
Tree-structured knowledge in a distributed intelligent MEMS
application

Atsushi Sato, Eugen Dedu, Julien Bourgeois and Runhe Huang

Abstract—This paper proposes the tree-structured knowledge
approach for performing part recognition in controlling MEMS-
arrayed manipulation surfaces. In this approach, a new data
structure, a tree-structured array, is used to store knowledge
about models of the objects at an offline stage and to accumulate
and share knowledge among neighboring active cells about shapes
of objects which must be reconstructed and differentiated on
a MEMS-arrayed surface at the online stage. Comparing this
approach with the previous matrix-based approach, which con-
tained redundant information in each cell and communication,
and demanded excessively frequent comparison in shape differ-
entiation, the current tree-structured knowledge approach aims
to use one model for a shape in database, reducing the memory
footprint, and avoiding frequent comparison in the differentiation
phase. In this paper, both approaches are analysed and compared.
Though the current approach shows better performance in terms
of a smaller memory footprint and lower communication cost,
it trades off the reduction of memory footprint against the
probability of the differentiating.

I. INTRODUCTION

Micro-Electro-Mechanical Systems (MEMS) are now a
mature field of research as well as a promising technology
ready for mass-production. Examples of successful products
can be found in diverses area like accelerometers, inertial
measurement units (IMU, that are now included in airbag
systems as well as in most of the recent smartphones or
laptops), bubble ejection systems of inkjet printers and digital
micromirror devices (DMD, technology used for projection
displays). If the first applications use single MEMS, the latter
uses distributed MEMS organized in an array.

Our current research objective is to include sensors and to
add intelligence to distributed MEMS in order to build what
we call distributed intelligent MEMS (diMEMS). One appli-
cation of diMEMS is a pneumatic distributed conveyor called
Smart Surface, for conveying, fine positioning and sorting of
very small parts (see Figure 1). Before being conveyed to the
right position, the parts should be first recognized.

Distributed manipulation has been a very active topic since
the 1990’s. These pioneer researches have developed different
types of distributed manipulators, based on servoed roller
wheels [1], cilia actuators [2], [3], [4], [5], [6], suction nozzles
with air-hockey tables [7], [8], [9], [10] and directed air-jets
[11], [12], [13]. All these works require a centralized control
and are, therefore, not scalable.

A. Sato and R. Huang are with Hosei University, Japan,
atsushi.sato.9q@stu.hosei.ac.jp(A. Sato),
rhuang@hosei.ac.jp(R. Huang)

E. Dedu and J. Bourgeois are with UFC/FEMTO-ST, France,
{Firstname.Lastname}@femto-st.fr

Figure 1. An overview of the Smart Surface [13].

Some of these preliminary studies use sensorless manipula-
tion schemes based on Goldberg’s algorithm [14] for parallel
jaw grippers. The jaw grippers are obtained with actuator
arrays by creating opposite field forces which then can orient
and move the parts. Böhringer et al. [15] have proposed
a programmable vector field method based on Goldberg’s
algorithm. This sensorless scheme is well-adapted for contact
manipulation arrays but has shown some limitations when
applied to contactless manipulators [16]. For instance, the ab-
sence of closed-loop control has led to undamped oscillations
and unwanted behaviors.

As referred previously, the Smart Surface have to take
into account functions such as recognition, conveyance and
positioning of an object. The implementation of these func-
tions must also meet the requirement of scalability, modularity
and robustness of distributed manipulation systems. Moreover,
since the objects are small compared to sensors and can be
rotated, classical recognition methods such as neural networks
are not appropriate.

We consider that the global system can be composed by a
large number of cells, each cell being able:

• to sense locally the state of the object (for example the
presence/absence of the object);

• to act locally on the object;
• to decide its action by itself.
• to communicate with its 4-neighbors (von Neumann

neighborhood)

Figure 1 illustrates the Smart Surface concept. Each cell
receives measures from its sensor, acts on the object by its
actuator and is able to communicate with its four neighbors.

Figure 2. The distributed control architecture.

A programmable processing unit is able to perform recognition
tasks and calculation of local control laws.

The distributed control architecture is able to perform part
recognition and close-loop control of the Smart Surface. This
architecture is composed of an array of cells where each cell is
linked to a local sensor and to an actuator. A communication
network allows each cell to exchange messages with its 4-
direct neighbors. Using the adjacent network, the cells work
autonomously and in a distributed manner by exchanging their
local information of the object.

Figure 2 details the distributed control architecture. The
state bi(k) of the sensors is received by part-reconstruction
modules. These blocks communicate with their neighbors in
order to reconstruct the image of the object. Then, the differ-
entiation functions use the reconstructed image to recognize
the shape of the object and to give the proper information
s(k) to the controller blocks. Then, the motion controllers
independently allocate a state ui(k) to each actuator i so
as to generate a specific motion of the object. The functions
of reconstruction, differentiation and control are implemented
following a fully distributed scheme.

In the past we used as distributed-air-jet manipulation
surface a 120×120 mm2 square surface upon which an object
is moving in aerodynamic levitation (see Figure 3) [17].

In [17], we presented a differentiation algorithm which used
criterion values to store shapes. We think this differentiation
algorithm can be improved by using an entity intelligence pool
and its sharing among objects [18].

The current paper presents a new data structure, a tree-
structured array used to store information about models of the
objects which must be differentiated. Additionally, the data
exchanged uses the same tree-structured array and they are
interestingly used to differentiate objects. This allows a better

Figure 3. The distributed-air-jet manipulation surface.

Online

Image of
model

Databases
(15×15)

Images of
models

(15×15)(15×15)

Number of
sensors

Result

Discretization

Calculate
criteria values

Comparison

Discretization

Offline

Rotation

Translation

Mask
Select
criteria

Criteria
definition

Mask
Selected
criteria

Calculate
criteria values

Figure 4. The process of previous approach simulation.

memory footprint and a better way to represent knowledge.

II. OBJECT DIFFERENTIATION OVERVIEW

Given a set of objects, the Smart Surface will have to
differentiate all the parts within the set. As the processing
power of the Smart Surface is embedded in very limited space,
this differentiation process has to be optimized both in term
of memory used and processing power needed. Figure 4 illus-
trates the 2-stages differentiation process used in a previous
approach.

The offline stage is executed before using the real device
i.e. the Smart Surface. It aims to construct a database in which
each model (a model is an object which can be placed on the
Smart Surface) is characterized by a set of criteria values, such

as surface and perimeter, as defined in [19]. In a first step, the
images of models are discretized in matrices by affecting 1
if the sensor is covered by the object and 0 otherwise. In a
second step, images are rotated from 1◦ to 359◦ in 1◦ step.
Then, masks are generated from the matrices and duplicates
are removed. Finally, the set of criteria [19] used for the
differentiation is chosen. Their values are calculated from the
masks and are stored in the database; the database is uploaded
in every cell.

The online stage has two phases: reconstruction of the object
in each cell, and then differentiation of the object.

a) Reconstruction phase: Once the object is put on top
of the Smart Surface, each cell knows its status (covered or not
by the object), but it doesn’t know the status of its neighbors.
The cells covered by the object are called active cells. Each
active cell does an iterative process to reconstruct the binary
representation of the object. This iterative process consists in
two steps: communication and computation steps.

In the communication step, all active cells communicate
with their neighbors. This communication is done by sending
a message, which consists of a matrix of bits, the matrix size is
the same as the smart surface size (1 bit per cell). Throughout
the re-iteration of the communication phase, all the active cells
will extend their state thanks to the received matrices from
their neighbors, until they reach a proper representation of the
object.

The computation step consists in updating the view of each
cell according to the views collected from its neighbors in
the communication step. This update consists in applying the
union operator (∪) bit by bit between all received matrices
and its current one.

It can be proved [20] that after N steps (N is the height
plus the width of the object), this algorithm converges and
each cell has the binary representation of the object currently
on the Smart Surface. The number of steps is therefore not
dependent on the Smart Surface size.

b) Differentiation phase: Once each cell has the binary
representation of the object, the criteria are computed. These
values are compared to the criteria values for each model in
the database, computed in the offline stage. The differentiation
is successful if there is a criterion or a combination of criteria
which uniquely identifies the object.

III. THE TREE-STRUCTURED KNOWLEDGE (TSK) BASED
ALTERNATIVE APPROACH FOR P2P COMMUNICATION

A. Background

Rapid advances in electronics, electro-mechanics, and nan-
otechnology, have lead to ubiquitous devices [21] called u-
objects [22], [23] like mobile devices, sensor devices, RFID
devices, wireless devices [24], [25], wireless wearable devices,
etc. are getting ever more common and ever smaller, even
invisible to the naked eye [26]. This implies that u-objects
must necessarily be of autonomic/smart/intelligent comput-
ing/processing ability in order to provide pervasive autonomic
support/services be able to do right thing, at the right time,

in the right place, and by the right way) for and instead of
human users [27].

This removal of u-objects from the human scale also means
their processing power and storage capacity resources are
limited and constrained. Embedded Intelligence Entities (IE)
(data + knowledge + reasoning engine) [18] in u-objects
may be one theoretical solution but at the present time are
impractical. However, Intelligence Entity Sharing (IES) from
external systems is a practical alternative approach. Whenever
necessary, a u-object can request/rent/borrow an intelligence
entity from an intelligence entity pool (IEP) to provide intel-
ligent/smart/autonomic support or services. The intelligence
entity pool has to have an appropriate knowledge representing
structure, with which the intelligence entity can be flexibly
composed and decomposed.

One appropriate structure to represent knowledge is a tree-
structure. A tree structure consists of a number of nodes and
directed links. A directed link connects an upper level parent
node and a lower level child node to represent the relation
between them, and an arrangement of nodes and links allows
a tree to represent knowledge efficiently. Sub-trees of a parent
node. can even be cut off or attached to another node to
actually form the processes of knowledge composition and
decomposition. Knowledge represented in the tree-structure
can be relatively easily constructed and the tree-structured
knowledge base makes computational knowledge visually
comprehensible. In this section, we discuss the implementation
of the concept by applying tree-structured knowledge (TSK)
to the Smart Surface.

The previous approach, in which matrices representing the
state of sensors are sent as messages in P2P communications,
was explained in Section II of this paper. The amount of
data communication traffic is fixed and the updating method
is simple. The matrix, however, has redundant information.
The differentiation phase is repeated every time the matrix is
updated, since the matrix does not have the trigger for the
comparison with the models in the database.

In the current article, we propose a new online phase. It
uses a tree-structured array as message data. The array has a
variable length and each value gives the state of the sensor at
a relative position: north, west, south, and east. Moreover, the
values of child nodes are inserted to the right of the parent.

B. Reconstruction phase

The root of a tree is the state of the cell itself, and its child
nodes are the trees of its four neighbors. The state of a cell
is active when an object is above its sensor, or passive when
there is no object-above.

The tree generation process, leading to the reconstruction
of the current object image, takes the following steps:

1) Each active cell generates its initial tree-structured array
which is only composed of its current state.

2) Each active cell sends to its four neighbors its tree,
removing the values corresponding to the destination
(see Figure 5)

3) Each cell receives trees from its four neighbors.

3-branches tree

3-branches tree

3-branches tree

11001 1001

11000001001

11000001001000

1001001

1001001000

b

a

c

b

a

c d

b

a

c d

Iteration 2

Iteration 3

Iteration 4

b c

b c d

b c d

Figure 5. The tree-structured array of cell “b” and the three subtrees sending
to cell “a” in the object reconstruction process.

4) Each cell updates its tree by replacing its four children
with the four trees received.

5) If the leaf values of the received trees are all 0 or the
trees do not contain any updates as no sensors have
changed state, the reconstruction phase is over. If not
the reconstruction algorithm continues with step 2.

As a result, the tree of each cell expands until the whole
object is reconstructed.

As several different paths exist from one cell to another, a
cycle can be created leading to an infinite growth of the trees.
Such cycles are avoided through an algorithm briefly explained
as follows. Since trees can be written as (tree-structured)
arrays, replacing sub-trees is equivalent to connecting the
current array with the array received. So, after connecting two
arrays, a check for duplication of values of 1 is performed on
the arrays received from neighbors (see Figure 6): If two 1s
have the same coordinate, the latter (including its child nodes)
is replaced with 0. The check is performed from left to right
in arrays removing the right-most duplicate. An example as
shown in Figure 6, the current array 10011 in the iteration 2
is updated by connecting two received arrays (1001 and 1010)
from its two neighbors. The values, 1s , in the updated array
and their associated coordinates are checked and the third and
fifth 1 have the same coordination (1, 1), then the fifth is
replaced with 0.

The reconstruction process is summarized as follows:
1: {Reconstruction phase}
2: Initialize its tree-structured array (create the root of the tree)
3: repeat
4: Generate the four tree-structured arrays for each neighbor
5: Send its array to the neighbors
6: Receive the arrays from its four neighbors
7: Replace its four children with the received arrays
8: Check duplication of the value, 1
9: Replace the duplicate values with 0

10: until Receive the array the leaf values of which are all 0 or the

N W S

a

a

Iteration 1

Iteration 2

E

b d

a

b d

a d

b c

1 0 0 0 0

1 0 0 1 1

1 0 0 1 0 0 1 1 0 1 0
(0, 0) (0, 1) (1, 0)

(0, 0) (0, 1)(1, 0)

(0, 0)

(1, 1) (1, 1)

1 0 0 1 0 0 1 1 0 0 0

(0, 0) (0, 1) (1, 0)(1, 1)

Iteration 2'

a

b d

c

REPLACE

c c

Figure 6. Cycle avoidance during object reconstruction process.

unchanged array values from its neighbors
11: {Differentiation phase (presented later)}

Figure 7 shows a complete example of the reconstruction
process of an object. In this figure, each square is a cell in
the Smart Surface and every cell has four neighboring cells
denoted as “N”, “W”, “S”, and “E” correspond to their relative
positions. In this example, there are four active cells, named
“a”, “b”, “c”, “d” and each cell receives the state of the other
cells in four communications. Every cell has four neighbors,
but one of them as the destination node which corresponds
to the parent node and the rest three are regarded as children
nodes. Therefore, all nodes except the root have three children,
and a line without square represents the position of the parent
node.

C. Differentiation phase

To differentiate between objects, a database of storing shape
models is required. This database is constructed during an
offline stage. In the previous approach, a number of criteria
corresponding to the shape of an object on the Smart Surface
are generated and stored in the model database. Instead, in the
current approach, each shape model is stored as one binary
array which corresponds to a 4-branch tree. To simplify the
differentiation process, the root cells of all the arrays in the
database have to be fixed as far north as possible, then as far
west as possible. The array generated in the reconstruction
phase therefore has to be transformed into a unique array

N W S

a b c d

a b

Iteration 1

E

b a c

d

c

c

b d

a b

b a c

c d

c

b d

a

d

c

b

a

b

c

d

b

a c

d

c

b d

a

d

c

b

a

a

b

c

d

d

c

b

a

a
b c d

Iteration 2

Iteration 3

Iteration 4

Figure 7. The tree evolution in each active cell during object reconstruction
process.

the root cell of which is the most northern and western cell.
However, at the online stage, each cell is of a tree-structured
array and it is evolving in each iteration step. For non-root
cells, the transformation from a non-root cell’s array to a
root cell’s array is performed. At first, it is to scan the tree-
structured array from the most left. Since the first bit is always
the state value of the cell itself, it checks the second bit. If its
value is 1, it means the cell has an active north neighboring
cell, and then the north neighboring cell is changed to be the
root cell. As illustrated in Figure 8(a), the north neighboring
cell “a” is changed to be the root cell, instead of cell “b” by

1) adding 1 to the head of the sub-array (001001000) of
cell “b”, and

2) inserting them (1001001000) to the position (pointed by
an arrow) between the 4th and 5th bits, and finally

3) deleting the first bit (1) and the resulting ar-
ray is 10010010010000 from the original array,
11000001001000.

If the second bit’s value is 0, it means no active cell is
found at north. Similarly, the transformation algorithm checks
if the cell has an active west neighboring cell. If it has, the
west neighboring cell is changed to the root cell in the similar
steps. As shown in Figure 8(b), cell “b” is changed to be the
root cell instead of cell “c” as following steps:

1) adding 10 to the head of the sub-array (01000) of cell
“c”, and

2) inserting them (1001000) to the position (pointed by an

Change the root to “a”

Change the root to “b”

(a)

(b)

b

a c

d

1 0 1 1 0 0 0 0 0 0 1 0 0 0

c

b d

a

1 1 0 0 0 0 0 1 0 0 1 0 0 0

b

a c

d

a

b

c

d

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0

Figure 8. Array transformation to change the root cell.

arrow) between 9th and 10th bits, and finally
3) deleting the first two bits (10) and the resulting

array is 11000001001000 from the original array,
10110000001000.

As described above, each array is checked to ensure the
root node of its associated tree is the most northern and
western root cell. For a complicated shape differentiation, it
is possible that some of the arrays may not be able to be
correctly transformed such that the associated cells may not
be able to successfully differentiate the shape of an object,
namely, no matching with a shape model in the database. In
such case, it has to wait for other cells which can differentiate
the shape of an object in database. Once the shape model is
differentiated, the differentiation result and the position of the
object (coordinates of the bounding rectangle) on the Smart
Surface. The control block takes the responsibility from now
on, either to give the object a small movement in order to retry
differentiation or to move the object to its destination. This
phase is summarized as follows:

1: {differentiation phase}
2: repeat
3: if the north cell is active then
4: transform the array to change the root to the north cell
5: else if the west cell is active then
6: transform the array to change the root to the west cell
7: end if
8: until there is no active neighboring cells on the north and west
9: if the root is the most northern and western cell then

10: repeat
11: compare the array with all the models
12: if discover the same array then
13: send the differentiation result to the motion controller
14: end if
15: until the array is discovered or all shapes have been checked
16: end if
17: wait for the object to move to another place and restart the

reconstruction phase

a 1 1 1 1

1 1 b 1 1

1 1 1 1 1

1 1 1 1 c

width

height

Figure 9. A shape of the rectangle model.

IV. RESULTS AND PERFORMANCE ANALYSIS

We evaluated the proposed approach in terms of the number
of communication iterations, the amount of communication
traffic, the length of computation time and the size of the
memory footprint, and compared it with the previous approach
presented in [17].

A. Number of communication iterations

The number of communication iterations of a cell depends
on its position inside the shape. The edge cells need many
communication to attain the opposite side cells, whereas cen-
tral cells need fewer communications. The maximum number
of communications is the sum of the height and width of the
object minus one, while the minimum number is one plus half
the sum of the height and width, rounding down to the nearest
integer. For example, the height and width are four and five
in Figure 9. Cell “a” needs to communicate eight times, but
cell “b” only needs to communicate five times.

In the previous approach, the number of iterations is the
same for both cells.

B. Communication traffic

As an example, the amount of communications in a 10×10
Smart Surface is calculated. The traffic amount is variable in
the proposed approach, because the message consists of the
states of cells known by the sender and the number of those
cells increases with time. The amount of traffic for the example
in Figure 7 is as follows. In the first step, all the messages have
1 bit. In the next step, the active cells send 4 bits, because the
messages contain the states of their three neighbors (without
the destination node). After that we show only the amount of
the messages from cell “b” to cell “a”, because this amount
depends on the sender and receiver. Cell “b” generates the sent
message for cell “a” as shown in Figure 5. The amounts are
4 bits, 7 bits, and 10 bits, from top to bottom. This amount
needs to be multiplied by four, since trees are sent to the four
neighbors. The results for the other nodes are obtained in a
similar way. Summing up, the amount of data communication
traffic in each active cell is (1 + 4 + 7 + 10) × 4 = 88 bits,
and the amount of the traffic in the network is 88× 4 = 352
bits (there are 4 active cells).

In the previous approach, 100 bits of data are sent between
cells for communication. Since active cells communicate with
their four neighbors, each active cell sends 400 bits of data at
a time. If there are four active cells as shown in Figure 7, the
cells need to communicate 4 times in order to get all active

● 8 mm

1.6 mm

Figure 10. The size of a cell.

values, i.e. the amount of the traffic is 4 × 4 × 400 = 6400
bits, about eighteen times greater than the proposed approach.

C. Computation time

The length of computation time consists of three main
times: reconstruction time (TR), transformation time (TT)
and comparison time (TC). Since they are iterated, we have
taken into account the number of the iterations. The number
of iterations for TR was calculated above. TT is the distance
from the cell to the most northern and western cell except in
cases where the root cannot be changed to the most northern
and western cell. TC is the number of executions of the
procedure (the reconstruction and differentiation phase) until
the differentiation is successful, because the differentiation
phase is performed after the completion of the reconstruction
phase. As a consequence, the computation time is calculated
as below:

T =

NReconstruction∑
i=1

TRi +

NTransform∑
j=1

TT j +

NComparison∑
k=1

TC k (1)

where NX is the number of iterations for X .
We consider the most extreme case in differentiating the

object. This corresponds to cell “c” in Figure 9, as it is furthest
from the northernmost and westernmost point. The number of
communications and transformations are 8 and 7 respectively,
and the number of comparisons is at most the number of
shapes in the database.

To arrive at a number of shapes for this example, we posited
the following conditions. The size of the Smart Surface is a
600× 600 pixels square surface with a 15× 15 MEMS array,
cf. [28]. The size of a cell and MEMS are shown in Figure 10
and the object models are shown in Figure 11, taken from
[17]. The criteria considered for differentiation are A, P and
S, defined as follows:
• A (number of angles): The number of 1 having at least

three neighbors to 0 and forming a right angle.
• P (perimeter): The number of sides having a neighbor at

0.
• S (surface): The number of 1 of the object.
The simulation of the offline stage of the three objects

leads to 48 shapes for the circle, 248 shapes for the rectangle
and 428 shapes for the “H” object. Assuming that all the
724 shapes are in the database, and that the differentiation is
successful with 0 failures (since the rotation degree is 1◦), and
that all the coordinates for the position of objects are included
with those in the offline stage, the shape of the object is found

31 mm 29 mm

40 mm
39 mm

33 mm

13 mm

8 mm

Figure 11. The size of the models.

necessarily after at most 724 comparisons, so the computation
time becomes:

T = 8TR + 7TT + 724TC (2)

On the other hand, the time with for the previous approach
involves reconstruction time (TR′), criteria calculation time
(TA) and comparison time (TC ′):

T ′ =

N ′
Reconstruction∑

i=1

(TR′i + TAi +

N ′
Comparison∑
j=1

TC ′ij) (3)

where N ′Reconstruction is the number of communications and
N ′Comparison is the number of comparisons.

To calculate the time to differentiate the object for cell
“c” (the most extreme case) in Figure 9, the number of
communications is 8, and the number of comparisons is the
same as the proposed solution. On the assumption that there
are 50 criteria in the database, and that the differentiation is
successful, after 7 failures (hence 8 steps are required for
differentiation), at most 50 comparisons are necessary for
differentiation, so the computation time becomes:

T ′ = 8TR′ + 8TA+ 400TC ′ (4)

This comparison between T and T ′ shows that the dif-
ference between the two approaches is in the number of
comparisons necessary to differentiate an object. There are
fewer in the previous approach because the criteria of shapes
stored in the database are used for comparisons, whereas only
the shapes themselves are used in the proposed approach.

D. Memory footprint

In the proposed approach the memory of a cell is occupied
with the programs to generate arrays for communications,
replace sub-trees with the received trees and to transform the
array to change the root to the northernmost and westernmost
point so that another program can calculate the criteria. It also
needs to store model data. The memory for these programs
cannot be easily determined, since it depends on the imple-
mentation and the system, but it is a constant amount, that is
independent of the models.

We consider the database of models which has the biggest
memory footprint. This database has to be uploaded in each
cell.

In the previous approach, one shape needs 29 bytes (' 15×
15 / 8). The number of shapes for the circle, rectangle and

“H” are 48, 248 and 428, as presented above. The memory for
the matrices is 29 × 724 bytes. The memory for the criteria
is 4 × 58 bytes because one criterion needs 4 bytes and the
numbers of criteria are 14, 23 and 21. In total, the memory
needed by the models is 21228 bytes. If criteria with a larger
memory footprint are used, the results could be even higher.

The data for one model consists of a number of shapes. The
memory needed by a shape Si is the number of nodes of its
tree:

MS i =

{
4 if n = 1,
3n+ 2 if n ≥ 2. (5)

where n is the number of cells covered by the object.
Let NModel be the number of models and NShape be the

number of shapes for the model. The memory needed by a
model Mk is:

MM k =
∑

Si∈Mk

MS i, i = 1, 2, . . . ,NShape (6)

Therefore, the total memory for models is:

M =

NModel∑
i=1

MM i (7)

As an example, suppose a model “H” covers less than 25
cells and has about 430 shapes. A shape needs 77 bits, cf.
equation 5. Thus, it needs 10 bytes, while the model with
all its shapes needs 4.3 Kbytes. Similarly, the circle and the
rectangle need 0.5 Kbytes and 2.5 Kbytes respectively. Hence,
the memory needed to store all the models’ data is about 7.3
Kbytes. This is much less than in the previous approach.

It is possible to further reduce the memory needed. This can
be done by storing fewer shapes. However, the reconstruction
phase and the differentiation phase need to be repeated until
the shape matching the object is found. Moreover, having
fewer shapes stored reduces the probability of matching.
For this reason, the fewer the stored shapes, the longer the
computation time. For instance, 12 shapes with 30◦ rotations
stored in the database, create a footprint of 1.6 Kbytes.

V. CONCLUSIONS AND FUTURE WORKS

This paper aims to improve the distributed control of the
Smart Surface by adopting tree-structured arrays. Represent-
ing the shapes as tree-structured data reduces their memory
footprint. This footprint is, however, too large to implement if
all the shapes of the models are in the database. The number
of shapes can be reduced, but the approach trades off the
reduction of the memory footprint against the probability of
the successful differentiation. Future work will therefore focus
on the optimization of the number of shapes to be stored in
the database, and also on the distribution of the database on
different cells to allow a much smaller memory footprint. The
tree-structured array would be a good basis of support for
distribution of shapes in the database.

VI. ACKNOWLEDGMENTS

We would like to thank all the Smart Surface and Smart
Blocks groups and in particular Guillaume Laurent et Nadine
Piat. This work was supported in part by ANR (ANR-06-
ROBO-0009 and ANR-2011-BS03-005-01).

REFERENCES

[1] J. E. Luntz, W. Messner, and H. Choset. Distributed manipulation
using discrete actuator arrays. The Int. Journal of Robotics Research,
20(7):553–583, 2001.

[2] M. Ataka, B. Legrand, L. Buchaillot, D. Collard, and H. Fujita. Design,
fabrication and operation of two dimensional conveyance system with
ciliary actuator arrays. IEEE Trans. on Mechatronics, 14:119–125, 2009.

[3] K.-F. Böhringer, B. R. Donald, and N. C. MacDonald. Single-crystal
silicon actuator arrays for micro manipulation tasks. In IEEE Int.
Workshop on Micro Electromechanical Systems, pages 7–12, 1996.

[4] J. W. Suh, R. Bruce Darling, K.-F. Böhringer, B. R. Donald, H. Baltes,
and G. T. A. Kovacs. CMOS integrated ciliary actuator array as a
general-purpose micromanipulation tool for small objects. Journal of
Microelectromechanical Systems, 8(4):483–496, 1999.

[5] G. Bourbon and P. Minotti. Toward smart surfaces using high-density
arrays of silicon-based mechanical oscillators. Journal of Intelligent
Material Systems and Structures, 10:534–540, 1999.

[6] C. Liu, T. Tsao, P. Will, Y.C. Tai, and W.H. Liu. A micromachined
permalloy magnetic actuator array for micro robotics assembly systems.
In Int. Conf. on Solid-State Sensors and Actuators, 1995.

[7] G. J. Laurent, A. Delettre, and N. Le Fort-Piat. A new aerodynamic
traction principle for handling products on an air cushion. IEEE Trans.
on robotics, 27(2):379–384, 2011.

[8] P.-J. Ku, K. T. Winther, and H. E. Stephanou. Distributed control system
for an active surface device. In IEEE Int. Conf. on Intelligent Robots
and Systems, pages 3417–3422, 2001.

[9] J. Luntz and H. Moon. Distributed manipulation with passive air flow.
In IEEE Int. Conf. on Intelligent Robots and Systems, pages 195–201,
2001.

[10] K. Varsos and J. Luntz. Superposition methods for distributed manip-
ulation using quadratic potential force fields. IEEE Trans. on robotics,
22(6):1202–1215, 2006.

[11] A. Berlin, D. Biegelsen, P. Cheung, M. Fromherz, D. Goldberg, W. Jack-
son, B. Preas, J. Reich, and L.-E. Swartz. Motion control of planar
objects using large-area arrays of MEMS-like distributed manipulators.
Micromechatronics, 2000.

[12] S. Konishi and H. Fujita. A conveyance system using air flow based
on the concept of distributed micro motion systems. IEEE Journal of
Microelectromechanical Systems, 3(2):54–58, 1994.

[13] Y. Fukuta, Y.-A. Chapuis, Y. Mita, and H. Fujita. Design, fabrication
and control of MEMS-based actuator arrays for air-flow distributed
micromanipulation. IEEE Journal of Microelectromechanical Systems,
15(4):912–926, 2006.

[14] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorith-
mica, 10(2-4):210–225, 1993.

[15] K.-F. Böhringer, V. Bhatt, B. R. Donald, and K. Y. Goldberg. Algorithms
for sensorless manipulation using a vibrating surface. Algorithmica,
26(3-4):389–429, 2000.

[16] L. Matignon, G. J. Laurent, N. Le Fort-Piat, and Y.-A. Chapuis.
Designing decentralized controllers for distributed-air-jet, MEMS-based
micromanipulators by reinforcement learning. Journal of Intelligent and
Robotic Systems, 59(2):145–166, 2010.

[17] K. Boutoustous, G. J. Laurent, E. Dedu, L. Matignon, J. Bourgeois,
and N. Le Fort-Piat. Distributed control architecture for smart surfaces.
In Ren C. Luo and Hajime Asama, editors, IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 23, pages 2018–
2024, Taipei, Taiwan, October 2010. IEEE.

[18] R. Huang, J. Ma, and Q. Jin. A tree-structured intelligence entity
pool and its sharing among ubiquitous objects. In Proc. Int. Conf.
Computational Science and Engineering CSE ’09, volume 2, pages 318–
325, 2009.

[19] K. Boutoustous, E. Dedu, and J. Bourgeois. An exhaustive comparison
framework for distributed shape differentiation in a MEMS sensor
actuator array. In International Symposium on Parallel and Distributed
Computing (ISPDC), pages 429–433, Krakow, Poland, July 2008. IEEE
computer society press.

[20] D. El Baz, V. Boyer, J. Bourgeois, E. Dedu, and K. Boutoustous.
Distributed part differentiation in a smart surface. Mechatronics, pages
1–9, To appear.

[21] C. A. da Costa, A. C. Yamin, and C. F. R. Geyer. Toward a general
software infrastructure for ubiquitous computing. IEEE Pervasive
Computing, 7(1):64–73, 2008.

[22] J. Ma. Smart u-things–challenging real world complexity. In IPSJ
Symposium Series, 19, pages 146–150, 2005.

[23] J. Ma, L.T. Yang, B.O. Apduhan, R. Huang, L. Barolli, and M. Takizawa.
Towards a smart world and ubiquitous intelligence: a walkthrough from
smart things to smart hyperspaces and ubickids. International Journal
of Pervasive Computing and Communications, 1(1):53–68, 2005.

[24] M.-W. Feng, S.-L. Wen, K.-C. Tsai, Y.-C. Liu, and H.-R. Lai. Wireless
sensor network and sensor fusion technology for ubiquitous smart living
space applications (invited paper). In Proc. Second Int. Symp. Universal
Communication ISUC ’08, pages 295–302, 2008.

[25] Y.-S. Jeong, E.-H. Song, G.-B. Chae, M. Hong, and D.-S. Park. Large-
scale middleware for ubiquitous sensor networks. IEEE Intelligent
Systems, 25(2):48–59, 2010.

[26] M. Weiser. The computer for the 21st century. IEEE Pervasive
Computing, 99(1):19–25, 2002.

[27] J. Ma, Q. Zhao, V. Chaudhary, J. Cheng, L. Yang, R. Huang, and Q. Jin.
Ubisafe computing: Vision and challenges (i). Autonomic and Trusted
Computing, pages 386–397, 2006.

[28] K. Boutoustous, E. Dedu, and J. Bourgeois. A framework to calibrate
a MEMS sensor network. In Proceedings of the 6th International
Conference on Ubiquitous Intelligence and Computing, volume 5585
of LNCS, pages 136–149, 2009.

