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Abstract

Wave propagation in composite structures with shunted piezoelectric

patches is investigated in this work. The Wave Finite Element(WFE)

approach is firstly developed as a prediction tool for wave propagation

characteristics like dispersion curves in composite structures, and sub-

sequently extended to consider shunted piezoelectric elements through

the Diffusion Matrix Model(DMM). A three-layered composite beam

equipped with a pair of Resistor-Inductor(R-L) shunted piezoelectric

patches is modeled and analyzed carefully with these numerical tech-

niques. Reflection and transmission coefficients of propagating waves

in this smart composite structure are calculated, and the performance

of shunted piezoelectric patches on the control of wave propagation
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is investigated numerically with the DMM. Another finite element

formulation, named Modified Wave Finite Element(MWFE) method,

which is dedicated to the analysis of wave propagation in multi-layered

composite structures, is proposed and developed for considering piezo-

electric elements in the structures. It is a dynamic substructuring

technique that allows the dynamics of a typical layer cross-section to

be projected on a reduced local wave mode basis with appropriate

dimension. Results issued from this method are compared to those is-

sued from the classical WFE and DMM formulations to demonstrate

the pertinence of the modelings.

Keywords: Composite structure, propagation, energy diffusion, semi-active

control, piezoelectric shunt.

1 INTRODUCTION

Multi-layered systems are widely used in many engineering domains, offering

structural designers plenty of attractive features like high specific stiffness,

good buckling resistance, formability into complex shapes, easy reparability,

etc. Understanding, predicting and tailoring their vibratory behavior has al-

ways been an important issue in vibroacoustics. With the development of the

finite element method (FEM), the analysis of the dynamic behavior of such

structures is becoming more and more convenient, as this method possessed
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the advantages of widespread use in engineering domain and the capabili-

ty of treating complex geometry. However, problems arise when large size

models are treated, as the computational cost of the resolution becomes un-

acceptable, especially for time response calculations. As an alternative, the

dynamic analysis of multi-layered systems based on the numerical descrip-

tions of waves traveling in these structures can be applied, as it provides a

low cost and efficient way to capture the dynamic behavior with relatively

small models. This technique appears especially well suited for the short

wavelength domain as the dynamics of systems can be accurately described

by highly convergent reduced bases containing essential wave motions.

One of the two main objectives of the paper lies in the study of low-frequency

(LF) and mid-frequency (MF) wave propagation in slender multi-layered e-

lastic systems. Such systems exhibit large scale behavior associated with

uniform cross-sections where are confined high regular ”rigid body” and e-

lastic modes, and fine scale behavior associated with low regular propagating

components (Mencik and Ichchou, 2008). The frequency ranges can be de-

fined as follows: the LF range refers to the frequency domain for which

a typical cross-section contains a small number of elastic modes, e.g. the

related ”cross-section” modal density is small, while the MF range corre-

sponds to an intermediate frequency domain between the LF range and the

high-frequency (HF) range for which the cross-section modal density exhibits

large variations (Ohayon and Soize, 1998). The Wave Finite Element (WFE)

method (Mencik and Ichchou, 2008, 2005, 2007; Ichchou et al., 2007), which
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is based on the classic finite element description of a typical cell extract-

ed from a given global system, is developed as an appropriate method for

predicting the propagation in waveguides such as beams (Mace et al., 2005;

Duhamel et al., 2006) and plates (Mace and Manconi, 2008; Collet et al.,

2011) in a wide frequency range. Nevertheless, the WFE method suffers

from a number of numerical problems especially when multi-layered struc-

tures are concerned. In order to address this issue, Mencik and Ichchou

(2008) developed a substructuring technique named modified wave finite el-

ement (MWFE) for analyzing wave propagation in multi-layered systems,

allowing the standard wave motions of multi-layered systems to be correctly

captured. This technique will be applied in this paper to study the wave

propagation in slender multi-layered elastic beams so as to achieve the first

objective of this paper.

The second objective of this paper lies in the control of wave propagation in

multi-layered systems. A recent revolution in the field of integrated micro-

electromechanical systems (MEMS) offers new opportunities for smart struc-

ture design. Smart composite structures is able to be created via the me-

chanical integration of active smart materials, electronics, chip sets and pow-

er supply systems (Collet et al., 2003; Meyer et al., 2007). The material’s

intrinsic passive mechanical behavior can be controlled through electrome-

chanical transducers in order to attain new desired functionalities (Collet

et al., 2009). Among the control configurations found in published work,

a well-known technique is the piezoelectric damping using external resistor-
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inductor shunt circuit (Collet et al., 2009; Hagood and Flotow, 1991; Thorp

et al., 2001; Nguyen and Pietrzko, 2006; Becker et al., 2006; Spadoni et al.,

2009; Casadei et al., 2010). This semi-active configuration has the advantage

of guaranteeing stability, and can be obtained by bonding piezoelectric ele-

ments onto a structure and connecting the electrodes to the external shunt

circuit. Due to straining of the host structure, and through the direct piezo-

electric effect, a portion of the mechanical energy is converted into electrical

energy and subsequently be dissipated by Joule heating via the connected

resistor. The R − L shunt circuit on piezoelectric patches can be regard-

ed as light oscillators instead of heavy mass-spring structures. By varying

the inductance L in the shunt circuit, the tuning frequency can be adjust-

ed to desired frequency band. Recently, Spadoni et al. (2009) and Casadei

et al. (2010) have studied the control of wave propagation in plates with

periodic arrays of shunted piezoelectric patches. Efforts have been dedicated

firstly to developing the finite element formulation of shunted piezoelectric

elements, then to characterizing the dispersion relation of waves propagating

over the surface of plate structures and the band gaps in the frequency do-

main. An experimental investigation was carried out in the work of Casadei

et al. (2010) to test the performance of shunted piezoelectric patches via the

forced response of the structure. Wang et al. (2011) have realized the same

analysis on a beam with periodic shunted piezoelectric patches through an

analytical model and corresponding experimental tests. Collet et al. (2009)

provided a full finite element description of a beam with periodic shunted
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piezoelectric patches via the WFE method, but emphasis was placed on the

optimization of shunt impedance. Numerical tools dedicated to the analy-

sis of energy diffusion properties for multi-layered structures with shunted

piezoelectric elements need to be properly developed in order to achieve the

second objective of this paper.

This paper is organized as follows: in Section 2, a brief outline of the WFE

approach is provided, as well as the DMM for the prediction of energy diffu-

sion of wave modes propagating in the system(Subsection 2.1). The MWFE

formulation is subsequently presented in Subsection 2.2 for the modeling of

a multi-layered beam. Then the multi-layered beam with R − L shunted

piezoelectric patches can be modeled with the piezoelectric finite elemen-

t formulations given in Subsection 2.3. All these numerical techniques are

applied in Section 3, where a three-layered beam is investigated with WFE

and MWFE respectively. Results issued from these two approaches are com-

pared. Parametric studies are also performed to investigate the influence of

the dimension of mode bases on the prediction of wave propagation and dif-

fusion characteristics. The performance of the shunted piezoelectric patches

on the control of flexural wave mode in the multi-layered beam is tested.

Concluding remarks and perspectives of this work are presented in Section 4.
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2 NUMERICAL TOOLS FOR SMART COM-

POSITE STRUCTURES WITH SHUNT-

ED PIEZOELECTRIC ELEMENTS

In this section, firstly the WFE formulation and the DMM are presented.

After that, the MWFE formulation for multi-layered systems is given. T-

wo different modelings for the global wave mode construction are described.

Then the numerical models of a multi-layered beam with shunted piezoelec-

tric elements are described. The finite element diffusion model proposed in

the work of Mencik and Ichchou (2008, 2005) was extended to consider piezo-

electric elements. All these techniques enable the calculation of parameters

like reflection and transmission coefficients so as to investigate the influence

of the shunted piezoelectric patches on the propagation of wave modes in

the multi-layered beam. The formulations developed are general and can

be employed for all types of slender multi-layered structures with shunted

piezoelectric patches.

2.1 Wave propagation and diffusion in structures through

finite elements

The WFE method was employed to study the energy diffusion problem (Men-

cik and Ichchou, 2005; Ichchou et al., 2009; Huang et al., 2012a,b). The work

of Mencik and Ichchou (2005) provides a detailed description of the dynamical
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behavior of a slender structure, as illustrated in Figure 1, which is composed,

along a specific direction (say X−axis), of N identical substructures. Note

that this general description can be applied to homogeneous systems whose

cross-sections are constant. The dynamic of the global system is formulated

from the description of the waves propagating along the X−axis.

Figure 1

Let us consider a finite element model of a given substructure k (k ∈ {1, . . . , N})

belonging to the waveguide (cf. Figure 1). The left and right boundaries

of the discretized substructure are assumed to contain n degrees of free-

dom (DOFs). Displacements q and forces F which are applied on these

boundaries are denoted by (qL,qR) and (FL,FR), respectively. It is assumed

that the kinematic quantities are represented through state vectors u
(k)
L =

((q
(k)
L )T(−F

(k)
L )T)T and u

(k)
R = ((q

(k)
R )T(F

(k)
R )T)T, and that the internal DOFs

of substructure k are not submitted to external forces.

According to Mencik and Ichchou (2005), the continuity conditions between

the substructures combined with the periodicity condition and the dynamical

equilibrium of each substructure can finally lead to the following boundary

value problem:

SΦi = µiΦi , |S− µiI2n | = 0. (1)

where

S =

 −(D∗LR)
−1D∗LL −(D∗LR)

−1

D∗RL −D∗RR(D
∗
LR)
−1D∗LL −D∗RR(D

∗
LR)
−1

 . (2)
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D∗ stands for the dynamical stiffness matrix of substructure k, condensed on

the DOFs of the left and right boundaries of the substructure. The matrix

I2n represents the identity matrix of size 2n.

As mentioned in reference (Collet et al., 2009), the eigenvalues µi and wavenum-

bers ki are linked through the relation µi = e−ikidx , where dx denotes the

length of the unit cell in X-axis. The sign of the real part of the wavenumber

ki ,Re(ki), represents the direction of the phase velocity of the corresponding

waves: if Re(ki) > 0, the phase propagates in the positive x direction; if

Re(ki) < 0, the phase propagates in the negative direction, and if it is zero,

ki corresponds to the wavenumber of a pure evanescent wave that only occurs

when an undamped system is considered (Collet et al., 2011). The matrix Φ

of the eigenvectors can be described in this way:

Φ =

 Φinc
q Φref

q

Φinc
F Φref

F

 , (3)

where subscripts q and F refer to the components which are related to the dis-

placements and the forces, respectively; ((Φinc
q )T(Φinc

F )T)T and ((Φref
q )T(Φref

F )T)T

stand for the modes which are incident to and reflected by a specific bound-

ary (left or right) of the heterogeneous waveguide, respectively.

Finally, assuming modal decomposition, state vectors u
(k)
L and u

(k)
R of any

substructures k can be expressed from eigenvectors {Φi}i=1,...,2n (Zhong and
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Williams, 1995):

u
(k)
L = ΦQ(k) , u

(k)
R = ΦQ(k+1) ∀k ∈ {1, . . . , N}. (4)

Here, vector Q stands for the amplitudes of the wave modes. The dynamical

behavior of a periodic waveguide can be simply expressed from a basis of

modes representing waves traveling in the positive and negative directions

of the system. An analysis of the dynamical response consists of evaluating

a set of amplitudes {(Qinc(k), Qref(k))}k associated with the incident and

reflected modes. Nevertheless, to evaluate energy diffusion, the formulation

of the coupling conditions of the system is needed, and particularly at a

coupling junction where several waveguides can be considered. It should be

mentioned that the whole system has free boundary conditions, and the cou-

pling conditions are in fact boundary conditions for subsystems(waveguides

and coupling element).

Figure 2

Let us consider two periodic waveguides which are coupled through a cou-

pling element and let us consider two corresponding substructures (1 and

2) which are located at the ends of the waveguides (see Figure 2). These

substructures are coupled with the coupling element at surfaces Γ1 and Γ2

and are coupled with the other substructures, into waveguides, at surfaces

S1 and S2. It is assumed that the coupling element is only subject to the
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coupling actions (i.e. there is no force inside the element).

According to Mencik and Ichchou (2005), with the dynamical equilibrium

of the wave guides and the coupling element, and their continuity con-

ditions of nodal displacement and force expressed in the modal basis, it

can be demonstrated that the dynamical behavior of a given coupled pe-

riodic waveguide i (i = 1, 2) can be simply expressed in terms of wave

modes ((Φ
inc(i)
q )T(Φ

inc(i)
F )T)T incident to the coupling element and wave modes

((Φ
ref(i)
q )T(Φ

ref(i)
F )T)T reflected by the coupling element. It can also be proved

that the modal amplitudes (Qref(1),Qref(2)) of the modes reflected by the

coupling element can be related to amplitudes (Qinc(1),Qinc(2)) of the modes

incident to the coupling element via a diffusion matrix, namely C, which re-

lates the reflection and transmission coefficients of the wave modes through

the dynamical behavior of the coupling element:

 Qref(1)

Qref(2)

 = C

 Qinc(1)

Qinc(2)

 , (5)

The diffusion matrix C directly depends on the normalization of eigenvectors

{Φ(1)
j }j and {Φ(2)

k }k. It seems advantageous to normalize the eigenvectors of

the two waveguides in a similar manner. When there is only one unit incident

wave mode from waveguide 1, and assuming that there is no incident wave

from waveguide 2, we have Qinc(1) = {0 0 . . . 0 1 0 . . . 0}T and Qinc(2) =

{0}, and the reflection and transmission coefficients Cref and Ctrans of a
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specific incident mode i can be calculated in the following manner:

Cref
i = Q

ref(1)
i (6a)

Ctrans
i = Q

ref(2)
i (6b)

2.2 Modified wave finite element formulation

The MWFE formulations are firstly given in the work of Mencik and Ichchou

(2008) with etailed deductions and discussions. Essential formulations and

deductions are extracted and presented below in this subsection.

2.2.1 Associated substructuring scheme

We consider a typical multi-layered unit cell, say sub system k, belonging to

a composite structure(see Figure 3).

Figure 3

In the present work, the unit cell representative of the composite waveguide

is assumed to represent a set of M connected straight homogeneous layers,

whose left and right boundaries are denoted, respectively, as {SiL} and {SiR}:
for each layer i(i = 1, . . . ,M), the surfaces {SL} and are assumed to contain

the same number of DOFs, say ni. Let us denote as Γi the coupling interface

between each layer i and its surroundings, that is, the set of coupled layers

{j}j 6=i. qi and Fi are the displacements and the forces applied to the uncou-

pled layer on {SiL} ∪ {SiR}.
Following what was previously presented for the WFE approach, the dynam-

ic equilibrium equation of the unit cell is reformulated into a state vector
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representation:

D



q1
L

...

qM
L

q1
I

...

qM
I

q1
R

...

qM
R



=



F1
L

...

FM
L

F1
I

...

FM
I

F1
R

...

FM
R



= G



F1
L

...

FM
L

F1
I

...

FM
I

F1
R

...

FM
R



, (7)

D represents the dynamic stiffness matrix, and G imposes the continuity

conditions of the forces between the uncoupled layers Mencik and Ichchou

(2008). Assuming that the internal DOFs of the subsystem are not submitted

to external forces, that is F i
I = 0 ∀i, leads to the following condensed state

vector representations for the associated substructuring scheme:



q1
R

...

qM
R

F1
R

...

FM
R



= S



q1
L

...

qM
L

−F1
L

...

−FM
L



. (8)

Here, S is a (2
∑

i n
i × 2

∑
i n

i) matrix, expressed by

S =

 −(D∗LR)−1D∗LL −(D∗LR)−1

D∗RL −D∗RR(D∗LR)−1D∗LL −D∗RR(D∗LR)−1

 (9)
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D∗ represents the dynamic stiffness matrix condensed on the DOFs of the

left and right boundaries. More over, observing that, for each layer i, the

contribution of the surroundings Θi to the forces applied on a specific bound-

ary, either SiL or SiR, is null except on the boundary SΘi

L or SΘi

R , respectively,

leads to the following relationships:


F1

R

...

FM
R

 = G∗


F1
R

...

FM
R



−F1

L

...

−FM
L

 = G∗


−F1

L

...

−FM
L

 (10)

where G∗ = GLL = GRR. The substructuring scheme provided by equations (8)

and (10) is interesting compared to the classic model as it allows the local

kinematic variables (displacements and forces) of each layer cross-section to

be considered independently from the surroundings. Specifically, the method

appears interesting for constructing the global wave modes of the multi-

layered system from a set of local wave mode bases attached to the layers

with free interfaces {Γi}i and whose dimensions can be individually tuned

to ”fit” with each cross-section dynamics. This constitutes the framework of

the MWFE formulation presented below.
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2.2.2 Construction of the global wave mode basis

Considering the coupling conditions between two consecutive subsystems k−

1 and k, established for each layer i

q
i(k)
L = q

i(k−1)
R F i(k)

L = F i(k−1)
R

k = 2, . . . , N i = 1, . . . ,M (11)

and considering, according to Bloch’s theorem Brillouin (1946), wave solu-

tions {Φj}j in equation (8) leads to the following eigenvalue problem

S



(Φq)j|1
...

(Φq)j|M

(ΦF )j|1
...

(ΦF )j|M



= µj



(Φq)j|1
...

(Φq)j|M

(ΦF )j|1
...

(ΦF )j|M



, |S − µjI| = 0 (12)

where (Φq)j|i and (ΦF)j|i are (ni× 1) vectors which represent the restriction

of the (n× 1) global mode components (Φq)j and (ΦF)j to SiL or SiR.

The construction of the global wave modes {Φj}j can be established in the

following matrix form: 

(Φq)j|1
...

(Φq)j|M

(ΦF )j|1
...

(ΦF )j|M



= Baj (13)
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Hereafter, the global wave modes {Φj}j of the multi-layered system are con-

structed from a set of reduced local bases

{{Φ̃i

j}j=1,...,2mi}i = {{Φ1
j}j, {Φ2

k}k, . . . , {ΦM
l }l} attached to the homogeneous

uncoupled layers and having specific dimensions {2mi}i. Two different mod-

elings for the global wave mode construction are described below: the first

MWFE modeling enforces the convergence of the wave mode expansion used

in the global wave mode construction, while the second MWFE modeling is

based on a relatively well-conditioned eigenvalue problem Mencik and Ich-

chou (2008).

In the first MWFE modeling, the matrix B is written as:

B =

 I 0

0 G∗


 Φ̃

local

q

Φ̃
local

F

 . (14)

while in the second MWFE modeling, the matrix B is expressed in the fol-

lowing form:

B =

 Φ̃
local

q

Φ̃
local

F

 . (15)

Thus, the set of modal participations {aj}j can be evaluated by solving a

square (2
∑

im
i × 2

∑
im

i) classic eigenvalue problem

SMWFEaj = µjaj, |SMWFE − µjI| = 0 (16)
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where

SMWFE =
[
BTJB

]−1 BTJSB (17)

The eigenvalue problem (16) in central to the MWFE formulation. Given a

set of reduced local bases {{Φ̃i

j}j}i having appropriate dimensions, the for-

mulation consists of finding the eigenvalues {µj}j, which describe the global

wave mode velocities, and the eigenvectors {aj}j, providing, by means of e-

quation (12), the restrictions of the global wave mode shapes, say {{Φj|i}i}j,

to the set of surfaces {SiL} or {SiR}.

2.3 Piezoelectric finite element formulation for the cou-

pling element

In the Diffusion Matrix Model(DMM) (Ichchou et al., 2009), in order to

consider properly a coupling element with shunted piezoelectric patches, an

appropriate formulation should be used. A finite element model of the cou-

pled system consisting of a beam and a pair of identic piezoelectric patches

with shunted circuit can established, as displayed in Figure 4.

Figure 4

This model contains two multi-layered waveguides with 3D linear brick finite

elements and a coupling element with 3D linear brick piezoelectric finite ele-

ments. The piezoelectric element has 8 nodes and 4 degrees of freedom(DOF)
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per node. Each node has 3 structural DOF and 1 electrical DOF (electrical

potential). All electrical potential DOF that are placed on electrode sur-

faces of the patches are reduced such that only one potential master DOF

remains on each piezoelectric patch. All electrical potential DOF on the

patch surfaces bonded to the beam are grounded. The whole structure has

free mechanical boundary conditions. For the sake of simplicity, detailed d-

eductions of strain energy, mass and stiffness matrices for the piezoelectric

elements (without shunt circuit), which can be found in the work of Casadei

et al. (2010), are not presented in this paper. The discretized electro-elastic

system of equations can be written in the form shown in Equation (18a)

and Equation (18b).

Mdd d̈ + Kddd + Kdvv = f (18a)

KT
dvd + Kvvv = Q (18b)

where d and v represent the structural and electrical DOF respectively, and:

Mdd =

∫
Vs

NT
d ρNddV, Kdd =

∫
Vs

BT
d cEBddV, Kdv =

∫
Vs

BT
d eTBvdV

Kvv = −
∫
Vs

BT
v εSBvdV, f =

∫
Sf

NT
d f dS, Q = −

∫
Sq

NT
v qdS. (19)

in which Nd and Nv are the shape functions, Bd = DpNd and Bv = ∇Nv.

Dp is the linear differential operator matrix which relates the strains to the

structural displacements U. In this case, the matrix Dp is given in Equa-
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tion (20).

Dp =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x


(20)

After finite element assembly, the discretized coupled piezoelectric and struc-

tural field equations are finally given in terms of nodal displacements U and

nodal electric potential V. Following the electrode definitions mentioned in

the work of Becker et al. (2006), the electrical potential DOF in the piezo-

electric patches are partitioned into three different groups:

• For nodes on the outer surfaces of the piezoelectric patches, their asso-

ciated electrical DOF are called Vp, and they have the same electrical

potential;

• For nodes on the inner surfaces of the piezoelectric patches bonded to

the beam, their associated electrical DOF are called Vg, and they are

grounded;

• For nodes inside the piezoelectric patches, their associated electrical

DOF are called Vi.
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The equations of motion are subsequently written in the form shown in E-

quation (21).



Muu 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





Ü

V̈i

V̈p

V̈g


+



Kuu Kui Kup Kug

KT
ui Kii Kip Kig

KT
up KT

ip Kpp Kpg

KT
ug KT

ig KT
pg Kgg





U

Vi

Vp

Vg


=



F

Qi

Qp

Qg


(21)

As Vg = 0, the fourth equation and fourth column in the mass and stiffness

matrices can be eliminated. Internal potential DOF can be determined by

exact static condensation from Equation (21) since internal electric charges

Qi = 0:

Vi = −K−1
ii KT

uiU−K−1
ii KipVp (22)

Since all the nodes on the potential electrode surfaces have identical poten-

tials, an explicit transformation matrix Tm can be used to define the master

potential DOF Vm, as shown in Equation (23).

Vp = TmVm (23)

The use of Equation (23) yields the fully coupled dynamics:

 Muu 0

0 0


 Ü

V̈m

+

 Huu Hup

HT
up Hpp


 U

Vm

 =

 F

Qm

 (24)
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with

Huu = Kuu −KuiK
−1
ii KT

ui (25a)

Hup = (Kup −KuiK
−1
ii Kip)Tm (25b)

Hpp = TT
m(Kpp −KT

ipK
−1
ii Kip)Tm (25c)

Qm = TT
mQp (25d)

After the definition of the master DOF, the R-L shunt circuit can be consid-

ered. The electrical impedance of the circuit under harmonic excitation can

be written as:

Zsh = R + jωL (26)

If there is only one Master electric DOF, Qm and Vm become scalar, thus the

current Ish in the shunt circuit can be expressed as Equation (27)

Ish = jωQm =
Vm
Zsh

(27)

By substituting Equation (27) into Equation (24), the electrical DOF can

be condensed and the equation that governs the structural dynamics under

harmonic excitation is shown in Equation (28).

[Huu − ω2Muu + Hup(
1

jωZsh
−Hpp)

−1

HT
up ]U = DciU = F (28)

Equation (28) gives a full finite element description of the shunted piezo-

electric patches, as a part of the coupling element for the DMM calculation.

21



Matrix Dci represents the dynamical stiffness matrix of the shunted piezo-

electric patch.

3 NUMERICAL SIMULATIONS OF MULTI-

LAYERED COMPOSITE BEAM WITH

SHUNTED PIEZOELECTRIC PATCHES

In this section, firstly the WFE method is applied for the analysis of wave

propagation in the multi-layered beam. Then the MWFE formulation is ap-

plied to the same structure and results like dispersion curves issued from these

two different approaches are compared. The DMM with shunted piezoelectric

elements is subsequently employed to calculate the reflection and transmis-

sion coefficients of the Z-axis bending wave in the multi-layered beam. The

influence of the shunted piezoelectric patches on the propagation of this wave

mode is carefully investigated with DMM.

3.1 Dispersion analysis with WFE and MWFE

The structure to be studied here is a 3-layered beam with 2 identical R− L

shunted piezoelectric patches. The finite element model of the waveguide is

shown in Figure 5, with the definition of geometric parameters. Numerical

values of the parameters are listed in Table 1.

Figure 5
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Table 1

The material of the outer layers of the multi-layered beam is steel and con-

sidered as isotropic, with Young’s modulus Eb = 210 GPa and Poisson’s

ratio νb = 0.33, and density ρb = 7850 kg/m3. The core of the multi-layered

beam is much softer and lighter than the skin layers, with Young’s modulus

Eb = 2 MPa and Poisson’s ratio νb = 0.3, and density ρb = 1000 kg/m3. A

loss factor η = 0.001 is added to the finite element model as the system is

considered to be dissipative.

Both the WFE and MWFE approaches are applied to the same structure.

The analysis is carried out on the frequency band from 0 to 3 kHz so that

several cross-section modes can appear. First of all, the dispersion curves of

the uncoupled layers are calculated via the WFE approach. The results are

shown in Figure 6.

Figure 6

Later the second MWFE modeling is applied and full wave mode bases of all

the 3 uncoupled layers are used. The dimension of the MWFE problem is∑
im

i = 105, which is considerably larger than the dimension of the WFE

problem(n = 75), due to the substructuring technique. By looking at the

dispersion curves provided by the second MWFE modeling in Figure 7, it is

clear that the two methods give nearly identical results. This validates the

underlying substructuring technique of the MWFE formulation.

Figure 7
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Unlike the WFE formulation, the MWFE formulation is able to capture the

essential global wave modes of the multi-layered system. For each layer,

the chosen local wave modes are expected to significantly contribute to the

dynamics of the system. Specifically, for the outer layers in steel, these

local wave modes represent rigid cross-section wave motions, while for the

soft middle layer, these local wave modes represent not only rigid cross-

section wave motions but also a set of contributing cross-section modes. The

first MWFE modeling is used to construct the global wave modes, from

the set of reduced wave mode bases attached to the uncoupled layers, with

m1 = m3 = 4 and m2 = 30. Now the dimension of the MWFE problem is∑
im

i = 38, which appears much smaller than the dimension of the WFE

problem(n = 75). The dispersion curves associated with the global wave

modes are displayed in Figure 8.

Figure 8

It can be noticed from Figure 8 that for the 4 rigid cross-section modes

(Modes 1 to 4) and the shearing mode (Mode 5), MWFE and WFE give

similar results; however, for the other 3 cross-section modes (Modes 6 to 8),

with the MWFE method, their cutting-on frequencies are generally smaller

than those obtained with the WFE method.

It should also be noticed that for Mode 2 and Mode 7, their dependency

at about 2.2 kHz with the WFE method can be removed through the lo-

cal wave mode basis truncation of the first MWFE formulation. When the

sizes of the mode bases overestimate the dynamics of each layer, the mode
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dependency will occur. In this case, the wave mode classification criterion is

not capable of distinguishing theses two wave modes around this frequency,

as their deformed shapes are similar to each other, as shown in Figures 9

and 10.

Figure 9

Figure 10

It should be mentioned that the deformed shapes are obtained using the

second MWFE modeling. The continuity of displacement components at the

coupling interfaces is well respected.

The physical wave behavior of the three-layered system is correctly captured

with the reduced mode basis, and the gain of computational time is rather

evident, which represents another advantage of the MWFE modeling.

3.2 Energy diffusion analysis with DMM for the Z-axis

bending mode

In this section, the energy diffusion problem is dealt with via the DMM pro-

posed in Subsection 2.1.

The three-layered beam is equipped with two identical R−L shunted piezo-

electric patches. These piezoelectric patches are fabricated by Saint-Gobain

Quartz (type SG P189) and the corresponding material characteristics are

listed in Appendix A. This type of piezoelectric patch works mainly in the
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3-1 mode. The finite element model of the coupling element is displayed in

Figure 11. Numerical values of the parameters are listed in Table 1.

Figure 11

As in this paper, the mostly concerned mode is the Z-axis bending wave

mode (Mode 4), and with the MWFE modeling, this mode can already be

successfully captured, the dimension of the MWFE problem stays the same

for the moment(m1 = m3 = 4 and m2 = 30). The deformed modal shapes

of the Z-axis bending mode issued from the WFE and MWFE methods are

displayed in Figure 12(a) and Figure 12(b) respectively.

Figure 12

The reflection and transmission coefficients of the Z-axis bending wave mode

can be calculated with the DMM of the two different formulations(WFE and

MWFE). In the shunt circuit, a resistance R = 10 Ω and an inductance of

L = 3 H are used, to obtain a tuning frequency at about 2.2 kHz. The

tuning frequency can be calculated according to Equation (29):

ftune =
1

2π
√
LCS

p3

(29)

where CS
p3 is the capacitance of the piezoelectric patch measured at constant

strain. The subscript 1 represents the X-axis direction while the subscript 3
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denotes the Z-axis direction. It can be calculated in the following manner:

CS
p3 =

εS × A3

L3

(30)

where A3 = bb × Lb is the area of the surface of the piezoelectric patch per-

pendicular to Z-axis, L3 = hp is the thickness of the piezoelectric patch in

Z-axis direction.

For the two different formulations WFE and MWFE, the corresponding D-

MM are obtained in slightly different ways: with the WFE formulation, the

coupling element in the DMM is treated in a traditional manner, with all

the structural and electric DOFs condensed to the DOFs at left and right

boundaries; however, with the MWFE formulation, the coupling element is

treated layer by layer: for the layer with bonded shunted piezoelectric patch,

the structural and electric DOFs in the piezoelectric patch are condensed,

and only the structural DOFs of the layer remain; for the layer not connected

to the piezoelectric patches, it is modeled in a general manner. Then all the

layers are assembled with the MWFE formulation, and the DOFs in the set

of layers are condensed to the DOFs at the left and right boundaries. It

should also be mentioned that the diffusion matrix C depends not only on

the dynamics of the coupling element, but also on the wave modes extracted

after the calculation of the eigenvalue problem in equation (16) associated to

the waveguides. In fact, the dimension of C depends directly on the number

of wave modes retained nc after the calculation of the eigenvalue problem (16)
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(nc < 2
∑

im
i), which can be chosen according to the number of propagating

wave modes in the waveguides in the frequency band of interest for example.

In the WFE and MWFE approaches, the dimension of the diffusion matrix

C is chosen to be the same(nc × nc).

Firstly, the first MWFE formulation is applied, with m1 = m3 = 4 and

m2 = 30, and results are compared to those issued from the WFE method,

as shown in Figure 13.

Figure 13

It can be noted that generally, the reflection coefficients obtained via the

WFE approach are bigger than those issued from the MWFE approach. This

fact might be due to the continuity conditions imposed by the two approach-

es: WFE method used classical finite element model of the coupling element,

the layers are bonded together, while the MWFE method used Boolean op-

erators to consider the continuity conditions between the layers, then the

coupling element in the WFE approach seems to be more rigid than that in

the MWFE approach.

Subsequently, the first MWFE formulation (with m1 = m3 = 4 and m2 = 30)

is used and reflection and transmission coefficients are compared to those is-

sued from the second MWFE formulation (with m1 = m3 = 30 and m2 = 45,

full mode bases of the 3 layers), as displayed in Figure 14.

Figure 14
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It can be seen from Figure 14 that with the DMM of the first MWFE for-

mulation, greater reflection coefficients are obtained than that of the sec-

ond MWFE formulation. This might be explained as follows: as in the first

MWFE modeling, there are much less wave modes than in the second MWFE

modeling, and the dependency of global wave modes is removed thanks to

the truncation of local wave mode bases of each uncoupled layer, the energy

of the incident Z-axis bending wave will not be distributed to high order

parasite wave modes. Both in Figure 13 and 14 there are some fluctuations

in the transmission coefficients obtained via the first MWFE modeling. This

might result from numerical error during the computation. Globally, the first

and second MWFE modelings give similar results, especially for the frequen-

cy band around the tuning frequency f = 2.2 kHz.

3.3 Parametric studies

In Subsection 3.1, it has been observed that with the second MWFE formu-

lation, when full modal bases are applied for the layers, it gives nearly the

same dispersion curves as the WFE formulation. However, when the first

MWFE formulation is applied, as truncated modal bases of the layers are

applied, this method gives different results from the WFE formulation. For

the cross-section modes (Modes 6 to 8 in Figure 8), the cut-on frequencies

predicted with MWFE formulation and WFE formulation are quite distinct.

Additionally, as mentioned in Subsection 3.2, with the MWFE formulations,
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fluctuations in the transmission coefficients can be noted. In order to un-

derstand the influence of the parameters applied in the MWFE modeling on

the prediction of dispersion curves and diffusion coefficients, and at the same

time try to improve the quality of the numerical results, it’s interesting to

perform several parametric studies.

3.3.1 Parametric studies on dispersion curves

In Subsection 3.1, with the first MWFE modeling, the sizes of the modal

basis of each layer are m1 = m3 = 4 and m2 = 30, and the dimension of the

MWFE problem is
∑

im
i = 38. If larger modal basis is used for the outer

layers 1 and 3, for example, m1 = m3 = 6 and m2 = 30, the results are closer

to WFE results, as displayed in Figure 15.

Figure 15

The cut-on frequency of Mode 8 calculated with the new wave mode bases

using the first MWFE method is almost the same as that calculated with

WFE method. However, for the cut-on frequency of Mode 7, there is always

a difference between the two methods. When the sizes of the modal bases are

applied in the second MWFE modeling, similar results can be found, except

for Mode 2 and Mode 7, as the mode dependency occurs between these two

modes, as displayed in Figure 16.

Figure 16
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If even larger wave mode bases are used in the second MWFE formulation,

for example, m1 = m3 = 6 and m2 = 45, MWFE results converges to

WFE results. In this case, full mode wave basis is applied for Layer 2. The

dispersion curves are shown in Figure 17.

Figure 17

It can be concluded from the previous results that the sizes of the mode basis

of Layers 1 and 3 have a direct influence on the Mode 8, while the size of the

mode basis of Layer 2 has an effect on the Mode 7. The deformed shape of

Mode 8 is given in Figure 18.

Figure 18

The other cross-section modes (Mode 5 and Mode 6) can be correctly cap-

tured in all cases with proper mode basis sizes. With the MWFE modeling,

dependent wave modes should be avoided in the mode bases of the 3 layers

in order to guaranteer the convergence of this method, thus the size of the

mode basis of each layer should not be too large so as not to overestimate

the dynamics of each layer.

3.3.2 Parametric studies on diffusion coefficients

Subsequently, a set of mode bases of different sizes are given in Table 2.

The effect of the mode basis size on the calculation of the reflection and

transmission coefficients of the bending mode in Z-axis (Mode 4) is then

investigated in detail.
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Table 2

Firstly, the influence of the dimension of the inner layer (Layer 2) is analyzed.

Mode bases 1, 2 and 3 are used, as the dimension of the mode bases in

layers 1 and 3 m1 = m3 = 6, and that of the layer 2 m2 varies from 30 to

45. It should be mentioned that m1 larger than 6 is never used as in the

frequency band of interest, the number of propagating modes is 4. Only the

4 propagating modes and 2 evanescent modes (X-axis torsion and Z-axis

bending) are retained as the imaginary parts of their wavenumbers are not

too far away from 0. The wavenumber of other wave modes are with a large

imaginary part and will not be taken into the mode basis. All the wave

modes in the mode bases are classified according to the imaginary part of

their wavenumber: wavenumber with smaller imaginary part is on the top

of the mode basis. The reflection coefficients calculated with the 3 different

mode bases using MWFE formulation, as well as those obtained via the WFE

approach, are compared in Figure 19.

Figure 19

It can be seen from Figure 19 that mode basis 1(m2 = 40) and mode ba-

sis 2(m2 = 30) give nearly the same reflection coefficients as those issued

from the WFE method, while mode basis 3(m2 = 45) results in much lower

reflection coefficients. The fluctuations in the transmission coefficients be-

comes weaker when m2 becomes larger. Here, according to this comparison,

m2 = 30 is likely to be the best mode basis dimension for layer 2 when
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m1 = m3 = 6.

Later the influence of the sizes of the outer layers 1 and 3 is studied. Mode

bases 3, 4 and 5 are applied, as the dimension of the mode basis in layer 2

stays the same m2 = 45, and m1 varies from 4 to 6. The reflection coefficients

calculated with the 3 different mode bases using MWFE formulation, as well

as those obtained via the WFE approach, are compared in Figure 20.

Figure 20

It can be seen from Figure 20 that with m2 = 45, reflection coefficients

obtained via the MWFE approach are generally larger than WFE results, and

for the results with mode bases 4 and 5(m1 = m3 = 5 and 4 respectively),

the transmission coefficients are not accurate. Here the best mode basis

dimension for outer layers 1 and 3 is m1 = m3 = 6, when m2 = 45. If the

mode basis dimension of the inner layer 2 is changed to m2 = 30, the results

are displayed in Figure 21.

Figure 21

With m2 = 30, the reflection coefficients obtained with mode bases 2, 8 and

9 are much closer to WFE results than those acquired with m2 = 45. And

with mode basis 2(m1 = m3 = 6), the reflection coefficients are nearly the

same as WFE results, and the fluctuation in transmission coefficients is not

too strong.

By following the same procedure, if m2 is fixed to 40, and by varying m1 = m3
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from 4 to 6, it is interesting to see from Figure 22 that only with the mode

basis 1(m1 = m3 = 6), the transmission coefficients can be acquired correctly.

Figure 22

The last parametric test is carried out with m1 = m3 = 5 and by varying

m2 from 30 to 45, using mode bases 6, 8 and 10. The results are given in

Figure 23.

Figure 23

It can be noted that with mode basis 6(m2 = 40) and mode basis 10(m2 =

36), the transmission coefficients are more accurate. If the evanescent X-axis

torsion wave (5th mode in the mode bases, the 6th being the evanescent Z-

axis bending wave) is taken into the mode basis of the outer layers 1 and 3,

smaller dimension of the mode basis of layer 2 should be chosen.

From all the parametric studies performed here, it can be concluded that the

most important mode basis dimension is m2. With a proper m2 chosen (m2 <

40 for example), reflection and transmission coefficients are less sensitive to

m1 and m3. However, if m2 is larger and overestimates the dynamics of

the inner layer 2, m1 and m3 should be properly chosen to obtain correct

results(m1 = m3 = 6 for example). Generally speaking, larger mode basis

dimension for outer layers 1 and 3 tends to give transmission coefficients with

less fluctuation.
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4 CONCLUSIONS

Multi-layered beams with R−L shunted piezoelectric patches are calculated

using the MWFE formulation adjusted to consider piezoelectric elements.

The control of energy diffusion parameters of wave modes propagating in

such composite beams has been studied with two different kinds of MWFE

formulation and the associated DMM approach. A modal reduction tech-

nique has been applied in the MWFE formulation so as not to overestimate

the dynamics of the multi-layered system. Pertinent local wave mode bases

of the uncoupled layers with correct dimensions should be applied in the

MWFE formulation.

Through parametric studies on the dimensions of local wave mode bases in

the MWFE formulations, several conclusions can be drawn:

• For the analysis of wave dispersion, it can be concluded that the dimen-

sions of the local mode bases of outer Layers 1 and 3 have an impact

on Mode 6 and Mode 8, while the dimension of the local mode basis

of the inner Layer 2 influences mainly the Mode 7. Mode conversion

between Mode 2 and Mode 7 occurs when the dimension of the local

mode basis of the inner Layer 2 is too large, or the MWFE formulation

itself does not guarantee the continuity of the forces at the interfaces

of the uncoupled layers (second MWFE).

• For the analysis of energy diffusion, it can be summarized that the

dimension of the local mode basis of Layer 2 is the most important pa-
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rameter. If the dimension of this mode basis doesn’t overestimate the

dynamics of this layer, reflection coefficients issued from the MWFE

formulations are close to those issued from the classical WFE method.

Additionally, when the dimension of the local mode basis of Layer 2 is

smaller, the reflection and transmission calculated for the Z-axis bend-

ing wave are less sensitive to dimensions of the local wave mode bases

of Layers 1 and 3. These dimensions influence mainly the fluctuation

in transmission coefficients.

The formulations developed in this work are general and can be applied for

all kinds of slender multi-layered smart composite structures. The numerical

techniques presented here enable the evaluation of the performance of shunt-

ed piezoelectric patches on the control of wave propagation in multi-layered

smart composite beams, and facilitate design modifications and systematic

investigations of geometric and electric parameters of multi-layered smart

composite beams with shunted piezoelectric patches. The experimental val-

idation of the numerical results will be focused on in future work.
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A Appendix A: material properties of the piezo-

electric patch (type SG P189)

Mass density ρ: ρ = 7650 kg/m3.

Material stiffness matrix cE :

cE = 1010 ×



15.4 8.263 7.859 0 0 0

8.263 15.4 7.859 0 0 0

7.859 7.859 13.74 0 0 0

0 0 0 4.59 0 0

0 0 0 0 4.59 0

0 0 0 0 0 3.57


Pa

The piezoelectric stress coupling matrix e:

e =


0 0 0 0 12.88 0

0 0 0 12.88 0 0

−6.187 −6.187 12.80 0 0 0

 N/(V ·m)
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The permittivity matrix under constant strain εS :

εS = 10−8 ×


1.011 0 0

0 1.011 0

0 0 0.591

 C/(V ·m)
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Figure 1: An illustration of a periodic waveguide (Mencik and Ichchou, 2005).
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Figure 2: An illustration of the coupling between two different periodic
waveguides (Mencik and Ichchou, 2005).
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Figure 3: An illustration of a multi-layered elastic system with a rectangular
cross-section (Mencik and Ichchou, 2008).
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Figure 4: Finite element model of a multi-layered beam with symmetric
shunted piezoelectric patches. The coupling element is the part of the beam
with the two symmetrically bonded piezoelectric patches.
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Figure 5: Finite element model of the unit cell representative of the multi-
layered beam as a waveguide.
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(a) Layers 1 and 3

(b) Layer 2

Figure 6: Dispersion curves of wave modes propagating in(a)Layers 1 and 3
(b)Layer 2, in the frequency band from 0 to 3 kHz, using the WFE approach.
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Figure 7: Dispersion curves for the global waveguide obtained using the
second MWFE modeling, based on the full wave mode basis of each uncoupled
layer. (solid lines)MWFE results (dashed lines)WFE results.
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Figure 8: Dispersion curves for the global waveguide obtained using the first
MWFE modeling, based on the reduced wave mode basis of each uncoupled
layer. (solid lines)MWFE results (dashed lines)WFE results.
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(a) Mode 2 (b) Mode 7

Figure 9: Deformed modal shapes of (a)the Y -axis bending wave mode (Mode
2) and (b)the 2nd X-axis torsional wave (Mode 7), at the frequency f0 =
2000 Hz. (solid line)Deformed mode shape (dashed line)undeformed cross-
section.
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(a) Mode 2 (b) Mode 7

Figure 10: Deformed modal shapes of (a)the Y -axis bending wave mode
(Mode 2) and (b)the 2nd X-axis torsional wave (Mode 7), at the frequency
f0 = 2780 Hz. (solid line)Deformed mode shape (dashed line)undeformed
cross-section.
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Figure 11: Finite element model of the coupling element in the three-layered
system with 2 shunted piezoelectric patches.
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(a) WFE (b) MWFE

Figure 12: Deformed modal shapes of the Z-axis bending wave mod-
e (Mode 4) issued from (a)WFE formulation (b)first MWFE formulation,
at the frequency f0 = 380 Hz. (solid line)Deformed mode shape (dashed
line)undeformed cross-section.
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Figure 13: Reflection and transmission coefficients of the Z-axis bending
wave mode using the first MWFE formulation and WFE method.
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Figure 14: Reflection and transmission coefficients of the Z-axis bending
wave mode using the first MWFE formulation and second MWFE method.
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(a) original view

(b) zoom

Figure 15: Dispersion curves in the waveguide using the first MWFE formu-
lation with different mode bases and WFE method. (solid lines)first MWFE
results (dashed lines)WFE results.
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Figure 16: Dispersion curves in the waveguide using the second MWFE
formulation with different mode bases and WFE method. (solid lines)second
MWFE results (dashed lines)WFE results.
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(a) original view

(b) zoom

Figure 17: Dispersion curves in the waveguide using the first MWFE formu-
lation with different mode bases and WFE method. (solid lines)first MWFE
results (dashed lines)WFE results.
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(a) WFE (b) MWFE

Figure 18: Deformed modal shapes of Mode 8 issued from (a)WFE formula-
tion (b)second MWFE formulation, at the frequency f0 = 2780 Hz. (solid
line)Deformed mode shape (dashed line)undeformed cross-section.
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Figure 19: Reflection coefficients using the second MWFE formulation with
different mode bases (1, 2 and 3) and WFE method. (solid line)Mode basis
2(m2 = 30) (dashed line)Mode basis 1(m2 = 40) (point-dashed line)Mode
basis 3(m2 = 45) (point markers)WFE results. m1 = m3 = 6.
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Figure 20: Reflection coefficients using the second MWFE formulation with
different mode bases (3, 4 and 5) and WFE method. (solid line)Mode basis
5(m1 = m3 = 4) (dashed line)Mode basis 4(m1 = m3 = 5) (point-dashed
line)Mode basis 3(m1 = m3 = 6) (point markers)WFE results. m2 = 45.
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Figure 21: Reflection coefficients using the second MWFE formulation with
different mode bases (2, 8 and 9) and WFE method. (solid line)Mode basis
2(m1 = m3 = 6) (dashed line)Mode basis 8(m1 = m3 = 5) (point-dashed
line)Mode basis 9(m1 = m3 = 4) (point markers)WFE results. m2 = 30.
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Figure 22: Reflection coefficients using the second MWFE formulation with
different mode bases (1, 6 and 7) and WFE method. (solid line)Mode basis
1(m1 = m3 = 6) (dashed line)Mode basis 6(m1 = m3 = 5) (point-dashed
line)Mode basis 7(m1 = m3 = 4) (point markers)WFE results. m2 = 40.
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Figure 23: Reflection coefficients using the second MWFE formulation with
different mode bases (6, 8 and 10) and WFE method. (solid line)Mode basis
8(m2 = 30) (dashed line)Mode basis 10(m2 = 36) (point-dashed line)Mode
basis 6(m2 = 40) (point markers)WFE results. m1 = m3 = 5.
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dx bb h1 h2 h3 Lb hp
0.001 0.02 0.001 0.004 0.001 0.01 0.001

Table 1: Numeric values of the geometric parameters in the waveguide shown
in Figures 5 and 11. The units of all the parameters are in meter (m).
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Mode Basis m1 m2 m3

1 6 40 6
2 6 30 6
3 6 45 6
4 5 45 5
5 4 45 4
6 5 40 5
7 4 40 4
8 5 30 5
9 4 30 4
10 5 36 5

Table 2: Size of mode bases
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