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ABSTRACT

The nonlinear dynamics of nanoelectromechanical cantilever arrays is investigated using a
comprehensive analytical multiphysics model that takes into account geometric and electro-
static nonlinearities. In particular, the internal resonances between the different cantilevers are
analyzed using a multi-modal Galerkin discretization coupled with a perturbation technique.
Such systems offer a perfect mechanical synchronization, interesting nonlinear behaviors and
exchange of energy between their different components which makes them potential candidates
for multi-mass sensing applications.
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1 INTRODUCTION

Despite the fact that internal resonances (IR) have interesting dynamic properties, many design-
ers strive to avoid it in their models. In recent years, this phenomenon is more and more used
due to its property of suppressing oscillations in cantilever [1] or also enhancing the coupling
effect in dynamical systems [2]. Sethna [3] was one of the first researchers who investigated the
phenomenon of IR. He studied the influence of quadratic nonlineriarities in a system which ex-
hibits two-to-one (2:1) internal resonances with subharmonic parametric resonance. He showed
that the steady-state motions are more interesting when the system possesses external and in-
ternal resonances. Moreover, several studies were performed regarding resonant response of
system under harmonic excitation forces [4, 5]. Nayfeh and Mook [6] have given a complete
treatment of this subject. A common result from these researches is that the IR ratio depends
on the type of coupling of the system. For quadratic coupling two-to-one (2:1) IR ratio can
be used and for cubic nonlinearities both one-to-one (1:1) and three-to-one (3:1) IR ratios give
amplitude modulated response. Recently, Gutchemidt and Gottilieb [7] modeled a continuum
initial-boundary-value problem of a doubly-clamped microbeam array excited at several DC
biases and periodic AC voltages. They showed that, for DC near systems first pull-in instability,
three-to-one internal and combinational resonances were identified.

Motivated by the previously cited researches, and aware about the important influence
of the internal resonances (IR) in nonlinear systems such as NEMS, this work is conducted to
investigate the IR that can occur in a device composed by one or several coupled nanocantilevers
under an electrostatic actuation. In this context, two types of configurations are considered:
the first one, used by Kacem et al [8], is a single nanocantilever actuated by an electrosatic
force while the second configuration consists of an array containing N coupled nanocantilevers
actuated by a single electrode. The two systems are represented in Figure 1.
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Figure 1: (a) A single nanocantilever electrostatically actuated. (b) An array of N nanocantilever
beams. Only the first cantilever is excited by the electrode and lN = r ∗ l1 with r > 1.

2 MODEL

As a first step, a single nanocantilever (Figure 1 (a)) is considered. In order to identify the
internal resonance conditions, a multi-modal Galerkin method is used to calculate the natural
frequencies of the three lowest bending modes. Figure 2 (a) shows the variation of these fre-
quencies with respect to the DC voltage. After a meticulous investigation of the possible IR,
and despite the fact that there are many possibilities of internal resonances and exchange of
energy among higher and lower order modes, two major issues are noticed: the study of such
systems gives a very complex set of amplitude and phase equations and above all, it is arduous
to obtain in experiments such relations between the different modes.

In order to avoid these complexities, another approach is considered. It is inspired from
[9] and consists of an array of N nanocatilevers depicted in Figure 1 (b). The dynamics of the
considered system is modeled using a set of coupled nonlinear partial differential equations.
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A reduced-order model is generated by modal decomposition transforming the equations of
motion into a finite degree- of-freedom system. Then, the method of multiple scales is used as a
direct attack of the resulting equations while assuming the dominance of the first bending mode
for each cantilever. This permits deriving the phase and amplitude modulation equations.

For instance, we consider the case of two coupled cantilevers. The variation of the
natural frequency of the first bending mode of each beam with respect to the DC voltage is
presented in Figure 2 (b). The internal resonances 2:1 and 3:1 between the two cantilevers
are possible for particular values of Vdc given by the intersection points of the corresponding
curves. Figures 3 and 4 display simulated frequency-response curves of the considered device
for 3:1 IR and two set of design parameters. Remarkably, the model enables the capture of the
transition from softening to hardening behavior for the second cantilever.
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Figure 2: (a) Variation of the dimensionless natural frequencies of the first three bending modes
for a single nanocantilever with respect to the driving voltage Vdc. 7:1 and a combinational
(ω3 = 3ω − 2ω1) IR are identified. (b) Variation of the natural frequencies of a two-beam
system with respect to the driving voltage Vdc. 2:1 and 3:1 IR are identified.
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Figure 3: Variation of the modal amplitude a1,i of each cantilever with respect to the detuning
parameter σ in the case of 3:1 IR, for Vac = 1mV , r = 2, l1 = 9µm, h = 100nm and
b = g = 200nm. The quality factor is Q = 5000 and the coupling parameter is d = 3.

3 CONCLUSION AND PERSPECTIVES

A simple electrostatic actuation of a nano-beam can provoke progressively the oscillation of
several coupled nonlinear cantilevers due to internal resonances. This effect can be beneficial for
multi-mass detection by providing a perfect control of the synchronization via the mechanical
coupling between the cantilevers.
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Figure 4: Variation of the modal amplitude a1,i of each cantilever with respect to the detuning
parameter σ in the case of 3:1 IR, for Vac = 10mV , r = 4.5, l1 = 3µm, b = 200nm,
h = 110nm and g = 120nm. The quality factor is Q = 10000 and the coupling parameter is
d = 0.5.

REFERENCES

[1] K. L. Tuer, M. F. Golnaraghi, and D. Wang. Development of a generalised active vibration
suppression strategy for a cantilever beam using internal resonance. Nonlinear Dynamics,
5(1):131–151, 1994.

[2] A. Q. Siddiqui and M. F. Golnaraghi. Vibration suppression in flexible gyroscopic system
using modal coupling strategies. Mathematical Problems in Engineering, 2(2):107–129,
1996.

[3] P. R. Sethna. Vibrations of dynamical systems with quadratic nonlinearities. Journal of
Applied Mechanics, 32(1):576–582, 1965.

[4] B. Balachandran and A. H. Nayfeh. Observations of modal interactions in resonantly forced
beam-mass structures. Nonlinear Dynamics, 2(2):77–117, 1991.

[5] V. Kumar, J. K. Miller, and J. F. Rhoads. Nonlinear parametric amplification and attenuation
in a base-excited cantilever beam. Journal of Sound and Vibration, 330(22):54015409,
2011.

[6] A. H. Nayfeh and D. T. Mook. Nonlinear Oscillations. Wiley, New York, 1979.

[7] S. Gutschmidt and O. Gottlieb. Bifurcations and loss of orbital stability in nonlinear vis-
coelastic beam arrays subject to parametric actuation. Journal of Sound and Vibration,
329(1):3835–3855, 2010.

[8] N. Kacem, J. Arcamone, F. Perez-Murano, and S. Hentz. Dynamic range enhancement of
nonlinear nanomechanical resonant cantilevers for highly sensitive nems gas/mass sensor
applications. Journal of Micromechanics and Microengineering, 20(4):9, 2010.

[9] S. Gutschmidt and O. Gottlieb. Nonlinear internal resonances of a microbeam array near
the pull-in point. EUROMECH Conference ENOC, 2008.

4


	Introduction
	Model
	Conclusion and perspectives

