector u onto the wave mode
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basis (see Equation (3)):

Φinc
F Qinc + Φref

F Qref = F0 (Neumann) (27a)

Φinc
q Qinc + Φref

q Qref = q0 (Dirichlet) (27b)

2.4 Wave Finite Element method in time domain

Based on frequency response of the structure issued

from the FWFE method, the time response of the struc-

ture can be obtained in a rather simple way. For exam-

ple, if a structure is subjected to an excitation force fexc

in time domain [tk]k=1...M , through a Discrete Fourier

Transform(DFT), the spectrum of this excitation force

f̂exc can be expressed in the frequency domain [ωk]k=1...M .

f̂exc(ωk) =

M∑
m=1

fexc(tm)e−jtmωk (28)

This spectrum is then used in the FWFE approach

to calculate the nodal displacement response û(ωm)

frequency by frequency. Subsequently, by applying an

Inverse Discrete Fourier Transform(IDFT) to the fre-

quency response, the time response can be acquired.

u(tk) =
1

M

M∑
m=1

û(ωm)e−jtkωm (29)

It should be noted that M , the number of samples

should be large enough to ensure the quality of the fre-

quency and time response.

3 Numerical simulations of beams with shunted

piezoelectric patches

In this section, the DMM with shunted piezoelectric ele-

ments is firstly employed to calculate the reflection and

transmission coefficients of the Z-axis flexural wave and

the X-axis tension/compression wave in the beam. A

full finite element description that takes the mechanical-

electrical coupling into account is given to the smart

structure. The influence of the shunted piezoelectric

patches on the propagation of these wave modes is care-

fully investigated, and an analytical model is devel-

oped to verify the numerical results. Subsequently, the

FWFE approach is applied for the evaluation of the dy-

namical behavior of the structure in frequency domain.

Unlike the DMM approach which gives predictions for

the beam structure with free boundary conditions, fre-

quency response functions can be obtained for the beam

structure with forced boundary conditions. Waveguides

are of finite length in this case. Thereafter, based on the

frequency responses, the calculation of time responses

of the structure under wave packet excitation is carried

out. An extraction procedure is proposed to calculate

reflection coefficients of theX-axis tension/compression

mode so as to verify the results issued from the DMM

approach.

It should be mentioned that the problem of a piezo-
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electric patch shunted through a R − L circuit that

acts as a vibration absorber or noise controller has been

used extensively in the past and its behavior has been

examined thoroughly via analytical or numerical mod-

els. However, no numerical tools that can predict wave

propagation and diffusion in a unit cell belonging to

a set of periodically distributed shunted piezoelectric

patches are proposed in the literature. The effects of a

piezoelectric patch shunted through a R−L circuit as a

vibration absorber on the energy diffusion of a specific

wave mode propagating in a slender system are never

studied in detail. The focus of the present work lies in

the wave propagation and energy diffusion problems in

such systems, and new efficient numerical tools aiming

at achieving these goals are provided and tested in this

section.

3.1 DMM approach applied for Z-axis flexural wave

The structures to be studied here are beams with two

symmetric bonded R−L shunted piezoelectric patches.

In the first case of study (Case A), the widths of the

beam and the patches are the same. The finite element

model of the coupling element is shown in Figure 4, with

the definition of geometric parameters. The parameter

Lbeam represents the length of the beam involved in the

coupling element. Numerical values of those geometric

parameters are listed in Table 1. The material of the

beam is aluminium and considered as isotropic, with

Young’s modulus Ebeam = 70 GPa and Poisson’s ratio

νbeam = 0.34, and density ρbeam = 2700 kg/m3. The

piezoelectric patches are fabricated by Saint Gobain

Quartz (type SG P189) and the corresponding mate-

rial characteristics are listed in Appendix A. This type

of piezoelectric patch works mainly in the 3-1 mode,

and the two piezoelectric patches should work in phase

(both stretched or compressed) for the control of the

tension/compression wave, whereas for the flexural mode,

they should work in opposite phase (one stretched, the

other compressed).

Figure 4

Table 1

At first, the beam is treated as a waveguide and the cor-

responding dispersion curves of the wave modes prop-

agating in the beam are extracted via the WFE ap-

proach, as shown in Figure 5.

Figure 5

Based on this calculation, the mesh resolution is chosen

to be 0.005× 0.005× 0.002 m3, as the minimum wave-

length of the Z-axis flexural wave mode is about 0.1m in

the concerned frequency band. The DMM calculation of

this wave mode gives the reflection and transmission co-

efficients as displayed in Figure 6, with R = 100 Ω and

L = 2 H. The tuning frequency ftune of the piezoelec-



Multi-modal wave propagation in smart structures with shunted piezoelectric patches 13

tric patches is about 1340 Hz. In fact, around this fre-

quency, the impedance of the structure is greatly mod-

ified by the shunted piezoelectric patches so that the

wave propagation characteristics change significantly.

The tuning frequency can be calculated according to

Equation (30):

ftune =
1

2π
√

2LCS
p3

(30)

where CS
p3 = (1−k231)CT

p3 is the capacitance of the piezo-

electric patch measured at constant strain, and the 2 in

front of L is due to the fact that the two piezoelectric

patches are connected in parallel. If each piezoelectric

patch has an independent shunt circuit, the 2 in front

of L will disappear. The subscript 1 represents the X-

axis direction while the subscript 3 denotes the Z-axis

direction. k31 is the electromechanical coupling coeffi-

cient. CT
p3 is the capacitance of the piezoelectric patch

measured at constant stress. It can be calculated in the

following manner:

CT
p3 =

εTA3

L3
(31)

where A3 is the area of the surface of the piezoelectric

patch perpendicular to Z-axis, L3 = hpatch is the length

of the piezoelectric patch in Z-axis direction.

Figure 6

Thereafter, these numerical results are compared to re-

sults derived from an analytical beam model. This beam

can be divided into 3 propagation mediums, as shown

in Figure 7.

Figure 7

It is a combination of 3 analytical models:

– For wave propagation in the beam, the classical Euler-

Bernoulli beam model [33] is employed;

– For the part of the beam covered with 2 piezoelec-

tric patches (Medium 2), a homogenization proce-

dure [34] is applied;

– For the piezoelectric patches with shunted circuit,

the model in the work of Hagood and von Flotow [4]

is used.

This homogenized Euler-Bernoulli beam model with

shunted piezoelectric patches offers analytical solutions

to the reflection and transmission coefficients of the

flexural wave. Assuming that the Young’s modulus and

density of the shunted piezoelectric patches are Epatch

and ρpatch. According to Hagood and von Flotow [4],

the shunt circuit modifies the material properties of the

piezoelectric patch in the following way:

sshpatch jj = sEpatch jj − Z̄eli
d2ij
εTi

(32a)

Eshpatch jj =
cEpatch jj

1− k2ijZ̄eli
(32b)

where sshpatch jj represents the shunted piezoelectric com-

pliance in the jth direction and sEpatch jj the mechani-

cal compliance in the jth direction, while Eshpatch jj de-
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notes the shunted piezoelectric stiffness in the jth di-

rection, and cEpatch jj the mechanical stiffness in the jth

direction. kij is the electromechanical coupling coeffi-

cient defined as shown in Equation (33a), and dij is the

piezoelectric strain coupling coefficient. Z̄eli denotes the

relative electrical impedance defined as shown in Equa-

tion (33b). εTi is the permittivity under constant strain

in the ith direction.

kij =
dij√
sEjjε

T
i

(33a)

Z̄eli =
jωCT

piZshi

jωCT
piZshi + 1

(33b)

In the case of this work, there is no shunt circuit in

the 1st(X-axis) and 2nd(Y -axis) directions, so Zsh1 =

Zsh2 = ∞ and then Z̄el1 = Z̄el2 = 1. CT
pi is the capac-

itance between the surfaces of the piezoelectric patch

perpendicular to ith direction (at constant stress). For

the considered beam to be homogenized, only the load-

ing in the 1st direction (X-axis) is taken into account,

thus the Young’s modulus of the piezoelectric patch

can be calculated as Epatch = Eshpatch 11. The effective

Young’s Modulus Eeff of Medium 2 can subsequently

be expressed in the form shown in Equation (34).

Eeff = Ebeam
12

h3
eff

(
h3
1

6
+ 2d

2
1h1) + Epatch

12

h3
eff

(
h3
2

6
+ 2d

2
2h2) (34)

where

heff = hbeam + 2hpatch, h1 =
1

2
hbeam, h2 = hpatch

d1 =
1

4
hbeam, d2 =

1

2
(hbeam + hpatch) (35)

The effective density ρeff , area Aeff and moment of in-

ertia Ieff are shown in Equation (36a), Equation (36b),

and Equation (36c) respectively.

ρeff =
hbeamρbeam

hbeam + 2hpatch
+

2hpatchρpatch
hbeam + 2hpatch

(36a)

Aeff = bbeam(hbeam + 2hpatch) (36b)

Ieff =
bbeam(hbeam + 2hpatch)3

12
(36c)

Reflection and transmission coefficients of the flexural

wave propagating in the beam in case A are calculated

analytically and the results are compared to those ac-

quired through the DMM approach, as shown in Fig-

ure 8.

Figure 8

The results issued from the DMM approach and those

from the homogenized Euler-Bernoulli model correspond

well below 2 kHz. However, at higher frequencies, as

the homogenization method becomes inaccurate [35,

36], those two approaches give different predictions of

reflection and transmission coefficients of the flexural

wave. Furthermore, the Euler-Bernoulli analytical model

becomes also incorrect at middle and high frequencies,

as its plane wave description of the bending mode is

not a priori satisfied in this frequency range [17]. Nev-

ertheless, these two different approaches give the same

tuning frequency ftune. On the whole, the prediction

performance of the DMM approach is well manifested

in this case.
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3.2 Application of DMM and FWFE for the choice of

configuration

3.2.1 Prediction of reflection and transmission

coefficients with DMM

Two other numerical simulations are performed for an

aluminium beam with two symmetric bonded shunted

piezoelectric patches. All the material properties are

the same as those used in case A, but the dimensions

piezoelectric patch in these two cases (case B and case

C) are 0.03 × 0.01 × 0.001 m3, and the dimensions of

the beam section are 0.03× 0.003 m2. These values are

defined according to available materials in the labora-

tory so that the numerical results can be later validated

experimentally. Two different configurations are tested:

in case B, the two piezoelectric patches are bonded in

the longitudinal direction of the beam, as shown in Fig-

ure 9(a), whereas in case C, these patches are bonded

transversally on the same beam, as displayed in Fig-

ure 9(b). Numerical values of the geometric parameters

are listed in Table 1, and there definitions can be found

in Figure 9(a) and Figure 9(b).

Figure 9

At first, the dispersion curves of the wave modes prop-

agating in the beam in case B and case C are calcu-

lated using the WFE approach. The results are shown

in Figure 10. The wavelength of the flexural mode in

Z-axis is shown in Figure 11. According to the wave-

length, the mesh resolution in these two cases is cho-

sen as 0.005 × 0.005 × 0.0015 m3 for the beam, and

0.005 × 0.005 × 0.001 m3 for the patches. In the fre-

quency band from 0 to 5 kHz, for the Z-axis flexural

wave mode, this mesh resolution is fine enough.

Figure 10

Figure 11

The DMM approach is applied subsequently to calcu-

late the reflection and transmission coefficients of the

Z-axis flexural wave in the two cases, with R = 100 Ω

and L = 2 H in the shunt circuit. The results are shown

in Figure 12.

Figure 12

It can be observed from the DMM results that the prop-

agation of the flexural wave is tuned around 1.5 kHz,

as the reflection and transmission coefficients vary sig-

nificantly. The tuning frequency calculated according

to Equation (30) is about 1550 Hz, which is quite con-

sistent with the results Figure 12(a) and Figure 12(b).

It can also be concluded that the longitudinally bonded

shunted piezoelectric patches (case B) results in a higher

reflection of the flexural wave mode in the beam than

those bonded transversally (case C).



16 T.L.Huang et al.

3.2.2 Forced response prediction with FWFE

In order to predict the forced response of the beam

with shunted piezoelectric patches, the FWFE method

mentioned in Subsection 2.3 can be applied. The same

beam with a pair of shunted piezoelectric patches in

case B is taken as an example, as displayed in Fig-

ure 13(a).

Figure 13

To calculate the forced response, boundary conditions

and the lengths of the waveguides should be specified.

As shown in Figure 13(a), one extremity of the beam

is excited by a punctual force Fexc, and the other ex-

tremity is free. The amplitude of the excitation force

remains constant in the frequency domain. The first

waveguide consists of N1 identical unit cells while the

second one consists of N2 identical unit cells. The part

of the beam covered with the pair of shunted piezo-

electric patches is considered to be the coupling ele-

ment. For the sake of simplicity, it is assumed that

N1 = N2 = N . The two waveguides are identical as they

belong to the same beam, thus Λinc
1 = Λref

2 = Λ, and

Λref
1 = Λinc

2 = Λ−1(see Equation (24)). The boundary

conditions of the system can be written in the following

manner:

Φinc
F1Q

inc(1)
1 + Φref

F1Q
ref(1)
1 = Fexc (37a)

Φinc
F2Q

inc(N+1)
2 + Φref

F2Q
ref(N+1)
2 = 0 (37b)

The boundary condition at the left extremity of Waveg-

uide 1 is a Dirichlet boundary condition(Equation (37a)),

whereas the boundary condition at the right extremity

of Waveguide 2 is a Neumann one(Equation (37b)).

The continuity conditions of displacement and force be-

tween the waveguides and the coupling element form

the coupling condition and can be expressed as: qLC

FLC

 =

 q
(N+1)
R1

−F
(N+1)
R1

 (38a)

 qRC

FRC

 =

 q
(1)
L2

−F
(1)
L2

 (38b)

where qLC and FLC stand for the nodal displacement and

the nodal force at the left boundary of the coupling el-

ement, and qRC and FRC at the right boundary of the

coupling element.

By substituing these continuity conditions into the dy-

namics of the coupling element(see Equation (17)), the

boundary conditions at the right extremity of Waveg-

uide 1 and those at the left extremity of Waveguide 2

can be obtained, as shown in Equation (39). D∗ denotes

the dynamic stiffness matrix of the coupling element

condensed on the DOFs located on the interfaces be-

tween the waveguides and the coupling element itself.

D∗

q
(N+1)
R1

q
(1)
L2

 = −

F
(N+1)
R1

F
(1)
L2

 (39)

Combined with the boundary conditions in Equation (37a)
and Equation (37b) and the propagation relation(see
Equation (23)), an equation system which gives the
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wave amplitudes Q in both waveguides under the exci-
tation force Fexc can be developed as follows:

A



Q
inc(1)
1

Q
ref(1)
1

Q
inc(1)
2

Q
ref(1)
2


=



Fexc

0

0

0


(40)

A =



Φinc
F1 Φref

F1 0 0

(D∗11Φ
inc
q1 + Φinc

F1 )ΛN (D∗11Φ
ref
q1 + Φref

F1 )Λ−N D∗12Φ
inc
q2 D∗12Φ

ref
q2

D∗21Φ
inc
q1 ΛN D∗21Φ

ref
q1 Λ−N D∗22Φ

inc
q2 + Φinc

F2 D∗22Φ
ref
q2 + Φref

F2

0 0 Φinc
F2 Λ−N Φref

F2 ΛN



The resolution of this equation system provides the

wave amplitudes at the left boundary of the waveg-

uides 1 and 2, and via Equation (23), wave amplitudes

at any node in the two waveguides can be obtained. The

nodal displacement in Z-axis at the center of the free

extremity of the beam is used for the calculation of the

frequency response function(FRF) of the beam. As an

example, the length of the beam is chosen to be 1 m,

thus N = 97. The pair of piezoelectric patches share the

same shunt circuit with R = 100 Ω and L = 2.8251 H,

in order to tune a flexural mode around 1350 Hz. The

FRF with shunt circuit and without shunt circuit (open

circuit case) are calculated numerically. Additionally, a

classical finite element harmonic analysis has been per-

formed using ANSYS to extract the FRF of the same

structure in the open circuit condition. SOLID45 ele-

ments are used for the beam, and SOLID5 elements

with electric potential DOF are applied for the piezo-

electric patches. The finite element mesh resolutions are

the same as those mentioned in subsection 3.2.1. The

comparison results are displayed in Figure 14.

Figure 14

As shown in Figure 14(a), the FWFE results correspond

very well to the finite element results in the frequency

band from 0 to 5 kHz. The attenuation effect of the

shunted piezoelectric patches around the tuning fre-

quency (1350 Hz), which is close to the eigenfrequency

of one of the flexural modes, is rather evident, as shown

in Figure 14(b). In the same manner, another analysis

is performed for the beam with a pair of shunted piezo-

electric patches in case C displayed in Figure 13(b). The

comparison results of the FRF is shown in Figure 15.

Figure 15

These results reveal again that FWFE can predict cor-

rectly the frequency response of the structure. It is an

effective approach that can be employed to estimate

the influence of the shunted piezoelectric patches on

the flexural modes of the beam. It can be concluded

from Figure 14(b) and Figure 15(b) that the longitu-

dinally placed pair of piezoelectric patches lead to a

larger attenuation frequency band than the transver-

sally placed patches. It should also be noted that the

FWFE formulation requires much less computational

time compared to ANSYS. Furthermore, ANSYS is not

capable of analyzing shunt circuits with negative capac-

itance, but the FWFE method is able to deal with all

kinds of shunt impedance.
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3.3 Time response calculation and reflection coefficient

verification

In Subsection 3.2, the frequency responses are calcu-

lated with an excitation force of constant amplitude in

the frequency domain. In order to evaluate the time

response, the approach mentioned in Subsection 2.4

is carried out. The reflection coefficients can be ex-

tracted from the time response and then be compared

to those calculated with the DMM approach. This ex-

traction technique can equally be applied in experi-

ments to validate numerical results. Let’s consider an

aluminium beam with a pair of longitudinally placed

R − L shunted piezoelectric patches. According to the

dispersion curves shown in Figure 10, it can be noted

that in the frequency band from 0 to 20 kHz, the bend-

ing modes are dispersive as their dispersion curves are

not linear, whereas the tension/compression mode is

non-dispersive as its dispersion curve is linear. As non-

dispersive waves can maintain their wave form during

the propagation, and their group velocity is almost con-

stant, it will be much easier to track them in the struc-

ture. The group velocity of the tension/compression

mode is shown in Figure 16. It is almost constant in the

frequency band from 0 to 20 kHz. As the wavenumber

of the X-axis tension/compression mode is smaller than

the Z-axis bending mode, the wavelength of the former

mode is larger than the latter mode. So the same mesh

resolution can be applied for the finite element models.

Figure 16

Based on this group velocity, the length of the beam is

chosen to be 3 meters which is large enough so that in-

cident and reflected waves can be clearly distinguished.

To minimize the effect of induced dispersion by the

piezoelectric patches, narrow band signals are used, com-

posed of 2.5 cycles modulated by a Hanning window

with the central frequency f0 equal to 9 kHz. The time

wave form and the spectrum of this wave packet exci-

tation force is displayed in Figure 17. The maximum

amplitude is 100 N and the sampling frequency is 20

times greater than the central frequency in order to

guarantee the signal quality of the wave packet.

Figure 17

This excitation force is applied to one extremity of the

beam as the input, and the displacement of the measure

point is taken as the output, as shown in Figure 18. The

measure point lies at 25 cm from the extremity with

excitation force.

Figure 18

Subsequently, the forced response of the structure un-

der white noise excitation is calculated, as shown in Fig-

ure 19. As an example, the mode at 9350 Hz is targeted,



Multi-modal wave propagation in smart structures with shunted piezoelectric patches 19

and then the shunt circuit is tuned to this frequency,

with R = 100 Ω and L = 0.0575 H.

Figure 19

From Figure 19(b), it can be seen that with the shunted

piezoelectric patches, only a damping effect is obtained

for the tension/compression mode, but for the flexu-

ral mode, a stronger attenuation effect is achieved, as

shown in Figure 14(b), where the shunted piezoelec-

tric patches play the role of a dynamic damper which

creates an added DOF in the system. With the trans-

fer function, the wave packet excitation is applied to

the system in order to acquire the frequency response.

Then the IDFT of this frequency response is carried

out to calculate the time response of the structure, as

displayed in Figure 20. As those wave packets are ap-

parently unconnected in this case, no wave packet de-

composition techniques are needed.

Figure 20

It can be noted that when the beam is equipped with

the piezoelectric patches, the reflection of the tension/compression

wave is no longer null due to the added mass and stiff-

ness. When the shunt circuit is applied onto the piezo-

electric patches, the reflection becomes stronger and the

damping effect can be observed in the reflected packet.

In order to verify the reflection coefficients calculated

via the DMM approach and provide an effective experi-

mental evaluation technique for the reflection coefficient

based on time response of the structure, the following

extraction procedure is proposed:

1. The Hilbert Transform is applied to the time re-

sponse of the structure, and its absolute value is

representative of the envelope of the signal. The first

peak represents the maximum amplitude of the in-

cident wave, and the second peak for the reflected

wave, as shown in Figure 21.

Figure 21

2. The imaginary part of the wavenumber k calculated

with the WFE method is used to calculate the spa-

tial damping. As the propagation of this mode can

be characterized by an exponential law A = A0e
ikx,

the spatial damping ratio γx = − | Im(k) |.

3. With the group velocity Vg of this wave mode, the

damping ratio in time domain can be calculated as

γt = − | Im(k)Vg |.

4. On the plot of the Hilbert Transform result, a damp-

ing curve can be drawn to take into account the

damping effect caused by the distance between the

measure point and the piezoelectric patches so as

to evaluate the reflection coefficient correctly. This

curve passes the first peak of the Hilbert Transform

result and follows the exponential decreasing law

defined by A = A0e
γtt. Ar denotes the amplitude
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of the reflected wave, and Ai represents the ampli-

tude of the incident wave with the attenuation effect

taken into account, as shown in Figure 21. The re-

flection coefficient can be calculated as R = Ar/Ai.

5. By varying the central frequency f0 of the wave

packet excitation, reflection coefficients at different

frequencies can be acquired frequency by frequency

in order to verify the reflection coefficients calcu-

lated with the DMM approach.

The reflection coefficients of the tension/compression

mode tuned at 9350 Hz are calculated via the DMM ap-

proach, and then compared to those obtained through

the extraction procedure. It should be mentioned that

this extraction procedure is a rather coarse evaluation

tool for the reflection coefficients. If an error of ±10%

is applied to each extracted reflection coefficient, then

the envelope of the extracted reflection coefficients can

be obtained. The results are shown in Figure 22.

Figure 22

For the frequency band below 7 kHz, it is difficult to

evaluate correctly the reflection coefficient with the ex-

traction procedure as the span of the wave packet in

time domain becomes so large that it’s hard to distin-

guish incident and reflected waves, unless the length

of the beam becomes larger. And for the frequency

band around the tuning frequency, it is also difficult

to evaluate precisely the reflection coefficient with the

Hilbert Transform, as the added damping effect needs

to be considered properly. But globally, the results is-

sued from the DMM approach are verified by those

through the extraction procedure, as the envelope cov-

ers most of the DMM results in the open circuit case.

This procedure will be employed for the experimen-

tal validation of numerically calculated reflection co-

efficients.

4 Conclusions

Effective prediction tools for wave propagation char-

acteristics and dynamic behavior of smart structures

equipped with shunted piezoelectric elements are pro-

vided in this work, and general formulations which can

be applied for all kinds of slender smart structures are

developed. The main results can be summarized as fol-

lows:

– The finite element based WFE approach is devel-

oped and its corresponding DMM model is extended

to consider shunted piezoelectric elements in beam

structures. The wave modes propagating in the struc-

ture are correctly captured and the influence of the

shunted piezoelectric patches on the control of the

Z-axis flexural wave mode is investigated through
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the reflection and transmission coefficients of this

wave mode.

– An analytical model based on Euler-Bernoulli beam

theory, the homogenization of sandwich beams and

Hagood’s shunted piezoelectric patch model is de-

veloped to verify numerically calculated reflection

and transmission coefficients of the Z-axis flexural

mode.

– The forced responses of the beam structure excited

in the Z-axis flexural mode and the X-axis ten-

sion/compression mode are calculated via the FWFE

formulation, and the results for the Z-axis flexural

mode correspond very well with those issued from a

classical FE harmonic analysis.

– Time response of the structure excited in the X-

axis tension/compression mode with wave packet is

evaluated via an IDFT approach applied to the fre-

quency response. By following an extraction proce-

dure, reflection coefficients of this wave mode can

be evaluated according to the time response of the

structure so as to verify the reflection coefficients

calculated through the DMM approach.

The numerical techniques presented in this work enable

the evaluation of the performance of shunted piezoelec-

tric patches on the control of flexural wave propaga-

tion, and facilitate design modifications and systematic

investigations of geometric and electric parameters of

beam structures with shunted piezoelectric patches.

Future work aims at the experimental validation of the

numerical results. Numerical investigation of structures

with multiple shunted piezoelectric patches and corre-

sponding experimental validations will be carried out

as well.
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Appendix A: material properties of the piezo-

electric patch (type SG P189)

Mass density ρ: ρ = 7650 kg/m3.

Material stiffness matrix cE :

cE = 1010 ×



15.37 8.23 8.06 0 0 0

8.23 15.37 8.06 0 0 0

8.06 8.06 13.74 0 0 0

0 0 0 4.59 0 0

0 0 0 0 4.59 0

0 0 0 0 0 3.57



Pa

The piezoelectric stress coupling matrix e:

e =


0 0 0 0 12.88 0

0 0 0 12.88 0 0

−6.187 −6.187 12.80 0 0 0

 N/(V ·m)
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The permittivity matrix under constant strain εS :

εS = 10−8 ×


1.011 0 0

0 1.011 0

0 0 0.591

 C/(V ·m)
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Fig. 1 An illustration of a periodic waveguide [17].
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Fig. 2 An illustration of the coupling between two different

periodic waveguides [17].
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Fig. 3 Finite element model of a beam with symmetric

shunted piezoelectric patches. The coupling element is the

part of the beam with the two symmetric piezoelectric

patches.
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Fig. 4 Finite element model of the coupling element and def-

inition of geometric parameters in case A.
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Fig. 5 Dispersion curves of the wave modes propagating

in the beam in case A: (1)Tension/compression wave in X-

axis (2)Torsional wave in X-axis (3)Flexural wave in Y -axis

(4)Flexural wave in Z-axis. These wave modes are identi-

fied through their mode shapes (eigenvectors) issued from

the WFE approach.
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Fig. 6 Reflection and transmission coefficients of the Z-axis

flexural wave mode propagating in the beam in case A. (Solid

line)With R-L shunt circuit (Dashed line)Open circuit (Dash-

dotted line)Beam without piezopatches.
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Fig. 7 Homogenized Euler-Bernoulli beam model with two

symmetric R-L shunted piezoelectric patches.
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Fig. 8 Comparison of reflection and transmission coefficients

of the flexural mode in Z-axis between the results of the

homogenized Euler-Bernoulli beam model and those of the

DMM approach in case A. (Solid line)DMM results (Dashed

line)Homogenized model results.
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(a)

(b)

Fig. 9 Finite element model of the coupling element and def-

inition of geometric parameters (a)in case B: the two piezo-

electric patches are placed longitudinally (b)in case C: the

two piezoelectric patches are placed transversally.
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Fig. 10 Dispersion curves of the wave modes propagating in

the beam in case B and case C: (1)Tension/compression mode

in X-axis (2)Torsional wave in X-axis (3)Flexural wave in Y -

axis (4)Flexural wave in Z-axis. These wave modes are iden-

tified through their mode shapes (eigenvectors) issued from

the WFE approach.
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Fig. 11 Wavelength of the flexural wave in Z-axis in case B

and case C.
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(a)

(b)

Fig. 12 Reflection and transmission coefficients of the Z-

axis flexural wave mode propagating in the beam (a)Case

B (b)Case C. (Solid line)With R-L shunt circuit. (Dashed

line)Open circuit.
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(a)

(b)

Fig. 13 WFE model for the calculation of the forced response

of the beam with shunted piezoelectric patches (a)in case B

(b)in case C
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(a)

(b)

Fig. 14 Comparison of the frequency responses in case B:

(a)Frequency band from 0 to 5 kHz (b)Zoom around the

tuning frequency (1350 Hz).(Solid line)FWFE with shunted

circuit. (Dashed line)FWFE without shunt circuit. (◦ mark-

ers)ANSYS results without shunt circuit.
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(a)

(b)

Fig. 15 Comparison of the frequency responses in case C:

(a)Frequency band from 0 to 5 kHz (b)Zoom around the

tuning frequency (1350 Hz). (Solid line)Piezoelectric patches

with shunted circuit. (Dashed line)Piezoelectric patches with-

out shunt circuit. (◦ markers)ANSYS results without shunt

circuit.
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Fig. 16 Group Velocity of the tension/compression wave in

X-axis in case B.
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(a)

(b)

Fig. 17 The time wave form and the spectrum of the wave

packet excitation. (a)Time wave form (b)Spectrum.



Multi-modal wave propagation in smart structures with shunted piezoelectric patches 41

Fig. 18 Configuration for the time response simulation of the

tension/compression wave in X-axis.
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(a)

(b)

Fig. 19 The forced response of the structure under white

noise excitation (transfer function) tuned at 9350 Hz.

(a)Frequency response (b)Zoom around the tuning fre-

quency. (Solid line)Piezoelectric patches with shunted circuit.

(Dashed line)Beam without piezoelectric patches.
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Fig. 20 Time response of the structure under wave packet

excitation. (Solid line)Piezoelectric patch with shunt cir-

cuit. (Dashed line)Piezoelectric patches without shunt circuit.

(Dash-dotted line)Beam without piezoelectric patches.
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Fig. 21 Hilbert Transform of the time response and the

damping curve to extract the reflection coefficient of

the tension/compression wave. (Solid line)Absolute value

of the Hilbert Transform of the time response. (Dashed

line)Damping curve based on spatial damping.
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Fig. 22 Comparison of reflection coefficients of the ten-

sion/compression wave in X-axis calculated through the

DMM approach and the extraction procedure. (Solid

line)Calculation with DMM, piezoelectric patch with shunt

circuit. (Dashed line)Calculation with DMM, piezoelectric

patch without shunt circuit. (× markers)Calculation with

extraction procedure. (Dash-dotted line)Envelope of the ex-

tracted reflection coefficients.
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Table 1 Numeric values of the geometric parameters in the

coupling element shown in Figure 4(case A), Figure 9(a)(case

B) and Figure 9(b)(case C). The units of all the parameters

are in meter (m).

Case Lbeam Lpatch bbeam bpatch hbeam hpatch

A 0.04 0.04 0.02 0.02 0.004 0.002

B 0.03 0.03 0.03 0.01 0.003 0.001

C 0.03 0.01 0.03 0.03 0.003 0.001


