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Abstract

The wave propagation problem in thin-walled elastic structures with shunted

piezoelectric patches is investigated in this work. Based on the finite el-

ement(FE) method and periodical structure theory, the Wave Finite El-

ement(WFE) approach is firstly developed as a prediction tool for wave

propagation characteristics in thin-walled beam structures, and subsequently

extended to consider shunted piezoelectric elements through the Diffusion

Matrix Model(DMM). These numerical techniques enable the calculation of

reflection and transmission coefficients of propagating waves in thin-walled

structures with shunted piezoelectric patches. The performance of shunted

piezoelectric patches on the control of wave propagation is analyzed numeri-

cally with the DMM. Forced response of thin-walled structures with shunted

piezoelectric patches can also be obtained via the Forced Wave Finite El-

ement(FWFE) formulation. With the frequency response issued from the

FWFE calculation, the time response of these structures can be acquired
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via an Inverse Discrete Fourier Transform(IDFT) approach. An extraction

technique for reflection coefficient is proposed and can be applied in both

numerical simulations and experiments. The formulations proposed in this

work are general and can be applied to all types of slender structures.

Keywords:

Semi-active control, wave propagation, thin-walled structure, piezoelectric,

energy diffusion

1. Introduction

Thin-walled structures are widely used nowadays, especially in aerospace

engineering domain, where we should solve materials-consumption problems

with preservation of necessary strength and sufficient lightness. The aeronau-

tical structures are often large and complex, where the propagation phenom-

ena play an important role in the dynamical behavior of these structures. The

thin-walled components, especially straight ones of constant cross-section

that can be regarded as one-dimensional waveguides, are often carriers of

mechanical energy from the source. The energy transfer leads to sound radi-

ation and unwanted vibration, and then problems like fatigue and structural

borne sound will appear. Mastering the dynamical behavior of thin-walled

structures can provide efficient and satisfactory means for the structure de-

sign.

For this purpose, firstly, prediction and evaluation tools should be developed

for thin-walled structures. As waveguides, their dynamic properties can be

described by dispersion curves, for which many approaches are available.

The most well-known methods are based on theories like Euler-Bernoulli and
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Timoshenko beams. However, these beam theories are limited by the hy-

pothesis of undeformed cross-section, which is only valid at low frequencies

and for compact cross-sections. In the work of Gavric [1], it is mentioned

that when thin-walled beams are concerned, even a relatively low-frequency

excitation can produce transfer of mechanical energy by propagating waves

associated with deformed cross-section modes. The application of finite el-

ement method(FEM) somehow solved this kind of problem, and can give

precise prediction of propagational wavenumbers and modes of thin-walled

beams. Gavric [1, 2] proposed a particular finite element scheme allowing the

extraction of wavenumbers from the resolution of a four-order matrix equa-

tion. Gendy et al. [3] presented a three-dimensional, two-field variational

formulation and the corresponding finite element discretization for free vi-

bration analysis of coupled extensional/flexural/torsional modes of curved

beams with arbitrary thin-walled sections. Mitra et al. [4] developed a com-

posite thin wall beam element of arbitrary cross-section with open or closed

contour. Later, Houillon et al. [5] provided a propagative approach in order

to extract propagation parameters and the dispersion curves of thin-walled

structures of any cross-section. The formulations applied in this work can

be referred as wave finite element(WFE) method [6, 7, 8, 9, 10, 11], which

has been initiated by Mead [12] and Zhong and Williams [13] for wave mode

description into elastic systems with complex cross-sections. This method is

not constrained by low-frequency analytical assumptions and can be applied

in the mid-frequency range, where cross-section modes propagate [6, 14].

In order to control wave modes propagating in thin-walled structures, appro-

priate control techniques should be applied, among which the piezoelectric
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damping is well adapted. The material’s intrinsic passive mechanical be-

havior can be controlled through piezoelectric transducers in order to attain

new desired functionalities [15]. Among the control configurations found in

published works, a well-known technique is the piezoelectric damping us-

ing external resistor-inductor shunt circuit [15, 16, 17, 18, 19, 20, 21]. This

semi-active configuration has the advantage of guaranteeing stability, and

can be obtained by bonding piezoelectric elements onto a structure and con-

necting the electrodes to the external shunt circuit. Due to straining of the

host structure, and through the direct piezoelectric effect, a portion of the

mechanical energy is converted into electrical energy and subsequently be

dissipated by Joule heating via the connected resistor. The R − L shunt

circuit on piezoelectric patches can be regarded as light oscillators instead

of heavy mass-spring structures. By varying the inductance L in the shunt

circuit, the tuning frequency can be adjusted to desired frequency band.

To analyze the propagation of wave modes in thin-walled structures with

piezoelectric elements, besides techniques for the prediction of dynamical

behavior of waveguides like the WFE method, piezoelectric finite elements

should also be integrated in the numerical model so as to consider the piezo-

electric domain in the structure. Recently, structures with shunted piezo-

electric elements were treated properly with FEM in the work of Nguyen

and Pietrzko [18] and Becker et al. [19]. However, the excessive computa-

tional time associated with large models constitutes one of the major limi-

tations. As an alternative, the WFE formulation with piezoelectric elements

can provide a low cost and efficient way to capture the dynamic behavior

of those structures. Spadoni et al. [20] and Casadei et al. [21] have studied
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the control of wave propagation in plates with periodic arrays of shunted

piezoelectric patches. Efforts have been dedicated firstly to developing the

finite element formulation of shunted piezoelectric elements, then to char-

acterizing the dispersion relation of waves propagating over the surface of

plate structures and the band gaps in the frequency domain. An experimen-

tal investigation was carried out in the work of Casadei et al. [21] to test

the performance of shunted piezoelectric patches via the forced response of

the structure. Wang et al. [22] have realized the same analysis on a beam

with periodic shunted piezoelectric patches through an analytical model and

corresponding experimental tests. Collet et al. [15] provided a full finite el-

ement description of a beam with periodic shunted piezoelectric patches via

the WFE method, but emphasis was placed on the optimization of shunt

impedance. Appropriate numerical tools still need to be properly developed

so as to characterize wave propagation and energy diffusion properties for

thin-walled structures with shunted piezoelectric elements.

Efforts have been made in this work to provide general formulations for thin-

walled structures with shunted piezoelectric patches. It should be mentioned

that these formulations can be applied for all kinds of elastic slender struc-

tures. On the whole, this paper focuses on proposing efficient numerical tools

for the prediction of wave propagation characteristics and dynamic behavior

of thin-walled beam structures with shunted piezoelectric patches. Verifica-

tion procedures are also considered in this work to test the efficiency of all

the numerical techniques for the evaluation of wave propagation character-

istics and dynamic behavior of those structures. This paper is organized as

follows: in Section 2, a brief outline of the WFE approach is provided (Sub-
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section 2.1). Subsequently, the numerical approach to evaluate the forced

response of the structure, namely the Forced Wave Finite Element(FWFE)

approach, is described (Subsection 2.2). The technique to acquire time re-

sponse of the structure is introduced in Subsection 2.3. Thereafter, the DMM

formulation for the prediction of energy diffusion of wave modes propagating

in thin-walled beam with shunted piezoelectric patches is presented (Subsec-

tion 2.4). All these numerical techniques are applied in Section 3 to evaluate

the performance of the shunted piezoelectric patches on the control of wave

modes in the beam. The symmetric pumping wave mode and the exten-

sional wave mode are targeted and investigated numerically via the DMM in

Subsection 3.1, and then through the FWFE approach in Subsection 3.2. In

Subsection 3.3, the thin-walled beam is excited in the extensional mode with

a wave packet excitation, and corresponding frequency and time responses

are calculated, based on which the reflection coefficients can be extracted to

verify DMM simulation results. Concluding remarks and perspectives of this

work are presented in Section 4.

2. Numerical prediction tools for thin-walled structures with shunted

piezoelectric elements

In this section, firstly the WFE formulation and the DMM are presented.

Then the forced WFE formulation and the method for the extraction of time

response are presented. All these techniques enable the calculation of pa-

rameters like reflection and transmission coefficients, the frequency response

function(FRF), and the time response under wave packet excitation. At last,

the finite element model of thin-walled beam structure with shunted piezo-
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electric elements is described in detail. With this model, the DMM can be

extended to consider piezoelectric elements so as to investigate the influence

of the shunted piezoelectric patches on the propagation of wave modes in

thin-walled beams. The formulations developed are general and can be em-

ployed for all types of elastic slender structures with shunted piezoelectric

patches.

2.1. Wave propagation and diffusion in structures through finite elements

The WFE method was employed to study the energy diffusion problem [6, 9,

23]. These references provide a detailed description of the dynamical behavior

of a slender structure, as illustrated in Figure 1, which is composed, along

a specific direction (say X−axis), of N identical substructures. Note that

this general description can be applied to homogeneous systems whose cross-

sections are constant. The dynamic of the global system is formulated from

the description of the waves propagating along the X−axis.

Figure 1

Let us consider a finite element model of a given substructure k (k ∈ {1, . . . , N})

belonging to the waveguide (cf. Figure 1). The left and right boundaries

of the discretized substructure are assumed to contain n degrees of free-

dom (DOFs). Displacements q and forces F which are applied on these

boundaries are denoted by (qL,qR) and (FL,FR), respectively. It is assumed

that the kinematic quantities are represented through state vectors u
(k)
L =

((q
(k)
L )T(−F

(k)
L )T)T and u

(k)
R = ((q

(k)
R )T(F

(k)
R )T)T, and that the internal DOFs

of substructure k are not submitted to external forces.

The dynamical equilibrium of any substructure k can be formulated in this
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manner:

D


q
(k)
L

q
(k)
I

q
(k)
R

 =


F

(k)
L

0

F
(k)
R

 , (1)

where qI represents the displacements of the internal dof’s of the substructure

and D is a symmetric matrix DT = D, representing the complex dynamical

stiffness of the substructure:

D = −ω2M + K(1 + iη). (2)

According to Mencik and Ichchou [6], the continuity conditions between the

substructures combined with the periodicity condition and the dynamical

equilibrium of each substructure can finally lead to the following boundary

value problem:

SΦi = µiΦi , |S− µiI2n | = 0. (3)

where

S =

 −(D∗
LR)

−1D∗
LL −(D∗

LR)
−1

D∗
RL −D∗

RR(D
∗
LR)

−1D∗
LL −D∗

RR(D
∗
LR)

−1

 . (4)

D∗ stands for the dynamical stiffness matrix of substructure k, condensed on

the DOFs of the left and right boundaries of the substructure:

D∗ =

 D∗
LL D∗

LR

D∗
RL D∗

RR

 . (5)

The matrix I2n is defined in the following manner:

I2n =

 In 0

0 In

 (6)

8



where In represents the identity matrix of size n.

As mentioned in reference [15], the eigenvalues µi and wavenumbers ki are

linked through the relation µi = e−ikidx , where dx denotes the length of the

unit cell in X-axis. The sign of the real part of the wavenumber ki ,Re(ki),

represents the direction of the phase velocity of the corresponding waves: if

Re(ki) > 0, the phase propagates in the positive x direction; if Re(ki) < 0,

the phase propagates in the negative direction, and if it is zero, ki corresponds

to the wavenumber of a pure evanescent wave that only occurs when an

undamped system is considered [24]. The matrix Φ of the eigenvectors can

be described in this way:

Φ =

 Φinc
q Φref

q

Φinc
F Φref

F

 , (7)

where subscripts q and F refer to the components which are related to the dis-

placements and the forces, respectively; ((Φinc
q )T(Φinc

F )T)T and ((Φref
q )T(Φref

F )T)T

stand for the modes which are incident to and reflected by a specific boundary

(left or right) of the heterogeneous waveguide, respectively. Finally, assum-

ing modal decomposition, state vectors u
(k)
L and u

(k)
R of any substructures k

can be expressed from eigenvectors {Φi}i=1,...,2n [13]:

u
(k)
L = ΦQ(k) , u

(k)
R = ΦQ(k+1) ∀k ∈ {1, . . . , N}. (8)

Here, vector Q stands for the amplitudes of the wave modes, which can be

expressed by (cf. equation(7)):

Q =

 Qinc

Qref

 . (9)
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The dynamical behavior of a periodic waveguide can be simply expressed

from a basis of modes representing waves traveling in the positive and neg-

ative directions of the system. An analysis of the dynamical response con-

sists of evaluating a set of amplitudes {(Qinc(k), Qref(k))}k associated with

the incident and reflected modes. Nevertheless, to evaluate energy diffu-

sion, the formulation of the coupling conditions of the system is needed, and

particularly at a coupling junction where several waveguides can be con-

sidered. It should be mentioned that the whole system has free boundary

conditions, and the coupling conditions are in fact boundary conditions for

subsystems(waveguides and coupling element).

Figure 2

Let us consider two periodic waveguides which are coupled through a cou-

pling element and let us consider two corresponding substructures (1 and

2) which are located at the ends of the waveguides (see Figure 2). These

substructures are coupled with the coupling element at surfaces Γ1 and Γ2

and are coupled with the other substructures, into waveguides, at surfaces

S1 and S2. It is assumed that the coupling element is only subject to the

coupling actions (i.e. there is no force inside the element).

According to Mencik and Ichchou [6], with the dynamical equilibrium of the

wave guides and the coupling element, and their continuity conditions of

nodal displacement and force expressed in the modal basis, it can be demon-

strated that the dynamical behavior of a given coupled periodic waveguide i

(i = 1, 2) can be simply expressed in terms of wave modes ((Φ
inc(i)
q )T(Φ

inc(i)
F )T)T

incident to the coupling element and wave modes ((Φ
ref(i)
q )T(Φ

ref(i)
F )T)T re-

flected by the coupling element.
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The dynamical equilibrium of a discretized substructure i (i = 1, 2) and the

coupling element can be formulated in this way:

D(i)


q
(i)
L

q
(i)
I

q
(i)
R

 =


F

(i)
L

0

F
(i)
R

 (i = 1, 2) and K


qc
1

qc
I

qc
2

 =


Fc

1

0

Fc
2

 ,

(10)

where matrix K stands for the complex dynamical stiffness of the coupling

element, (qc
1,F

c
1) and (qc

2,F
c
2) represent the displacements and the forces ap-

plied at the dof’s of the coupling element on surfaces Γ1 and Γ2, respectively.

Assuming that on surfaces Γ1 and Γ2, the coupling element and the waveg-

uides have the same meshing, so the continuity conditions between them can

be simply expressed as: qc
1

qc
2

 =

 q
(1)
R

q
(2)
L

 ,
 Fc

1

Fc
2

 = −

 F
(1)
R

F
(2)
L

 (11)

The dynamical equilibrium of the coupling element can be expressed in a

condensed form

K∗

 qc
1

qc
2

 =

 Fc
1

Fc
2

 , (12)

where K∗ stands for the dynamical stiffness matrix of the coupling element,

condensed on the DOFs located on surfaces Γ1 and Γ2.

The relation between forces (F
(1)
R ,F

(2)
L ) applied at the right and left bound-

aries of substructures 1 and 2 and displacements (q
(1)
R ,q

(2)
L ) is easily found

by considering equations (12) and (11):

K∗

 q
(1)
R

q
(2)
L

 = −

 F
(1)
R

F
(2)
L

 . (13)

11



By expressing q and F via Equations (8) and (9), the following relation can

be obtained:

K∗

 Φ
inc(1)
q Qinc(1) + Φ

ref(1)
q Qref(1)

Φ
inc(2)
q Qinc(2) + Φ

ref(2)
q Qref(1)

 = −

 Φ
inc(1)
F Qinc(1) + Φ

ref(1)
F Qref(1)

Φ
inc(2)
F Qinc(2) + Φ

ref(2)
F Qref(1)

 .

(14)

By rearranging Equation (14), it can be proved that amplitudes (Qref(1),Qref(2))

of the modes reflected by the coupling element can be related to amplitudes

(Qinc(1),Qinc(2)) of the modes incident to the coupling element via a diffusion

matrix, namely C, which relates the reflection and transmission coefficients

of the wave modes through the dynamical behavior of the coupling element: Qref(1)

Qref(2)

 = C

 Qinc(1)

Qinc(2)

 , (15)

with

C = −

K∗

 Φ
ref(1)
q 0

0 Φ
ref(2)
q

 +

 Φ
ref(1)
F 0

0 Φ
ref(2)
F

−1

×

K∗

 Φ
inc(1)
q 0

0 Φ
inc(2)
q

 +

 Φ
inc(1)
F 0

0 Φ
inc(2)
F

 (16)

The diffusion matrix C directly depends on the normalization of eigenvectors

{Φ(1)
j }j and {Φ(2)

k }k. It seems advantageous to normalize the eigenvectors of

the two waveguides in a similar manner.When there is only one unit incident

wave mode from waveguide 1, and assuming that there is no incident wave

from waveguide 2, we have Qinc(1) = {0 0 . . . 0 1 0 . . . 0}T and Qinc(2) =

{0}, and the reflection and transmission coefficients Cref and Ctrans of a
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specific incident mode i can be calculated in the following manner:

Cref
i = Q

ref(1)
i (17)

Ctrans
i = Q

ref(2)
i (18)

It should also be mentioned that the matrices S, D∗, K∗ and C are dependent

on the frequency.

2.2. Forced Wave Finite Element formulation

The WFE formulation provides wave propagation predictions under free

boundary conditions. In order to obtain the forced response of the struc-

ture, the Forced Wave Finite Element(FWFE) formulation [7, 25, 26] can

be employed. As mentioned in section 2.1, based on equation (8) and equa-

tion (9), amplitudes Q(k) which reflect for instance the kinematic variable

u
(k)
L for substructure k, are described from amplitudes Q(1) and Q(N+1) rep-

resenting kinematic variables u
(1)
L and u

(N)
R at the waveguide boundaries.

According to the coupling relations between two consecutive substructures k

and k − 1 (k ∈ {2, . . . , N}),q(k)
L = q

(k−1)
R and −F

(k)
L = F

(k−1)
R , the following

relation can be found:

u
(k)
L = u

(k−1)
R ∀k ∈ {2, . . . , N} (19)

which leads to

u
(k)
L = Su

(k−1)
L ∀k ∈ {2, . . . , N} (20)

equation (20) allows to write:

u
(k)
L = Sk−1u

(1)
L ∀k ∈ {1, . . . , N} (21)
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with S0 = I2n, and:

u
(N)
R = SNu

(1)
L (22)

equation (21) and equation (22) are projected on the basis {Φi}i consider-

ing equation (8). Since matrix Φ is invertible (it has been assumed that

det[Φ] 6= 0), one obtains [27]:

Q(k) = Φ−1Sk−1ΦQ(1) ∀k ∈ {1, . . . , N + 1} (23)

that is (cf. equation (3))

Q(k) =

 Λ 0

0 Λ−1

k−1

Q(1) ∀k ∈ {1, . . . , N + 1} (24)

where Λ stands for the (n × n) diagonal eigenvalue matrix for wave modes

propagating in x positive direction, expressed by equation (25) [27].

Λ =


µ1 0 . . . 0

0 µ2 . . . 0
...

...
. . .

...

0 0 . . . µn

 (25)

Expressing the boundary conditions of the waveguides in terms of amplitudes

Q(1) and Q(N+1) allows us to express, from equation (24), the dynamics of

a given substructure k. In a general manner, the boundary conditions at a

specific boundary of the waveguide can be formulated in this way:

Qref |lim= CQinc |lim +F (26)

where C is the diffusion matrix, and F stands for the effects of the excitations

sources [7, 28]. It is demonstrated in the work of Mencik et al. [7] that the
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general relation in equation (26) can be applied to describe classical Neumann

and Dirichlet boundary conditions. These conditions can be expressed as

follows:

[0 | I] u = F0 (Neumann) (27a)

[I | 0] u = q0 (Dirichlet) (27b)

They can be rewritten in the following manner via the projection of the state

vector u onto the wave mode basis(see equation (8)):

Φinc
F Qinc + Φref

F Qref = F0 (Neumann) (28a)

Φinc
q Qinc + Φref

q Qref = q0 (Dirichlet) (28b)

2.3. Wave Finite Element method in time domain

Based on frequency response of the structure issued from the FWFE method,

the time response of the structure can be obtained in a rather simple way. For

example, if a structure is subjected to an excitation force fexc in time domain

[tk]k=1...M , through a Discrete Fourier Transform(DFT), the spectrum of this

excitation force f̂exc can be expressed in the frequency domain [ωk]k=1...M .

f̂exc(ωk) =
M∑
m=1

fexc(tm)e−jtmωk (29)

This spectrum is then used in the FWFE approach to calculate the nodal dis-

placement response û(ωm) frequency by frequency. Subsequently, by apply-

ing an Inverse Discrete Fourier Transform(IDFT) to the frequency response,

the time response can be acquired.

u(tk) =
1

M

M∑
m=1

û(ωm)e−jtkωm (30)
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It should be noted that M , the number of samples should be large enough

to ensure the quality of the frequency and time response.

2.4. Piezoelectric finite element formulation for the coupling element

In the Diffusion Matrix Model(DMM) [6, 9] mentioned in subsection 2.1, it

is crucial to describe correctly the dynamics of the coupling element with

shunted piezoelectric patches, in order to investigate the influence of the

shunted piezoelectric patches on the propagation of wave modes in the thin-

walled beam. In this subsection, an appropriate finite element formulation

is developed.

A finite element model of the coupled system consisting of a rectangular

thin-walled beam and 4 identic piezoelectric patches with shunted circuit is

then established, as displayed in Figure 3.

Figure 3

Detailed piezoelectric constitution law is given in Appendix A. This model

contains two thin-walled waveguides with 3D linear brick finite elements and

a coupling element with 3D linear brick piezoelectric finite elements. The

piezoelectric element has 8 nodes and 4 degrees of freedom(DOF) per node.

Each node has 3 structural DOF and 1 electrical DOF (electrical poten-

tial). All electrical potential DOF that are placed on electrode surfaces of

the patches are reduced such that only one potential master DOF remains.

All electrical potential DOF on the patch surfaces bonded to the beam are

grounded. The whole structure has free mechanical boundary conditions. For

the sake of simplicity, detailed deductions of strain energy, mass and stiff-

ness matrices for the piezoelectric elements (without shunt circuit), which
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can be found in reference [21], are not presented in this paper. The dis-

cretized electro-elastic system of equations can be written in the form shown

in equation (31a) and equation (31b).

Mdd d̈ + Kddd + KdvV = F (31a)

KT
dvd + KvvV = Q (31b)

where d and V represent the structural and electrical DOF respectively, and:

Mdd =

∫
Vs

NT
d ρNddV Kdd =

∫
Vs

BT
d cEBddV Kdv =

∫
Vs

BT
d eTBvdV

Kvv = −
∫
Vs

BT
v ε

sBvdV F =

∫
Sf

NT
d f dS Q = −

∫
Sq

NT
v qdS

(32)

in which Nd and Nv are the shape functions, Bd = DNd and Bv = ∇Nv. D

is the linear differential operator matrix which relates the strains to the struc-

tural displacements U . In this case, the matrix D is given in equation (33).

D =



∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x


(33)

After finite element assembly, the discretized coupled piezoelectric and struc-

tural field equations are finally given in terms of nodal displacements u and

nodal electric potential ϕ. The connection between the 4 piezoelectric patches
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and the R−L shunt circuit is displayed in Figure 4. It should be mentioned

that by choosing the polarities of the piezoelectric patches, different wave

modes can be targeted and controlled.

Figure 4

Following the electrode definitions mentioned in reference [19], the electrical

potential DOF in the piezoelectric patches are partitioned into three different

groups:

• For nodes on the outer surfaces of the piezoelectric patches, their asso-

ciated electrical DOF are called ϕp, and they have the same electrical

potential;

• For nodes on the inner surfaces of the piezoelectric patches bonded to

the beam, their associated electrical DOF are called ϕg, and they are

grounded;

• For nodes inside the piezoelectric patches, their associated electrical

DOF are called ϕi.

The equations of motion are subsequently written in the form shown in equa-

tion (34).
Muu 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




ü

ϕ̈i

ϕ̈p

ϕ̈g

 +


Kuu Kui Kup Kug

KT
ui Kii Kip Kig

KT
up KT

ip Kpp Kpg

KT
ug KT

ig KT
pg Kgg




u

ϕi

ϕp

ϕg

 =


F

Qi
Qp
Qg


(34)
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As ϕg = 0, the fourth equation and fourth column in the mass and stiffness

matrices can be eliminated. Internal potential DOF can be determined by

exact static condensation from equation (34) since internal electric charges

Qi = 0:

ϕi = −K−1
ii KT

uiu−K−1
ii Kipϕp (35)

Since all the nodes on the potential electrode surfaces have identical poten-

tials, an explicit transformation matrix Tm can be used to define the master

potential DOF ϕm, as shown in equation (36).

ϕp = Tmϕm (36)

The use of equation (36) yields the fully coupled dynamics: Muu 0

0 0

 ü

ϕ̈m

 +

 Huu Hup

HT
up Hpp

 u

ϕm

 =

 F

Qm

 (37)

with

Huu = Kuu −KuiK
−1
ii KT

ui (38a)

Hup = (Kup −KuiK
−1
ii Kip)Tm (38b)

Hpp = TT
m(Kpp −KT

ipK
−1
ii Kip)Tm (38c)

Qm = TT
mQp (38d)

After the definition of the master DOF, the R-L shunt circuit can be consid-

ered. The electrical impedance of the circuit under harmonic excitation can

be written as:

Zsh = R + jωL (39)

The current Ish in the shunt circuit can be expressed as equation (40)

Ish = jωQm =
ϕm
Zsh

(40)
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By substituting equation (40) into equation (37), the electrical DOF can

be condensed and the equation that governs the structural dynamics under

harmonic excitation is shown in equation (41).

[Huu − ω2Muu + Hup(
1

jωZsh
−Hpp)

−1

HT
up ]u = Du = F (41)

equation (41) gives a full finite element description of the beam with two

symmetric shunted piezoelectric patches as a coupling element for the DMM

calculation. Matrix D represents the dynamical stiffness matrix of the cou-

pling element.

3. Numerical simulations of thin-walled beams with shunted piezo-

electric patches

In this section, the DMM with shunted piezoelectric elements is firstly em-

ployed to calculate the reflection and transmission coefficients of the pumping

wave mode and the X-axis extensional wave mode. A full finite element de-

scription that takes the mechanical-electrical coupling into account is given

to the thin-walled beams. The influence of the shunted piezoelectric patches

on the propagation of these wave modes is carefully investigated. Subse-

quently, the FWFE approach is applied for the evaluation of the dynamical

behavior of the structure in frequency domain. Unlike the DMM approach

which gives predictions for the beam structure with free boundary condi-

tions, frequency response functions can be obtained for the thin-walled beam

structure with forced boundary conditions. Waveguides are of finite length

in this case. Thereafter, based on the frequency responses, the calculation of

time responses of the structure under wave packet excitation is carried out.
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An extraction procedure is proposed to calculate reflection coefficients of the

X-axis extensional mode so as to verify the results issued from the DMM

approach.

3.1. DMM approach applied for pumping wave and X-axis extensional wave

The structures to be studied here are thin-walled beams with 4 identical R−L

shunted piezoelectric patches. The finite element model of the coupling ele-

ment is shown in Figure 5, with the definition of geometric parameters. Two

different cases are studied: in Case A the piezoelectric patches are bonded in a

longitudinal way (see Figure 5(a)), while in Case B, these patches are bonded

in a transversal way (see Figure 5(b)). Definitions and numerical values of

the geometric parameters are listed in Table 1. The parameter Lb repre-

sents the length of the thin-walled beam involved in the coupling element.

The material of the beam is aluminium and considered as isotropic, with

Young’s modulus Eb = 70 GPa and Poisson’s ratio νb = 0.34, and density

ρb = 2700 kg/m3. The piezoelectric patches are fabricated by Saint-Gobain

Quartz (type SG P189) and the corresponding material characteristics are

listed in Appendix B. This type of piezoelectric patch works mainly in the

3-1 mode.

Figure 5

Table 1

At first, the thin-walled beam is regarded as a waveguide and the corre-

sponding dispersion curves of the wave modes propagating in the structure
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are extracted via the WFE approach, as shown in Figure 6. These curves

describe the evolution of the wavenumber k in the frequency domain.

Figure 6

The wavelength(λ) of each mode can be calculated based on these results, as

λ = 2π/k. The global mesh resolution is chosen to be 0.003×0.005×0.001m3,

as the minimum wavelength of the concerned wave modes is about 0.04m

in the concerned frequency band(from 0 to 12 kHz). In the finite element

model of the waveguide there are 128 nodes/32 elements while in the coupling

element there are 924 nodes/480 elements. The mode shapes of the wave

modes propagating in the thin-walled beam are shown in Figure 7.

Figure 7

For the control of the symmetric pumping mode (Mode 6), the 2 horizontal

piezoelectric patches should work in compression mode, whereas the 2 vertical

piezoelectric patches should work in tension mode; for the control of the

extensional mode, all the 4 patches should work in the same mode (tension

or compression).

The DMM method is subsequently applied to the thin-walled beam in Case

A for analyzing the symmetric pumping wave mode, and gives the reflection

and transmission coefficients, as displayed in Figure 8(a), with R = 10 Ω and

L = 0.016 H. The results for the X-axis extensional wave mode are shown

in Figure 8(b).

Figure 8

The tuning frequency ftune of the piezoelectric patches is about 9 kHz.

Around this frequency, the impedance of the structure is greatly modified
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by the shunted piezoelectric patches so that the wave propagation character-

istics change significantly. The tuning frequency can be calculated according

to equation (42):

ftune =
1

2π
√

4LCS
p3

(42)

where CS
p3 = (1 − k231)CT

p3 is the capacitance of the piezoelectric patch mea-

sured at constant strain, and the 4 in front of L is due to the fact that the

4 piezoelectric patches are connected in parallel. If each piezoelectric patch

has an independent shunt circuit, the 4 in front of L will disappear. The

subscript 1 represents the X-axis direction while the subscript 3 denotes the

Z-axis direction. k31 is the electromechanical coupling coefficient. CT
p3 is the

capacitance of the piezoelectric patch measured at constant stress. It can be

calculated in the following manner:

CT
p3 =

εTA3

L3

(43)

where A3 is the area of the surface of the piezoelectric patch perpendicular to

Z-axis, L3 = ep is the thickness of the piezoelectric patch in Z-axis direction.

Equally for the thin-walled beam in Case B, the reflection and transmission

coefficients of the symmetric pumping mode and the extensional mode are

shown in Figure 9.

Figure 9

It can be observed that the piezoelectric patches in Case A have a totally

different effect on the symmetric pumping mode from the patches in Case B.

This wave mode cuts on from about 5.6 kHz. In Case A, the piezoelectric

patches are the most efficient around 8.5 kHz in the frequency band from 6
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to 12 kHz, when the shunt circuit is open. In Case B, the shunted piezo-

electric patches become less efficient from the cut-on frequency to about 7.5

kHz, and then the efficiency turns out to be better at higher frequencies.

And in both cases, around the tuning frequency(about 9 kHz), the effect of

the R − L shunt circuit on the piezoelectric patches is rather evident. By

simply varying the inductance L in the circuit, this tuning frequency can be

displaced to desired frequency band. For the extensional wave in X-axis, in

both cases, the shunted piezoelectric patches have similar influence on this

wave mode. Around the tuning frequency, the patches in Case A results in

a slightly stronger variation in the reflection and transmission coefficients,

which indicates that the configuration in Case A is better for the control of

the extensional wave in X-axis in this thin-walled beam.

3.2. Forced WFE applied for the control of symmetric pumping wave

For the calculation of the forced response of the thin-walled beam with

shunted piezoelectric patches, the FWFE method mentioned in subsection 2.2

can be applied. The thin-walled beam to be studied is displayed in Figure 10.

Figure 10

In the formulation of FWFE, the lengths of the waveguides are no longer in-

finite and should be specified, as well as the boundary conditions. As shown

in Figure 10, one extremity of the beam is excited by imposed displace-

ment qexc, and the other extremity is free. The amplitude of the excitation

displacement remains constant in the frequency domain. The imposed dis-

placement is chosen to be one of the modal displacements so that only the

mode with this modal displacement is excited in the thin-walled beam. The
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first waveguide consists of N1 identical unit cells while the second one con-

sists of N2 identical unit cells. The part of the beam covered with shunted

piezoelectric patches is considered to be the coupling element. For the sake

of simplicity, it is assumed that N1 = N2 = N . The two waveguides are

identical as they belong to the same beam, thus Λinc
1 = Λref

2 = Λ, and

Λref
1 = Λinc

2 = Λ−1(see equation (25)). The boundary conditions of the

system can be written in the following manner:

Φinc
q1 Q

inc(1)
1 + Φref

q1 Q
ref(1)
1 = qexc (44a)

Φinc
F2 Q

inc(N+1)
2 + Φref

F2 Q
ref(N+1)
2 = 0 (44b)

The boundary condition at the left extremity of Waveguide 1 is a Dirichlet

boundary condition(equation (44a)), whereas the boundary condition at the

right extremity of Waveguide 2 is a Neumann one(equation (44b)).

The continuity conditions of displacement and force between the waveguides

and the coupling element form the coupling condition and can be expressed

as:  qLC

FLC

 =

 q
(N+1)
R1

−F
(N+1)
R1

 (45a)

 qRC

FRC

 =

 q
(1)
L2

−F
(1)
L2

 (45b)

where qLC and FLC stand for the nodal displacement and the nodal force at the

left boundary of the coupling element, and qRC and FRC at the right boundary

of the coupling element. By substituing these continuity conditions into the

dynamics of the coupling element(see equation (41)), the boundary condi-

tions at the right extremity of Waveguide 1 and those at the left extremity
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of Waveguide 2 can be obtained, as shown in equation (46). D∗ denotes the

dynamic stiffness matrix of the coupling element condensed on the DOFs

located on the interfaces between the waveguides and the coupling element

itself.

D∗

 q
(N+1)
R1

q
(1)
L2

 = −

 F
(N+1)
R1

F
(1)
L2

 (46)

Combined with the boundary conditions in equation (44a) and equation (44b)
and the propagation relation(see equation (24)), an equation system which
gives the wave amplitudes Q in both waveguides under the excitation dis-
placement qexc can be developed as follows:


Φinc

q1 Φref
q1 0 0

(D∗
11Φ

inc
q1 + Φinc

F1 )ΛN (D∗
11Φ

ref
q1 + Φref

F1 )Λ−N D∗
12Φ

inc
q2 D∗

12Φ
ref
q2

D∗
21Φ

inc
q1 ΛN D∗

21Φ
ref
q1 Λ−N D∗

22Φ
inc
q2 + Φinc

F2 D∗
22Φ

ref
q2 + Φref

F2

0 0 Φinc
F2 Λ−N Φref

F2 ΛN




Q

inc(1)
1

Q
ref(1)
1

Q
inc(1)
2

Q
ref(1)
2



=


qexc

0

0

0

 (47)

The resolution of this equation system provides the wave amplitudes at the

left boundary of the waveguides 1 and 2, and via equation (24), wave am-

plitudes at any node in the two waveguides can be obtained. As shown in

Figure 10, the Z-axis component of the nodal displacement qout at the free

extremity of the beam is used for the calculation of the frequency response

function(FRF) of the thin-walled beam. As an example, the length of the

waveguides is chosen to be 0.6 m, and the length of the unit cell in X-axis

is 3 mm, thus N = 200. The pair of piezoelectric patches share the same

shunt circuit with R = 10 Ω and L = 0.016 H, in order to tune the wave

modes around 9 kHz. The symmetric pumping mode is targeted, and its

modal displacement at a fixed frequency(about 7 kHz) is taken as the im-
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posed displacement excitation qexc. The FRF with shunt circuit and open

circuit case are calculated numerically. Results for the beam in Case A are

displayed in Figure 11.

Figure 11

As shown in Figure 11, the attenuation effect of the shunted piezoelectric

patches around the tuning frequency (9 kHz), which is close to one of the

eigenfrequencies of one of the symmetric pumping mode, is rather evident.

In the same manner, another analysis is carried out for the thin-walled beam

in case B(see Figure 5(b)). The comparison results of the FRF are shown

in Figure 12.

Figure 12

In both Figure11(a) and 12(a), it is clear that the pumping mode cuts on at

about 5.6 kHz as the amplitude of the response becomes much larger from

this frequency. These results reveal that FWFE can predict correctly the

frequency response of the structure, and the efficiency of the FWFE formu-

lation has already been tested and compared to classical FE method [10] or

transfer matrix method [25]. It is an effective approach that can be employed

to estimate the influence of the shunted piezoelectric patches on the symmet-

ric pumping mode of the beam. It can also be concluded from Figure 11(b)

and Figure 12(b) that the longitudinally bonded piezoelectric patches in Case

A lead to a stronger attenuation effect than the transversally bonded patches

in Case B.

It should also be noted that the FWFE formulation requires much less com-

putational time compared to ANSYS, especially at high frequencies, where
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very small element size is required to guarentee the computational precision

with classical finite element method. Furthermore, ANSYS is not capable of

analyzing shunt circuits with negative capacitance, but the FWFE method

is able to deal with all kinds of shunt impedance.

3.3. Time response calculation and reflection coefficient verification

In Subsection 3.2, the frequency responses are calculated with an excita-

tion displacement of constant amplitude in the frequency domain. In order

to evaluate the time response, the approach mentioned in Subsection 2.3

is adopted. The reflection coefficients can be extracted from the time re-

sponse and then be compared to those calculated with the DMM approach.

This extraction technique can equally be applied in experiments to validate

numerical results. Let’s consider an aluminium beam with 4 identical longi-

tudinally placed R − L shunted piezoelectric patches in Case A. According

to the dispersion curves shown in Figure 6, it can be noted that in the fre-

quency band from 0 to 12 kHz, except the extensional mode in X-axis, the

other modes are dispersive as their dispersion curves are not linear. As non-

dispersive waves can maintain their wave form during the propagation, and

their group velocity is almost constant, it will be much easier to track them

in the structure. The group velocity of the extensional wave mode is shown

in Figure 13. It is almost constant in the frequency band from 0 to 10 kHz.

Figure 13

Based on this group velocity, the length of the waveguides is chosen to be

2.4 meters which is large enough so that incident and reflected waves can

be clearly distinguished. The same mesh resolution as that in the forced
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response calculation in Subsection 3.2 is utilized. The structure is excited

by uniformly distributed force in X-axis at one extremity. To minimize the

effect of induced dispersion by the piezoelectric patches, narrow band signals

are used, composed of 2.5 cycles modulated by a Hanning window with the

central frequency f0 equal to 7 kHz. The time wave form and the spectrum

of this excitation force is displayed in Figure 14. The maximum amplitude

is 0.1 N and the sampling frequency is 20 times greater than the central

frequency in order to guarantee the signal quality of the wave packet.

Figure 14

This excitation force is amplified (by multiplying a constant gain G to the

amplitude) and then applied to one extremity of the thin-walled beam as the

input, and the X-axis component of the nodal displacement at the measure

point is taken as the output, as shown in Figure 15. The measure point lies

at 30 cm from the extremity with the imposed force.

Figure 15

Subsequently, the transfer function is calculated, as shown in Figure 16. The

shunt circuit is tuned to about 9 kHz, with R = 100 Ω and L = 0.016 H, as

one of the eigenfrequencies of this mode is close to 9 kHz. With the shunted

piezoelectric patches, a damping effect is obtained for the X-axis extensional

mode around the tuning frequency.

Figure 16

With this transfer function, the wave packet excitation is applied to the sys-

tem in order to acquire the frequency response. Then the IDFT of this fre-

quency response is carried out to calculate the time response of the structure,
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as displayed in Figure 17. As those wave packets are apparently unconnected

in this case, no wave packet decomposition techniques are needed.

Figure 17

In order to verify the reflection coefficients calculated via the DMM approach

and provide an effective experimental evaluation technique for the reflection

coefficient based on time response of the structure, the following extraction

procedure is proposed:

1. The Hilbert Transform is applied to the time response of the structure,

and its absolute value is representative of the envelope of the signal.

The first peak represents the maximum amplitude of the incident wave,

and the second peak for the reflected wave, as shown in Figure 18.

Figure 18

2. The imaginary part of the wavenumber k calculated with the WFE

method is used to calculate the spatial damping. As the propagation

of the mode can be characterized by an exponential law A = A0e
ikx,

the spatial damping ratio γx = − | Im(k) |.

3. With the group velocity Vg of the wave mode, the damping ratio in

time domain can be calculated as γt = − | Im(k)Vg |.

4. On the plot of the Hilbert Transform result, a damping curve can be

drawn to take into account the damping effect caused by the distance

between the measure point and the piezoelectric patches so as to eval-

uate the reflection coefficient correctly. This curve passes the first peak
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of the Hilbert Transform result and follows the exponential decreasing

law defined by A = A0e
γtt. Ar denotes the amplitude of the reflected

wave, and Ai represents the amplitude of the incident wave with the

attenuation effect taken into account, as shown in Figure 18. The re-

flection coefficient can be calculated as R = Ar/Ai.

5. By varying the central frequency f0 of the wave packet excitation, re-

flection coefficients at different frequencies can be acquired frequency

by frequency in order to verify the reflection coefficients calculated with

the DMM approach.

The reflection coefficients of the extensional wave mode tuned at 9 kHz are

calculated via the DMM approach, and then compared to those obtained

through the extraction procedure. It should be mentioned that this extrac-

tion procedure is a rather coarse evaluation tool for the reflection coefficients.

If an error of ±15% is applied to each extracted reflection coefficient, then

the envelope of the extracted reflection coefficients can be obtained. The

results are shown in Figure 19.

Figure 19

For the frequency band below 6 kHz, it is difficult to evaluate correctly the

reflection coefficient with the extraction procedure as the span of the wave

packet in time domain becomes too large to distinguish incident and reflected

waves, unless the length of the beam becomes larger. And for the frequency

band around the tuning frequency, it is also difficult to evaluate precisely the

reflection coefficient with the Hilbert Transform, as the added damping effect

needs to be considered properly. On the whole, the results issued from the
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DMM approach are verified by those through the extraction procedure, as

the envelope covers most of the DMM results in the open circuit case. This

procedure will be employed for the experimental validation of numerically

calculated reflection coefficients.

4. Conclusions

Effective prediction tools for wave propagation characteristics and dynamic

behavior of thin-walled structures equipped with shunted piezoelectric ele-

ments are provided. General formulations developed in this work can be

applied for all kinds of slender smart structures. Generally, the main results

can be summarized as follows:

• The finite element based WFE approach is developed, and the DMM

formulation is extended to consider shunted piezoelectric elements. The

wave modes propagating in the structure are correctly captured and

the influence of the shunted piezoelectric patches on the control of the

symmetric pumping mode and the X-axis extensional mode is investi-

gated through the reflection and transmission coefficients of these wave

modes.

• The forced responses of thin-walled structures excited in the symmetric

pumping mode and the X-axis extensional mode are calculated via the

FWFE formulation. The damping effect of the shunted piezoelectric

patches can be well observed in the frequency responses.

• Time response of thin-walled structures excited with a wave packet

form excitation is evaluated via an IDFT approach applied to the fre-
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quency response. The X-axis extensional mode is targeted as it’s non

dispersive. By following an extraction procedure, reflection coefficients

of this wave mode can be evaluated according to the time response of

the structure so as to verify the reflection coefficients calculated through

the DMM approach.

The numerical techniques presented in this work enable the evaluation of the

performance of shunted piezoelectric patches on the control of wave propaga-

tion in thin-walled beams, and facilitate design modifications and systematic

investigations of geometric and electric parameters of thin-walled beams with

shunted piezoelectric patches. Intensive computations aiming at the design

of the piezoelectric patch and the electronic shunt circuit on the patch such

as optimizations of geometric and electric parameters can be carried out.

The experimental validation of the numerical results will be focused on in fu-

ture work. And later the issue of wave propagation control in two-dimensional

structures like stiffened panels [29, 30] using shunted piezoelectric patches will

be investigated.
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Appendix A: Piezoelectric constitutive law

The three-dimensional piezoelectric constitutive law can be written as:

T = cES − eTE (48a)

D = eS + εSE (48b)

where E denotes the electric field vector, T the mechanical stress vector, S

the mechanical strain, and D the electric displacement vector; cE represents

the material stiffness matrix, e denotes the piezoelectric stress coupling ma-

trix, and εS is the permittivity matrix under constant strain. Equation (48a)

represents the indirect piezoelectric effect, whereas equation (48b) character-

izes the direct piezoelectric effect.

Appendix B: material properties of the piezoelectric patch (type

SG P189)

Mass density ρ: ρ = 7650 kg/m3.

Material stiffness matrix cE :

cE = 1010 ×



15.4 8.263 7.859 0 0 0

8.263 15.4 7.859 0 0 0

7.859 7.859 13.74 0 0 0

0 0 0 4.59 0 0

0 0 0 0 4.59 0

0 0 0 0 0 3.57


Pa
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The piezoelectric stress coupling matrix e:

e =


0 0 0 0 12.88 0

0 0 0 12.88 0 0

−6.187 −6.187 12.80 0 0 0

 N/(V ·m)

The permittivity matrix under constant strain εS :

εS = 10−8 ×


1.011 0 0

0 1.011 0

0 0 0.591

 C/(V ·m)
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Figure 1: An illustration of a periodic waveguide [6].
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Figure 2: An illustration of the coupling between two different periodic waveguides [6].
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Figure 3: Finite element model of a thin-walled beam with symmetric shunted piezoelectric

patches. The coupling element is the part of the beam with 4 identical piezoelectric

patches.
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Figure 4: Configuration of the connection between the 4 piezoelectric patches and the

R− L shunt circuit.
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(a)

(b)

Figure 5: Finite element model of the coupling element and definition of geometric pa-

rameters in (a)Case A(longitudinally bonded patches) (b)Case B(transversally bonded

patches).
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Figure 6: Dispersion curves of the wave modes propagating in the thin-walled beam in

case A: (1)1st Torsional wave in X-axis (2)Extensional wave in X-axis (3)Flexural wave

in Y -axis (4)Flexural wave in Z-axis. (5)2nd Torsional wave in X-axis. (6)Symmetric

pumping mode. (7)Higher order cross-section mode. These wave modes are identified

through their mode shapes (eigenvectors) issued from the WFE approach.
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Figure 7: Mode shapes of the waves propagating in the thin-walled beam in case A:

(1)1st Torsional wave in X-axis (2)Extensional wave in X-axis (3)Flexural wave in Y -axis

(4)Flexural wave in Z-axis. (5)2nd Torsional wave in X-axis. (6)Symmetric pumping

mode. (Solid line)Deformed mode shape. (Dashed line)Non-deformed section.
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(a)

(b)

Figure 8: Reflection and transmission coefficients of wave modes in the thin-walled beam

in Case A. (a)Symmetric pumping wave mode. (b)X-axis extensional wave mode. (Solid

line)With R-L shunt circuit. (Dashed line)Shunt circuit open. (Point-dashed line)Beam

without piezoelectric patches.
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(a)

(b)

Figure 9: Reflection and transmission coefficients of wave modes in the thin-walled beam

in Case B. (a)Symmetric pumping wave mode. (b)X-axis extensional wave mode. (Solid

line)With R-L shunt circuit. (Dashed line)Shunt circuit open. (Point-dashed line)Beam

without piezoelectric patches.
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Figure 10: Finite element model for the calculation of the forced response of the thin-walled

beam with 4 identical shunted piezoelectric patches.
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(a)

(b)

Figure 11: Comparison of the frequency responses in case A: (a)Frequency band from 6

to 12 kHz (b)Zoom around the tuning frequency (9 kHz). (Solid line)FWFE with shunted

circuit. (Dashed line)FWFE without shunt circuit.
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(a)

(b)

Figure 12: Comparison of the frequency responses in case B: (a)Frequency band from 6 to

12 kHz (b)Zoom around the tuning frequency (9 kHz). (Solid line)FWFE with shunted

circuit. (Dashed line)FWFE without shunt circuit.
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Figure 13: Group Velocity of the X-axis extensional wave.
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(a)

(b)

Figure 14: The time wave form and the spectrum of the wave packet excitation. Central

frequency f0 = 7 kHz. (a)Time wave form. (b)Spectrum.

54



Figure 15: Configuration for the time response simulation of the X-axis extensional wave.
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Figure 16: The forced response of the structure under white noise excitation (transfer

function) tuned at 9 kHz. (Solid line)Piezoelectric patches with shunted circuit. (Dashed

line)Shunt circuit open.
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Figure 17: Time response of the structure under wave packet excitation. (Solid

line)Piezoelectric patch with shunt circuit. (Dashed line)Piezoelectric patches with open

shunt circuit. (Dash-dotted line)Beam without piezoelectric patches.
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Figure 18: Hilbert Transform of the time response and the damping curve to extract the

reflection coefficient of the X-axis extensional wave. (Solid line)Absolute value of the

Hilbert Transform of the time response. (Dashed line)Damping curve based on spatial

damping calculation.
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Figure 19: Comparison of reflection coefficients of the extensional wave in X-axis calcu-

lated through the DMM approach and the extraction procedure. (Solid line)Calculation

with DMM, piezoelectric patch with shunt circuit. (Dashed line)Calculation with DMM,

piezoelectric patch without shunt circuit. (× markers)Calculation with extraction proce-

dure. (Dash-dotted lines)Envelope of the extracted reflection coefficients.
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Table 1: Numeric values of the geometric parameters in the coupling element shown

in Figure 5. The units of all the parameters are in meter (m).

Case Lb Lp bb bp hb eb ep

A 0.03 0.03 0.042 0.02 0.032 0.001 0.001

B 0.03 0.02 0.042 0.03 0.032 0.001 0.001
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