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The present paper deals with the study of the failure probability of nano-structured optical fibers when sub-
mitted to uniaxial tensile loading. A nano-structuration procedure of optical fibers thanks to near ablation
threshold single shot femtosecond laser has been proposed. The ablation threshold energy Ep0 for silica
fiber is such that: NA2Ep0=15.5 nJ, where NA is the numerical aperture of the objective to focus the laser in-
side the fibers. The rupture strength of the impacted fibers can be controlled through the pulse energy Ep, the
numerical aperture NA, the number N‘ of nano-craters depending on the step dz of the position of the fiber
surface into the focal region, the interval dx between each crater and the number n‘ of flaw lines. An additive
combination of two classical Weibull's laws allows a good representation of the failure probability of the
impacted fibers. A phenomenological model for the evolutions of the Weibull's parameters (exponents and
scaling stresses) has been proposed and the experimental tendencies of the failure probability curves are fairly
well described by the set of the model's equations (Eq. (27)).

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The use of optical fiber for structural compositemonitoring is closely
relatedwith smart structure conceptwhich emerged in the early 1990s.
Smart structures describe mechanical and civil engineering structures
that integrate a sensing system. This sensing system may help to iden-
tify structural wear, damage or deterioration.

Due to their versatility, robustness and easiness of integration,
optical fiber sensors have rapidly been recognized as an ideal sensing
tool for smart structures [1–7]. Compared to conventional electrical
sensors, the technology of the optical fiber sensors has the following
advantages: immune to electromagnetic interference, chemically
inert, long term reliability, weakly intrusive thanks to its small size, re-
sistant to nuclear and ionizing radiation. Due to their small size and
generally permanent integration in the structure, optical fiber sensors
are considered to be non-destructive and minimally invasive testing
tool. Moreover, the embedded sensors are protected by the composite
material and can be installed during production, avoiding external in-
stallation. The mechanical properties of the current optical fibers are
still quite known [8–15]. However, as shown by Semjonov et al. [16]
on nano-indented fibers with diamond cube corner, if synthetic flaws
are generated on the surface or in the core of the fibers, it is possible
to control the rupture strength of these modified fibers. These flaws
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act as local stress concentrators under strain, resulting in a much
lower tensile strength than that of the initial fiber. Thus, embedment
of such modified fiber into a composite structure can be used as strain
sensors, as an example to detect if the structure has locally undergoes
a given strain. This kind of sensor acts as a strain safety-fuse. To generate
nanometric flaws, femtosecond laser micromachining is a versatile
material processing technology for fabricating a wide range of micro
and nano-structures in transparentmedia [17,18]. Due to the extremely
short light-matter interaction time with femtosecond pulses, the abla-
tion process is quasi-deterministic allowing a high degree of precision
and reproducibility [19–24]. Many different physical processes are in-
volved in the ablation process [23,25–28]. The drilling of nano-holes
in dielectric materials with sub-wavelength characteristic dimensions
is possible thanks to the highly nonlinear nature of the important
multi-photon ionization process with precisely defined ablation
threshold [19,20,24]. In two previous papers [29,30] a detailed study
of the morphology of nano-craters drilled in borosilicate glass by
single-shot femtosecond laser ablation near the ablation threshold
has been reported and different relationships for the evolutions of the
depths and the various diameters have been proposed. Moreover, for
the present application, this technology permits the surface (or the
core) of the silica fiber to be nano-structured through the coating with-
out significant damage of the protective layer which represents a
considerable advantage.

Hence, the present paper deals with the study of the failure proba-
bility of nano-structured optical fibers with femtosecond laser proce-
dure when submitted to uniaxial tensile loading.

http://dx.doi.org/10.1016/j.jnoncrysol.2013.02.008
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2. Experiments

2.1. Optical fibers

Experiments, optical structuration and mechanical tests have been
carried out on FURUKAWA (OFS) multimode optical fibers coated
with polyimide coating. The manufacturer code, the core, the cladding
and the coating diameters of tested fibers are TCG-MA100H, 100 μm,
110 μm and 140 μm, respectively. When this kind of fiber with poly-
imide coating is embedded into a composite structure a good strength
transfer between the composite and the fiber has been observed [31],
which is not the case for other fibers with acrylate or ETFE (ethylene
tetrafluoroethylene) coatings. This is the main raison why this kind of
fiber has been chosen to realize a mechanical sensor [31]. Note that
the way the strength is transmitted to the fiber is not perfectly known.

2.2. Optical experimental setup

The amplified laser source (Spitfire ProV, Spectra-physics) emits
120 fs laser pulses with a central wavelength λ of 800 nm, at a repeti-
tion rate of f=5 kHz. An independent Pockels cell system with a
thin-film polarizer plays the role of an optical shutter that enables
single-shot illuminations. A set of neutral densities allows adjusting
the pulse energy. A polarizing cube and a zero-order quarter wave
plate allow the production of a circular polarization before the laser
beam passes through a microscope objective (MO), focusing onto the
surface of optical fiber. Two types of Olympus Plan-fluor infinitely-
corrected microscope objectives were used: ×20 with 0.4 numerical
aperture (NA) and ×50 with 0.8 NA. As the beam diameter is far larger
than the entrance aperture of theMO, the Airy spot sizes are 2.4 μmand
1.2 μm.

Thanks to a small device the optical fibers were mounted over a
3D positioning motorized stage (Newport ILS M-VP25) with bidirec-
tional repeatability better than 200 nm and the sample orthogonality
with respect to the beam propagation was ensured to be less than
1 mrad. The positioning of the fibers was achieved by imaging on a
CCD camera with depths of field of 2 μm and 0.5 μm with the ×20
MO and ×50 MO, respectively.

Specific care has been devoted to the cleanliness of the beam. The
dispersion of all optics was pre-compensated with the compressor of
the chirped-pulse amplifier of the laser chain. The pre-compensation
was carefully adjusted by measuring the pulse duration τ with a
GRENOUILLE after the laser beam passed through the microscope
objective and was collimated by a thin lens with negligible dispersion.
The measured pulse duration is about τ=120 fs. The transmitted
laser power P, just after the microscope objective, has been measured
with a calibrated power-meter (GENTEC, XLP 12) whose measure
range is 10 μWbPb3 W corresponding to a pulse energy Ep in the
range 2nJbEpb6 105 nJ. Single-shot illuminations of the fiber were
performed under atmospheric conditions for different pulse energies
in the range of 16 nJ to 376 nJ, near the ablation threshold of silica.

2.3. SEM and AFM measurements

Some geometrical characterizations of the exact shape of nano-
craters structured on the surface of optical fibers have been performed
to evaluate the ablation threshold of the doped silica which consti-
tutes the core and the cladding of the fibers. So, after metallization, se-
lected nano-holes have been characterized by direct scanning electron
microscopy imaging (SEM, Raith-Eline) and atomic force microscopy
(AFM, PSIA XE-150).

2.4. Mechanical setup

To evaluate the distribution of probability of failure of optical fi-
bers impacted by femtosecond laser shoot, tensile tests on relatively
short specimens have been carried out. A DMA (Dynamic Mechanical
Analysis) Bose Electroforce 3200 device with a cell load of 450 N has
been used. The useful length of the specimens is fixed at 30 mm and
the tests have been realized at 0.02 mm/s and room temperature. At
least 20 to 30 specimen testing were required to be able to evaluate
the distribution of probability of failure. However, gripping the fiber
is the major problem and presently the samples have been glued
and tightened between two card tabs to obtain a sufficient friction
with the fiber to avoid slipping.

Moreover, for these short specimens, the load train and fiber must
be accurately aligned in order to avoid preferential failure caused by
bending between fiber and grips. With this procedure about 90% of
the failures occur in the beam impacted zone i.e. in the middle of
the useful length. During tensile tests, the cross head displacement
has been measured with a Mach–Zendher optical interferometer.
The force-displacement curves are perfectly linear, no slide has been
observed and the failure suddenly happens. This is a characteristic of
brittle materials. For virgin fibers the stress–strain curve slop is con-
sistent with a 73±8 GPa Young's modulus in accordance with the
known theoretical value of silica. The fiber elongation is about 7.5%.

3. Preliminary results: ablation threshold of silica fiber

In two previous papers [29,30] a detailed study of the morphology
of nano-craters drilled in borosilicate glass (Erie ScientificMicro Cover
Glasses, Square1) by single shot femtosecond laser near the ablation
threshold has been reported. The influence of numerical aperture
(NA=0.4 and 0.8), the pulse energy Ep and the position of the speci-
men surface into the focal region were thoroughly investigated. As a
function of these parameters two kinds of nano-hole morphologies
were reported. As shown in Fig. 1a,b the nano-holes were composed
of a single crater (example Fig. 1a) or of two characteristic craters
with very distinct geometries (example Fig. 1b). The two craters are
quasi axi-symmetric along the laser beam axis and surrounded by a
hemi-torus rim. Fig. 1c gives the scheme of a typical profile as well
as the characteristic dimensions (widths and depths) for the main
crater (index 1) and the second crater (index 2). The first crater is
due to the incoming Gaussian pulse and the second to a spontaneous
reshaping of the beam which transforms the incoming beam into a
Gaussian–Bessel pulse [30]. As a function of the pulse energy Ep, the
ablation threshold Ep0, the NA and the z position of the waist of the
beam, different relationships were proposed for the evolution of the
depths (h1, h2) and the diameters (L1, L2).

However, as previously mentioned, the experimental analysis and
the different relations have been established on borosilicate glass,
which is quite different of the silica fiber. Hence, to check the validity
of these relations and particularly to determine the exact value of the
ablation threshold, some experiments have directly been carried out
on the fiber material. To do that, some fibers have been cleaved and
the same experimental procedure than the one used for borosilicate
glass, has been performed on the cross section of the fibers. Note
that these experiments are difficult to properly realize. Hence, for
each power, the sample was translated through the focal region, in
the vertical direction Z, by steps of 250 nm over a range of 15 μm.
After each laser shot corresponding to a fixed z value, the fiber was
translated in plane by 5 μm in the X direction. After eight shoots on
the same line in the X direction, a new line of eight shootswas realized
with the same origin of the first one, but translated of 15 μm in the Y
direction. Then this sequence has been repeated ten times, covering
the Z focal region over 15 μm [29,30]. As shown in Fig. 2, for each stud-
ied power, this procedure allows a compact area of the silica fiber to be
nano-structured. As a function of the pulse energy Ep and for NA=0.4,
the length ΔZ of the focal region where a visible laser-surface fiber
interaction has been measured by optical or SEM imaging.

An example is given in Fig. 2. Indeed, ΔZ (μm)=0.25 N where N is
the number of observable impacts. In Fig. 3, for fiber glass as well as for



Fig. 2. Example of a global view of the laser shot path on a cross section of a cleaved
fiber. ΔZ determination for Ep=0.137, 0.175 and 0.308 μJ.

Fig. 1. a,b,c: SEM imaging of two different craters after FIB drilling. a) Ep=162 nJ, NA=
0.4, z=4.75 μmbΔZ/2=5.25 μm. Only one crater is visible (primary crater). b) Ep=
160 nJ, NA=0.4, z=7.25 μm>ΔZ/2=4.87 μm. Two characteristic craters appear as
z>ΔZ/2. c) Diagram of the crater morphology, definition of the different dimensions.
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borosilicate glass for comparison [30], the length ΔZ has been plotted
as a function of NA2Ep. Note that, after the coating has been removed,
some experiments have been performed along a generating line of the
fiber. In that case the nano-structuration is linear and the very small
inclination of the fiber together with the difficulty to exactly follow a
generating line causes the ΔZ values to be slightly underestimated.
This is especially true for the large ΔZ. The ΔZ values for the fiber
glass are clearly smaller than those measured in the borosilicate glass,
thus the ablation threshold is greater. It has been shown [29,30] that:

ΔZ ¼ 2z0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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−1
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z0 is the Rayleigh range, ω0 is the beam waist of the Gaussian beam,
F and F0 the fluence and the fluence threshold of the beam, λ the wave-
length, M~1 a parameter which characterizes the beamdivergence and
α a coefficient equal to 0.61 for a classical Airy disk. The relation (1) is
recasted as:
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The two continuous curves in Fig. 3 correspond to a1=NA2Ep0=
11 nJ and a2=1.21 μm for borosilicate glass [30] and a1=15.5 nJ
and a2=1.21 μm for silica fiber. With α=0.491 and if M=1 [30]
then F0=2.3 Jcm−2 for borosilicate which is consistent with the
values reported in the literature [25,26,32], and F0=3.2 Jcm−2 for sil-
ica fiber. As a first conclusion, only the ablation threshold value has to
be changed in relations (1) and (2).

Now, as long as the dimensions of theprimary craters are concerned, it
has been shown in the literature and the two previous papers [29,30] that
the maximum of the mean diameter value bL1max> [19,25,27,29,30] and
bh1max> of the mean depth [29,30] are given by:

bL1max>¼ 2βL ω0
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ω0 is the beam waist radius in air, a1=11 nJ, βL=0.68 and βh=
0.59 [30]. These maxima are obtained for z=ΔZ/2, when the waist
of the Gaussian beam is focused at the surface of the sample. These
two dimensions have been measured on the impacts drilled on
the cross section of the fiber and the results bL1max> (bh1max> not
reported in this paper) in borosilicate and fiber glasses are reported

image of Fig.�1


Fig. 3. Evolutions in borosilicate and optical fiber glasses of the length ΔZ of the focal region where the laser surface sample interaction is visible by direct imaging. Experiments and
modeling.
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in Fig. 4. As for ΔZ, the bL1max> and bh1max> values for the silica fiber
are lower than those reported for the borosilicate. The two continu-
ous curves drawn in Fig. 4 correspond to Eq. (3) with a1=11 nJ and
a1=15.5 nJ for borosilicate glass and silica fiber, respectively.
2βLαλ=535 nm for the two materials. The same kind of result is
obtained on bh1max>, only the fluence threshold has to be changed
in relations 2 to 4.

As a conclusion of these preliminary experiments the relations pre-
viously established on borosilicate glass for the ΔZ length and the di-
mensions of the primary craters remain valid for the silica fiber, only
the ablation threshold energy has to be changed: NA2Ep0=15.5 nJ
(Ep0=97 nJ for NA=0.4 and Ep0=24 nJ for NA=0.8). Due to exper-
imental difficulties (focused ion beam sectioning of the holes in the
cross section of the fiber), no measure has been performed on the sec-
ondary crater. However, we think that the previous conclusion drawn
on the primary craters remains true for the secondary craters and thus
[30]:
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Fig. 4. Variation in borosilicate and optical fiber glasses of the upper dia
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z0 is the Rayleigh range, ω0 the beam waist (Eq. (1b)), n0 is the linear
refractive index of the glass, β~0.24 and a3~1.18 a1. Note that the
secondary craters appear at z~ΔZ/2, when thewaist of the beam is lo-
cated inside the silica [30].

The previous mentioned conclusions have to be discussed, first
from a material point of view and secondly from fiber geometry
considerations. As previously shown the ablation threshold value is
greater for silica fiber than for borosilicate glass. Indeed, the physical
properties (thermal expansion, glass transition temperatures, refrac-
tive index…) slightly differ according to the exact chemical composi-
tion of the glass. Presently, the core of the studied fibers is composed
of pure silica with high OH content (water content) and the clad of
doped silica. From a physical point of view, due to the non linear na-
ture of the interaction of femtosecond pulses with transparent mate-
rials, multi-photon absorption is required to initiate ablation. Hence,
the optical breakdown threshold depends on the size of the band
gap [17,20,23,24] and for a given material, on the material valence-
meter bL1max> as a function of NA2Ep. Experiments and modeling.
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electron spatial uniformity [22]. These two parameters are very sensi-
tive to the chemical composition of the materials and this is the main
reason of the variation of the threshold energy with the nature of the
glasses (borosilicate or silica fibers). The presence of OH in the core of
the fibers and doping elements in the clad is certainly responsible of
the increase of the threshold. Note that for a good quality optical ma-
terial the energy gap varies substantially over small scales but the
valence-electron density, which is proportional to the atomic density
is extremely uniform [22]. Moreover, formulti-mode fibers the refrac-
tive index in the clad ncl is slightly lower than the one in the core and if
nco is the maximum value of the core index at its center the relative
variation Δn=nco−ncl /nco is extremely small, in the order of 10−3.
Hence, the different parameters previously mentioned (Eqs. (1)–(6))
are quasi independent on Δn. From a theoretical point of view the
waist beam is unaffected by the index variation, only the Rayleigh
range z0 varies as Δz0(clad/core)=Δn z0(core), thus the variation is
negligible. In Fig. 3 it has been shown that the ΔZ values for the axial
structured surfaces (generating line) are slightly lower than those
for radial structuration (core of the fibers). It has been assumed that
the inclination of the fiber and the difficulty to follow a generating
line could explain this observation. A higher value of the clad thresh-
old energy also could explain the lower ΔZ values. In that case, from
the experimental points (along a generating line) in Fig. 3 a new
threshold value can be determined: NA2Ep0~18.5 nJ, thus greater
than the one in the core NA2Ep0=15.5 nJ. However, in Fig. 9 where
the Weibull's scaling stresses have been plotted as a function of the
pulse energy NA2Ep, at least for NA=0.4 and NA2EP=16.5 nJ (in
that case ΔZ=2.9 μm thus lower than the clad thickness ΔZb5 μm)
the scaling stresses are lower than those of virgin fibers. As a con-
sequence, NA2Ep0b16.5 nJ. This is in accordance with NA2Ep0=
15.5 nJ. Finally, we assumed that the nature of the axial and the radial
structured surfaces is very close and that only the ablation threshold
value has to be changed for the optical silica fibers.

4. Nano structuration of optical fibers

An experimental procedure has been developed to nano-structure
the surface of the fibers through the coating without significant dam-
age of the polyimide protective layer [31]. The scheme of this protocol
is described on Fig. 5. As previously mentioned the coating thickness
given by themanufacturer is equal to 15±2.5 μm. Taking the refractive
index of the polyimide, no~1.7, into account, a translation of 9 μm in the
air of thefiber along the vertical direction gives a displacement of 15 μm
in the polyimide of the waist of the beam. Moreover, to include the
Fig. 5. Scheme of the nano-structuration procedure of opti
different uncertainties on the geometric parameters of the fibers, their
positions and the focusing on a generating line of the fiber (±2 μm
for NA=0.4 and ±0.25 μm for NA=0.8), the imposed translation ΔZT
is greater than the theoretical one (Eqs. (1): ΔZT=ΔZTheor.±5 μm. To
average the effects of the uncertainty on the position of the upper gen-
erating line, two or three lines (Fig. 5) of flaws are generated on the fi-
bers. So, the sequence to nano-structure a fiber is given as follows:
focusing on the upper generating line of the coating, translation of
9 μm in the Z direction to adjust the beamwaist at the surface of the sil-
ica, new displacements in the Y and Z directions (Fig. 5) of dy and ΔZT/
2 μm, respectively. This position corresponds to the first laser impact.
Then, a new displacement of dy in the Y direction allows to begin the
second and then the third lines. After, the stage is translated of dx, −
2dy, and dz (Fig. 5) to create the second impact of the first line. This se-
quence is repeated until the ΔZT/dz value. Thus, the experimental pa-
rameters of this nano-structuration are Ep, NA, dx, dy, dz and the
number n‘ of lines. With this structuration, as previously mentioned
and as shown in Fig. 6a–b, the brittle failure of the fiber is always initi-
ated in the impacted zone by the laser beam.

5. Results and analysis of the mechanical tests

Themost suitable and reliable lawwhich allows describing the dis-
tribution of the probability P of failure of optical fibers is theWeibull's
law [11,33–38]. Its common form is the two parameters Weibull dis-
tribution given by Eq. (7):

P σð Þ ¼ 1− exp −L
σ
σ0

� �� �m0

ð7Þ

where L is the length of the fiber, σ the applied tensile stress, σ0 and
m0 the two scaling parameters: the Weibull's stress and the Weibull's
modulus, respectively. A LnLn representation as expressed in Eq. (8)
allows the determination of these two parameters, m0 is the slope of
the curve and σ0 corresponds to the intersection with the stress axis.

Ln
1
L

Ln
1

1−P σð Þ
� �� �

¼ m0 Ln σ−Ln σ0½ �: ð8Þ

Assuming a group (i) of M samples, the cumulative failure proba-
bility P(σ) for each of them is experimentally determined as follows:

P σ ið Þ ¼ i−0:5
M

ð9Þ
cal fibers. Definition of dz, ΔZ, dy, and dx parameters.

image of Fig.�5


Fig. 6. a,b: a) Typical brittle fracture morphology of nano-structured optical fiber under
tension. b) Zoom of the previous picture showing the location of the fracture origin.
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and the failure stresses are listed in increasing magnitude as
σ1≤σ2≤…≤σi≤…≤σM. A lot of experiments with NA=0.4, dz=
0.33 μm and NA=0.8, dz=0.25 μm and different values of the
pulse energy Ep0=97 nJbEpb376 nJ for NA=0.4, Ep0=24 nJbEpb79
nJ for NA=0.8, the geometrical parameters dx, dy, and n‘ being fixed,
have been carried out. The results: probability of failure P as a function
of the failure force is reported in Fig. 7a–b for NA=0.4 and 0.8, respec-
tively. The values of Ep, dx, dy, dz,n‘ and the numberM (13bMb27) of
retained experiments (rupture in the middle of the useful length of
the fibers, ~90%) are specified in the figure captions. Moreover, some
tests with fixed optical parameters (NA=0.4 and Ep) but with differ-
ent values of dx, dy and n‘ have also been performed and the results
are reported in Fig. 7c. Of course, tests on non impacted fibers (Ep=
0 in the figures) have also been realized. From a qualitative point of
view and as shown in Fig. 7(a,b,c), the probability of failure greatly
depends on the optical parameters (NA, Ep) and in a less proportion
on the structuration parameters (n‘, dx, dy). Thus, P depends on the
Fig. 7. a,b,c: Weibull's failure probabilities P of origin and nano-structured fibers. Experime

a) NA=0.4, Ep0=97 nJ, dx=5 μm, dy=7 μm, dz=0.33 μm, n‘=3 and from the right t
M=24), (Ep=146 nJ, M=24), (Ep=157 nJ, M=24), (Ep=206 nJ, M=18), (Ep=320

b) NA=0.8, Ep0=24, 2 nJ, dx=5 μm, dy=7 μm, dz=0.25 μm,n‘=3and from the right to th
M=17), (Ep=79 nJ, M=23),

c) NA=0.4, Ep0=97 nJ, (Ep=0,M=23), (Ep=123 nJ, dx=5 μm,dy=7 μm,dz=0.33 μm,n‘=
12 μm, dy=12 μm, dz=0.33 μm, n‘=3, M=18), (Ep=157 nJ, dx=dy=2 μm, dz=0.33 μ
geometry and on the distribution of craters along the fibers. From a
quantitative point of view, according to the Weibull's law (Eq. (8)), a
LnLn(1/1−P) versus Lnσ representation of the results given in
Fig. 7a,b,c has been done. An example is proposed in Fig. 8 for NA=
0.4 (data of Fig. 7a). Excepted for the non impacted fibers, the different
curves are not linear but present a bilinear aspect. For virgin fibers
the two Weibull's parameters, stress and exponent, are equal to
σmax=5310 MPa and mmax=78 which is in a fairly good agreement
with the results given in the literature for short fibers (Lb0.8 m)
[11,36–38], especially for the scaling stress (4500bσmaxb5600 MPa).
This result a posteriori validates the method to grip and to test these
short fibers. For laser beam impacted fibers the bilinear aspect of
the Weibull's representation (Fig. 8) allows to determine four scaling
parameters, σ01, m01, σ02, and m02, the index 01 being assigned to
the highest stress values, σ01>σ02, and the exponents m0i have been
associated to the stresses σ0i. For NA=0.4 and 0.8 the geometrical
parameters being fixed (Fig. 7a,b,c) the evolutions of σ0i and m0i as a
function of the pulse energy NA2Ep are reported in Fig. 9a–b, respec-
tively. The two scaling stresses rapidly decrease with the pulse energy
from σmax=5310 MPa to about 1000 MPa and then slowly decrease.
The range of the m0i exponents is such that 4bm0ib28. Moreover, as
shown in Fig. 9b, two domains of m0i values with the mean values of
8 and 24 could appreciably be highlighted. This point will be discussed
further.

As it will be shown in the next paragraph (modeling), to fit with a
four Weibull's scaling parameters the entire kinetic of the probability
of failure reported in Fig. 7a,b,c, the relation (10) has been applied. In
this relation S0 is the cross section of the silica part of the fibers.

P ¼ 1−
X2
i¼1

αi exp− σ
σ0i

� �m0i

¼ 1−
X2
i¼1

αi exp− F
F0i

� �moi

with σ0i

¼ F0i
S0

and
X2
i¼1

αi ¼ 1: ð10Þ

Thus, there are five parameters, σ01, m01, σ02, m02 previously identi-
fied and reported in Fig. 9a,b and α2=(1−α1). The values of α2 have
been identified on the different sets of experimental points reported
in Fig. 7a–c. The continuous black lines in these figures correspond to
the relation (10) identified with the values of α2 reported in Fig. 9c.
The α2 (or α1) coefficient is appreciably constant with a mean value
of 0.45±0.12.

To normalize the two coordinates of the curves of Fig. 9a,b with
respect to the Weibull's parameters of the unstructured fibers, σmax,
mmax, and to the ablation threshold energy Ep0, the new coordinates
of the representations in the Fig. 10a–b are σ0i/σmax as a function of
Ep/Ep0. Thus, 0:18b σ0i

σ max
b1 and 0:05 b m0i

mmax
b1 for 1b EP

Ep0
b3:9, with

σmax=5310 MPa, mmax=78 and Ep0=97 nJ for NA=0.4, Ep0=24 nJ
for NA=0.8. Theσ0i/σmax stress ratios followparallel decreases contrary
to the m0i/mmax exponent ratios which present opposite evolutions:
m01/mmax decreases from 1 to 0.1 (m01~8) and m02/mmax increases
from 0.05 to 0.34 (m02~26) with the Ep/Ep0 ratio.

6. Phenomenological modeling

As shown in Appendix A, considering two mechanisms (j=1,2) of
rupture and two families (i=1,2) of flaws (defects with one or two
craters) created during the femtosecond laser nano-structuration,
nts and modeling. The structuration parameters are:

o the left: (Ep=0, M=23), (Ep=104 nJ, M=13), (Ep=125 nJ, M=19), (Ep=136 nJ,
nJ, M=27), (Ep=376 nJ, M=20).
e left: (Ep=0,M=23), (Ep=82 nJ, M=9, nano-voids), (Ep=39 nJ,M=18), (Ep=65 nJ,

3,M=19), (Ep=123 nJ, dx=dy=5 μm,dz=0.25 μm,n‘=2,M=12), (Ep=157 nJ, dx=
m, n‘=3, M=18), (Ep=157 nJ, dx=5 μm, dy=7 μm, dz=0.33 μm, n‘=3, M=24).
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Fig. 8. Logarithmic representations (Fig. 7a) of the Weibull's law according to Eq. (8). Determination of the Weibull's parameters σ0i and m0i. Case of NA=0.4: the identified laws
(Eq. (10)) are reported in Fig. 7a.
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the general form of the probability of failure P can be written as
follows:

P ¼ 1−
X2
i¼1

αi exp− σ1

σ0i

� �m0ii

with
σ0i

σmax
¼
X2
i¼1

βj

Fij
σ2

σ1
;
σ3

σ1

� �

¼
X2
j¼1

βj

1þ f�ij nano�struct:ð Þ
and

m0i

mmax
¼ gi

σ0i

σmax

� �
;
X2
i¼1

αi ¼ 1;
X2
j¼1

βj ¼ 1:

ð11Þ

σ1, σ2, and σ3 are the three principal stresses, βj a coefficient, Fij, fij
and gi are different functions depending on the stress tri-axiality,
the nano-structuration parameters and the Weibull's stresses (σ0i,
σmax), respectively. In the present case σ1 is the tensile stress σ. A
condensed form of the relation (11) is given by the Eq. (12):

P ¼ 1−
X2
i¼1

αi exp−
σ

σmax

X2
j¼1

βj

1þ f�ij nano�struct:ð Þ

0
BBBBB@

1
CCCCCA

mmaxgi
σ0i

σmax

� �

;

X2
i¼1

αi ¼ 1;
X2
j¼1

βj ¼ 1:

ð12Þ

Note that for unstructured fibers, fij(nano struct.)⁎ =0 and thus the
Weibull's probability of failure is rewritten as (see Appendix A)

P ¼ 1−exp− σ
σmax

� �mmax

: ð13Þ

As shown in the Appendix A, the tri-axiality functions Fij
σ2
σ1

; σ3
σ1

	 

are intimately linked to the geometry and the distribution of the
craters. Two different scales have been considered depending on the
dimensions of the craters and of the global structuration.

For the highest pulse energies (NA2Ep>26 nJ) during a tensile
test, the generated stress field by the biggest crater is sufficiently
large and the tri-axiality sufficiently high for the rupture initiates on
the micro-cracks to lie inside the stress field of this defect. So, inde-
pendently on the distribution of the craters, the rupture occurs in
the vicinity of the biggest defect composed of one or two characteris-
tic craters (Fig. 1a,b). Consequently, if the index j=2 is associated to
this scale, the functions f12⁎ and f22⁎ in Eqs. (11) and (12) must be
identified. To evaluate these functions some finite element (FE) anal-
ysis has been realized with the Comsol software. A fiber with only one
crater whose dimensions (h1, L1, h2, L2) are close to those experimen-
tally determined and submitted to a tensile stress has been modeled.
From the stress analysis the extension of the stress field around the
primary crater is obtained much larger than the one around the
secondary crater and thus the probability to initiate the failure on
micro-cracks in the vicinity of the primary craters is fairly high. More-
over, as a function of the geometry of the crater the stress concentra-
tion factors, KT2=1+σ2/σ1 and KT3=1+σ3/σ1, have approximately
been found as:

KTi
¼ 1þ ki

ffiffiffiffiffiffi
h1

L1

s
with k2 ¼ 1:6 and k3 ¼ 0:5: ð14Þ

Note that for a superficial elliptical flaw, Inglis [39] reports KT1 ¼
1þ 2

ffiffiffi
h
ρ

q
where h is the flaw depth and ρ its tip radius. As a first

approximation and as mentioned in the Appendix A, a mean value
of the stress concentration factor KTeq is given by:

KTeq≈
KT2 þ KT3

2
¼ 1þ k2 þ k3

2

ffiffiffiffiffiffi
h1

L1

s
with

k2 þ k3
2

¼ 1:05: ð15Þ

Combining the relations (3) and (4) the ratio h1/L1 can be deter-
mined:

h1

L1
¼ βh

2βL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ln

Ep
Ep0

s
with βh=2βL ¼ 0:43; ð16Þ

and thus:

KTeq ¼ 1þ γ Ln
Ep
Ep0

 !1=4

with γ ¼ k2 þ k3
2

ffiffiffiffiffiffiffiffi
βh

2βL

s
¼ 0:69: ð17Þ

As a consequence,

f�12 ¼ f�22 ¼ f� ¼ γ Ln
Ep
Ep0

 !r
with γ ¼ 0:69 and r ¼ 1=4: ð18Þ

Note that f* is independent of the numerical aperture NA.
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Fig. 9. a,b,c: Evolution of the five Weibull's parameters (Eq. (10)) for NA=0.4 and 0.8 as a function of NA2Ep. a) scaling stresses: σ01, σ02, b) exponents: m01, m02, c) ponderation
parameter: α2=(1−α1)~0.45±0.12.
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Fig. 10. a,b: Normalized Weibull's parameters with respect to those of unstructured fibers σmax, and mmax as a function of the normalized energy Ep/Ep0. a) scaling stresses σ0i/σmax,
b) exponents m0i/mmax.
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For the lower energies (NA2Epb26 nJ) the failure mechanism is
complex. The dimensions of the defects are small, the two families
of defects (1 or 2 craters) and the global structuration have been
assumed to participate to the initiation of the rupture. Moreover,
depending on the dy values, the stress fields generated by the craters
of the different lines could interact. Thus, from a phenomenological
point of view f11⁎≠ f21⁎ . These two functions have been assumed to de-
pend on the number N‘p of defects with only one crater and N‘s≈N‘p

of defects with two craters on one line, on the number n‘ of lines, on
an interaction function I(n‘, dy) between the stress fields of the differ-
ent lines and, as previously shown (Eqs. (17) or (18)), on a function of
the normalized energy G(Ep/Ep0). The general form is written as:

f�i1 ¼ N‘i
I n‘;dyð ÞGi

Ep
Epo

 !
: ð19Þ

Thanks to Eq. (1) the number N‘ of crater per line is easily shown
equal to:

N‘ ¼
2z0
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep
Ep0

−1

s
¼ 2α2πλ

M2NA2dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep
Ep0

−1

s
and N‘p

≈N‘s
≈ N‘

2
: ð20Þ

Hence the f*i1 functions vary as Nl thus as 1/NA2dz.
For 1bn‘ b3, I(n‘, dy) has been defined as:

I n‘;dyð Þ ¼ 2n‘

1þ 3
n‘
I0

dy
dy0

	 
 with ð21aÞ

Io
dy
dy0

� �
¼

1þ dy
dy0

−1
� �

H
dy
dy0

−1
� �

for 0 b dy b dymax

dymax

dy0
þ dy

dy0
−dymax

dy0

� �
H

dymax

dy0
− dy

dy0

� �
for dy0 b dy b R

:

8>><
>>:

ð21bÞ

H(.) is the Heaviside function (H(x)=0 if xb0 and H(x)=1 if
x≥0), dy0 is the minimum distance between two lines, of the order
of bL1max> and which has been fixed at 2 μm. dymax is the maximum
distance between two lines above which (due to the circular cross
section of the fiber) the nano-structuration due to the lateral lines
is too weak and thus has no effect on the rupture of the fibers.
dymax has been fixed at 22 μm~R/2 (R is the radius of the fibers),
then the height between the upper generating line and the lateral
one is about R/8~7 μm. An application of Eqs. (21a) and (21b) for
n‘=3 gives: I ¼ n‘ ¼ 3 if dybdy0; I ¼ 6

1þdy
2

if dy0bdybdymax a decreas-

ing function of dy, and I=1/2 if dy>dymax. Note that I=1/2 corre-
sponds to the case of n‘=1 (dybdy0) in Eqs. (21a) and (21b). For a
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large single isolated crater as previously shown Gi is a function of h1/L1
or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LnEp=Ep0

p
Eq:16ð Þ� �

: However, for the overall structuration with
small craters and as shown by Afferrante et al. [40] with numerical
analysis at the crack level, the scaling stress σo greatly depends on
the ratio between the ligament size d between micro-cracks and
the mean value of the crack lengths amean (d/amean). From a theoret-
ical point of view, as for the crack size (Eqs. (A4) or (A10)), a critical
ligament size dc and a ligament size distribution have to be defined
to evaluate the failure probability P [40]. So, Fij in Eq. (11) depends
on the stress tri-axiality and on the ligament size which is equally
function of this tri-axiality, thus:

F ¼ F
σ2

σ1
;
σ3

σ1
;d−1 σ2

σ1
;
σ3

σ1

� �� �
particularized as F ¼ 1þ

F0
σ2
σ1

; σ3
σ1

	 

d σ2

σ1
; σ3
σ1

	 

ð22Þ

where d is a decreasing function of the stress tri-axiality and if d is pro-

portional (for simplicity) toF0
σ2
σ1

; σ3
σ1

	 
−2qþ1
then the relation (22) gives:

F ¼ 1þ F0
σ2

σ1
;
σ3

σ1

� �� �2q
: ð23Þ
Fig. 11. a,b: Prediction of the Weibull's parameters values thanks to the complete model (E
correspond to the exact experimental conditions and the lines to the global evolutions (Eq.
p1=4 and p2=1.2. The validity area for an eventual sensor application is reported in this fi
Combining the relations (11), (18), (20), (21a and 21b) and (23)
the general equations for the evolution of the σ0i

σ max
ratio reads:

σ0i

σ max
¼ β

1þ 2δin‘N‘

1þ 3
n‘
I0

dy
dy0

	 
 Ln Ep
Ep0

	 
	 
q þ 1−β

1þ γ Ln Ep
Ep0

	 
	 
r : ð24Þ

I0
dy
dy0

	 

is given by Eq. (21b) and N‘ ¼ 2α2πλ

M2NA2dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep
Ep0

−1
q

:

The four parameters β, δ1, δ2 and q have been adjusted on the
experimental data and the σ0i/σmax ratio as a function of the number
N‘ of craters over one line is reported in Fig. 11a. The cross symbols
correspond to the exact experimental conditions and the different
continuous (σ02) or interrupted (σ01) lines to the general evolutions
given by the Eq. (24). There is a fairly good agreement with the ex-
perimental reality, even for n‘=2 and dz=0.25 μm.

Now, for theWeibull's exponents m0i, as written in Eq. (11), m0i
mmax

¼
gi

σ0i
σ max

	 

: For all the experimental determinations (Fig. 7a–c), the m0i

mmax

ratio (values given in Fig. 10b) as a function of the σ0i
σ max

ratios (values
given in Fig. 10a) are reported in Fig. 11b. Of course, for σ0i

σ max
¼ 1; m0i

mmax
¼

1 and for σ0i
σ max

¼ 0; i.e. instantaneous rupture, it has been assumed
that m0i

mmax
¼ 1. Note that the exact values of m0i for σ0i=0 cannot

be experimentally determined. Moreover, the m0i
mmax

values present a
q. (27)). a) σ0i/σmax as a function of the number of craters per line. The cross symbols
(24)). b) m0i/mmax as a function of σ0i/σmax. The two lines correspond to Eq. (26) with
gure.
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minimum of the order of 0.04 (m0i~3) for σ0i
σ max

≈0:5 (Fig. 11b). Taking
these considerations into account, the Eq. (25) is proposed as a general
form for the evolution of m0i

mmax
:

m0i

mmax
¼ 1þ ξi

σ0i

σ max

σ0i

σ max
−1

� �� �pi
: ð25Þ

If m0i
mmax

is a minimum for σ0i
σ max

¼ 0:5; then ξi ¼ 4 1− mmin
mmax

	 
1=pi� �
;

where mmin is the minimum value of m0i. Therefore, the relation (25)
is rewritten as:

m0i

mmax
¼ 1−4 1− mmin

mmax

� �1=pi� �
σ0i

σ max
1− σ0i

σ max

� �� �pi
ð26Þ

withmmin=3,mmax=78, andσmax=5310 MPa, the pi exponents have
been identified on the experimental values of m0i

mmax
. The two curves

drawn in Fig. 11b correspond to Eq. (26) with p1=4 and p2=1.2.
As a conclusion, the complete identified model (Eq. (27)) for the

failure of femtosecond laser beam nano-structured and unstructured
fibers is given by Eqs. (12), (24) and (26).

P ¼ 1−
X2
i¼1

αi exp−
σ
σ0i

� �m0i

with
X2
i¼1

αi ¼ 1;

σ0i ¼ σ max
β

1þ 2δin‘N‘

1þ 3
n‘

I0
dy
dy0

� � Ln
Ep
Ep0

 !" #q þ 1−β

1þ γ Ln
Ep
Ep0

 ! !r

2
66666664

3
77777775

m0i ¼ mmax 1−4 1− mmin

mmax

� �1=pi� �
σ0i

σ max
1− σ0i

σ max

� �� �pi
ð27Þ

N‘ ¼ 2α2πλ
M2NA2dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep
Ep0

−1
r

and I0
dy
dy0

	 

given by the relation (21b).

The parameters of these equations are: α1=0.55 (α2=0.45),
β=0.74, γ=0.69, r=1/4, δ1=0.82, δ2=3.55, q=3.5, dy0=2 μm,
dymax=22 μm, mmax=78, mmin=3, σmax=5310 MPa, p1=4, and
p2=1.2 and the optical parameters: a/M=0.491 [30], λ=800 nm,
and NA2Ep0=15.5 nJ. To evaluate the pertinence and the possibilities
of the model (Eq. (27)) different simulations with n‘=3, dx=5 μm,
dy=7 μm, 1bEp/Ep0b3 and NA=0.4 (dz=0.33 μm), 0.8 (dz=0.25 μm)
Fig. 12. Some theoretical predictions (Eq. (27)) of the failure probability P for NA=0.4 and 0
are fairly restituted.
have been realized. The results, failure probability as a function of the
failure stress, have been plotted in Fig. 12. The general tendencies of
the experimental failure curves observed in Fig. 7a–b are fairly well res-
tituted and the predictive aspect of this phenomenologicalmodel seems
demonstrated.

7. Discussions and perspectives

For sensor applications and particularly to use these nano-
structured fibers for structural composite monitoring, as an example
the detection ofmaximum strain level in cylindrical composite fuel ves-
sels [5,31,41], for a fixed structuration the range of the failure stresses
should be narrow, which involves high values for the Weibull's expo-
nents as those described in the previous model (Eq. (26)). Values of
m0i greater than 15 are required (m0i/mmax≥0.2). Taking the strain
levels in the composite structure to be detected and the Young's modu-
lus value of the fibers (E~70 GPa) into account, the expected range
of the Weibull's stresses is about 500bσ0ib2000 MPa, thus 0.1bσ0i/
σmaxb0.4. The validity area for sensor application in composite vessels
has been reported in the Fig. 11b. Themost important parameters to de-
sign a conservative sensor are the two scaling parameters σ02 and m02.
As shown in Fig. 11b, only few points with Weibull's stresses in the
range 600 to 1200 MPa are in the sensor validity area (m0i>15). This
corresponds to the strain levels of 0.8% to 1.7%, which is about the appli-
cation domain for pressure composite vessels (0.8% to 2%). However, for
σ0i>1300 MPa (σ0i/σmax>0.25) the Weibull's exponents are too low
for an eventual sensor application. To overcome this problem a change
in the structuration experimental procedure has been tested. Rather
than to focus the laser beam in the neighborhood of the surface of the
silica, the ΔZT translation value has been calculated such that the
waist of the beam was located in the core of the fiber, at the vicinity
of its center. In that case, according to the work of Juodkazis et al. [42]
a confined micro-explosion in the bulk of the silica occurs and nano-
void surrounded by densified region appears. The created defects are
not superficial craters as in the previous study, but nano-voids in the
bulk of the fibers. Three sets of experiments with such focusing condi-
tion have been carried out: NA=0.8, Ep=82 nJ, NA=0.4, Ep=320
and 800 nJ and the results have been reported in Figs. 7b and 13, respec-
tively. Due to linear andnon-linear beamabsorption by the silica, for the
same pulse energy the failure forces are greater than those obtained
with superficial defects (Fig. 13). Hence, for NA=0.8 and Ep/Ep0~3.3
the fracture forces are very close to those of virgin fibers. However, a
very interesting and surprising result has been observed for NA=0.4,
.8, and different pulse energy ratios Ep/Ep0. The general tendencies of the failure curves
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Fig. 13. Comparison for NA=0.4 and Ep=320 nJ of the failure probabilities for superficial (nano-craters) and inner (nano-voids) defects. Results for Ep=800 nJ with inner defects.
Experiments and modeling (Eq. (10)). For nano-void structuration the Weibull's parameters (σ0/σmax=0.43 and 0.28, m0/mmax=0.44 and 0.18 for Ep=320 and 800 nJ,
respectively) belong to the sensor validity area reported in Fig. 11b.
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Ep=320 and 800 nJ. As shown in Fig. 13, the range of failure forces
is very narrow and the Weibull's parameters (Eq. (10)) identified on
the experimental points (continuous lines in Fig. 13) are: α=1, σ0=
2290 and 1490 MPa, m0=34 and 14 for Ep=320 and 800 nJ, respec-
tively. Hence, σ0/σmax=0.43 and 0.28, m0/mmax=0.44 and 0.18.
These coordinates have been reported in Fig. 11b and the representative
point clearly verifies the conditions for sensor applications. This prom-
ising result shows that it seems possible to access to a large range of
rupture stresses (0.1bσ0/σmaxb0.5) with high Weibull's exponent
(m0>15) with adequate nano-structuration procedure. This new kind
of fiber structuration is under consideration.

8. Conclusions

Knowing the morphologies and the distribution of nano-craters
structured on the surface of optical fibers and generated by near
threshold single-shot femtosecond laser the rupture strength of
these fibers can be controlled. The value of the ablation threshold en-
ergy for optical silica fiber has been determined and is slightly higher
than the one reported for borosilicate glass (NA2Ep0(fiber)=C=
15.5 nJ, NA2Ep0(borosil.)=11.1 nJ, where NA is the numerical aperture
of the objective to focus the laser inside the fibers). An additive com-
bination of two classical Weibull's laws (twoWeibull's exponents m0i,
two Weibull's scaling stresses σ0i and a balancing parameter α) al-
lows a good representation of the failure probability of the tested
fibers (impacted and virgin fibers). For a given fluence ratio F/Foc=
Ep/Ep0=EpNA2/C where F0c is the ablation fluence threshold of the
silica fibers, it has experimentally been shown that the Weibull's pa-
rameters, particularly the two scaling stresses σ0i depend on the NA
for the smallest values of Ep/Ep0. The scaling stresses increase with
the numerical aperture for a fixed value of Ep/Ep0. However, for the
highest pulse energy ratios, Ep/Ep0>3, the Weibull's parameters
seem independent of the numerical aperture. A phenomenological
model for the evolutions of the Weibull's exponents and Weibull's
stresses as a function of the geometries and the distribution of the
nano-craters directly linked to the carried nano-structuration proce-
dure have been proposed. Thus the Weibull's parameters depend on
the optical properties of the incoming beam (Ep, NA, λ), the z position
of the beamwaist with respect to the surface of the silica fiber, the in-
terval dx, dy between each crater and the number n‘ of created lines.
The experimental observed tendencies of the failure probability
curves are fairly well described by this model which can be used in
the future as a forecast tool.
For an eventual sensor application, to extend the Weibull's scaling
stress domain associated to sufficiently high Weibull's exponent
(m02>15) a new kind of nano-structuration has been proposed. In
that case the beam waist is located at the vicinity of the center of
the fiber. For the two studied cases with NA=0.4 the Weibull's expo-
nent values m0 are in the range 15 to 30. This new promising kind of
nano-structuration (nano-voids at the center of the fibers) is under
consideration and the results will be presented in a further paper.
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Appendix A

A.1. Case of unstructured fibers

On the structural level (the fiber), the failure occurs when one flaw
within the volume becomes critical; the flaw reaches a critical size ac.
Determining the failure at the structure level is equivalent to finding
the “weakest link” of the structure. Now, considering a structure Ω
of volume V subjected to any stress field: it can be divided into a
large number of elements of volume V0 (representative volume ele-
ment subjected to a uniform stress field). In that case, the cumulative
failure probability PF of the structure Ω is related to the cumulative
failure probability PF0 of a link by [43]:

PF ¼ 1− exp
1
V0

∫
Ω
Ln 1−PF0ð ÞdV

� �
: ðA1Þ

The initial flaws are characterized by an initial flawdistribution den-
sity f0 which depends on their sizes a, their orientation n and their
geometries ω. Moreover, the critical flaw size ac is a function of the
stress field level characterized by the three principal stresses
(σ1>σ2>σ3) and the geometrical characteristics n and ω of the flaws.
Thus PFo is given by:

PF0 ¼ ∫
∞

ac σ1 ;σ2 ;σ3 ;n;ωð Þ f0 a ;n;ωð Þda dn dω: ðA2Þ
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The failure probability PF0 of a link is small, PF0b b1 and combin-
ing (A1) and (A2) the general expression of PF is recasted as:

PF ¼ 1− exp − 1
V0

∫
Ω

∫
∞

ac σ1 ;σ2 ;σ3 ;n;ωð Þ fo a ;n;ωð Þda dn dω
	 


dV
� �

: ðA3Þ

In the case of fiber under uniform tension different simplifications
have to be done: the flaws are supposed to be described by penny
crackswhose geometry is taken into account by a dimensionless factor
Y, the tensile stress σ1=σ is uniform through the volume of the fiber
and only the cracks loaded under a pure mode I condition are consid-
ered. With these hypothesis the critical flaw size ac(σ1, σ2, σ3, n, ω) is
written as:

ac ¼
K1c

Yσ

� �2
ðA4Þ

where K1c is the stress intensity factor for the openingmode I. If we as-
sume that the initial flaw size distribution is approximated by a power
law function for the large flaw sizes [44]:

F0 að Þ ¼ α
a0

a0
a

	 
pþ1
: ðA5Þ

Introducing (A4), (A5) into (A3) and integrating this expression
leads to the classical Weibull's law (see Eq. (13) in the text):

PF ¼ 1− exp− σ
σ0

� �m0

with :

m0 ¼ mmax ¼ 2p and σ0 ¼ σ max ¼ K1c

Y
ffiffiffiffiffi
a0

p V0

V
m
2α

� �1=m0

:

ðA6Þ

Note that the Weibull's scaling stress σ0 depends on the exponent
m0 (or p) and on the ratio V0/V. If m0> >1 a quasi deterministic failure
occurs for σ0 ¼ K1c=Y

ffiffiffiffiffi
a0

p
; relation identical to (A4) with a0=ac. For

the tested fibers, as mmax~80 (see Section 5) the relation (A4) can be
applied. With K1c≈0:79 MPa

ffiffiffiffiffi
m

p
; Y~1.24 for penny-shaped cracks and

σmax=5300 MPa (Section 5) the critical flaw size ac is equal to 15–
16 nmwhich is a value often reported in the literature (10bacb40 nm).

A.2. Case of structured fibers

A phenomenological framework for the modeling of the failure
probability of the structured fibers is proposed in this paragraph. The
model must describe the bi-linearity of the failure probability curves
(Fig. 7a,b,c), the bi-linearity as a function of the pulse energy of the
evolution of the scaling stresses σ0i (Fig. 9a) and the large variability of
the moi exponents (3bmoib80). As previously mentioned, two kinds
of nano-holes morphologies has been observed, the nano-holes com-
posed of a single crater (Fig. 1a and indexed 1 in themodel) or two char-
acteristic craters with very distinct geometries (Fig. 1b and indexed 2 in
the model). The rupture always occurs in the structured zone whose
volume is noted Vst. For each family i of nano-hole morphology the Vst

volume is supposed to be divided into volume elements V0i subjected
to uniform generalized stress field σ . So Vst=Ni V0i where Ni is the
number of elements V0i and consequently the probability PnF of
un-breaking is given by:

PnF ¼
X2
i¼1

αiPnFi ¼ ∑
i¼1

αi Π
Ni

PnFi
	 


V0i

;
X2
i¼1

αi ¼ 1: ðA7Þ

So, the probability PF of failure reads as:

PF ¼ 1−
X2
i¼1

αi exp − 1
V0i

∫Ωst
Ln 1−PF0i
	 


dVst

� �
ðA8Þ
where PF0i is the failure probability of the V0i element. This formal-
ism is equivalent to those of the weakest link (Eq. (A1)) but where
the equivalent weakest link is composed of two weakest links associ-
ated in parallel. Following the same hypothesis as those previously
assumed for the unstructured fibers, the general expression of PF is
written as:

PF ¼ 1−PnF

¼ 1−∑
i
αi − 1

Voi
∫Ωst

∫
∞

ac σ
i
;n;ω

	 
 foi a;n;ωð Þda dn dω

0
B@

1
CAdVst

2
64

3
75: ðA9Þ

If the initial flaw size is assumed to be penny-shaped and if the
failure initiation occurs in plane perpendicular to the direction of
the maximum principal stress, the critical crack size is written as:

ac ¼
ffiffiffiffiffiffiffiffi
EGc

p
Y σ

i

 !2

ðA10Þ

where Y is a dimensionless factor, E the Young's modulus, Gc the en-
ergy release and σ

i
an equivalent uniaxial stress for each flaw family.

If σ
i
is written as σ

i
¼ σ 1Fi

σ2
σ1

; σ3
σ1

	 

whereσ 1 ¼ σ is the applied ten-

sile stress, (A10) is rewritten as:

ac ¼
ffiffiffiffiffiffiffiffi
EGc

p
Yσ 1Fi

σ2
σ1

; σ3
σ1

	 

0
@

1
A2

: ðA11Þ

Hence, the critical crack size depends on the stress tri-axiality
around the two kinds of nano-holes. Note that for virgin fibers,
Fi

σ2
σ1

; σ3
σ1

	 

¼ 1 and

ffiffiffiffiffiffiffiffi
EGc

p ¼ K1c (Eq. (A4)). Concerning the initial flaw
size distribution of well oriented cracks with respect to the principal
stresses (opening in a pure mode I) the exponent of the power law
function (A5) is supposed to depend on the tri-axiality function Fi
thanks to a gi function:

f 0i að Þ ¼
α gi Fi

σ2
σ1

; σ3
σ1

	 
	 

a0

a0
a

	 
pgi Fi
σ2
σ1

;
σ3
σ1

	 
	 

þ1
: ðA12Þ

For unstructured fiber Fi(0,0)=1, gi(1)=1 and the relation (A12)
is identical to (A5). Introducing (A12) into (A9) and integrating the
obtained expression taking into account the relation (A10) gives:

PF ¼ 1−
X2
i¼1

αi exp− σ
σ0i

� �moi

;∑
i
αi ¼ 1

m0i ¼ 2pgi Fi
σ2

σ1
;
σ3

σ1

� �� �

σ0i ¼
ffiffiffiffiffiffiffiffi
EGc

p
Y
ffiffiffiffiffi
a0

p 1

Fi
σ2

σ1
;
σ3

σ1

� � V0i

Vst

P
β

� �1=m0ii

:

ðA13Þ

The scaling stresses σ0i and the Weibull's exponent m0i depend on
the tri-axiality function Fi. From a phenomenological point of view
the advantage of the formulation (A13) compared to those proposed
by Maurer et al. [35,36]:

PF ¼ 1−exp−∑
i

σ
σ0i

� �m0ii

ðA14Þ

is the possibility to describe a very large spectrum of failure proba-
bility with very distinct and particular values of σ0i; a plateau for a
fixed value of the failure probability can be modeled. A multimodal
Duxbury distribution [45] could also describe such behavior but the
identification of this model is very complicated. Taking into account
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the relations (A6) for virgin fibers, the normalized parameters can be
written as:

m0i

mmax
¼ gi Fi

σ2

σ1
;
σ3

σ1

� �� �

σ0i

σ max
¼ V0i

Vst

P
α

� � 1
moi

V
V0

α
P

� � 1
mmax

ffiffiffiffiffiffiffiffi
EGc

p
K1c

1

Fi
σ2

σ1
;
σ3

σ1

� � :
ðA15Þ

As the V0i/Vst ratio is small, as mmax> >1, as m0i>3, as
ffiffiffiffiffiffiffiffi
EGc

p
≈K1c

and finally as the only considered mode along each principal direction
is the mode I, the relations (A15) are simplified:

m0i

mmax
¼ gi

σ0i

σ max

� �
and

σ0i

σ max
¼ 1

Fi
σ2
σ1

; σ3
σ1

	 
 : ðA16Þ

The tri-axiality function Fimust be evaluated at two different scales
j; the scale of the homogenized global nano-structuration (j=1) and
the scale of an individual nano-hole (j=2). Thus, as these scales are
simultaneously present the Fi function is postulated as:

1

Fi
σ2
σ1

; σ3
σ1

	 
 ¼ β

Fi1
σ2
σ1

; σ3
σ1

	 
þ 1−β

Fi2
σ2
σ1

; σ3
σ1

	 

¼
X2
j¼1

βj

Fij
σ2
σ1

; σ3
σ1

	 
 with ∑
j
βj ¼ 1 ðA17Þ

So, as Fij(0,0)=1, σ0i /σmax=1 for unstructured fibers.
If the equivalent rupture stress σ i is defined from the ratio of en-

ergy release, the Fi function is equal to:

Fi ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

n þ τ2n
σ2

1

s
ðA18Þ

where σn and τn are the normal and the tangential stresses, respec-
tively. For each considered principal direction (2 and 3), the stress
concentration factor is defined by: KT2 ¼ 1þ σ2

σ1
and KT3 ¼ 1þ σ3

σ1

and the application of the relation (A18) for the mode I gives:

Fi ¼ 1þ σ2

σ1
¼ KT2

and Fi ¼ 1þ σ3

σ1
¼ KT3

ðA19Þ

for the 2 and 3 directions, respectively.
A new value KTeq of the stress concentration factor over the stress

field generated by the structuration is written as:

KTeq
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
T2

þ K2
T3

2

s
≈

KT2
þ KT3

2
≈1þ σ2 þ σ3

2σ1
: ðA20Þ

The two stress ratios σ2
σ1

and σ3
σ1

intimately depend on the geometry
of the nano-craters and on the parameters of the structuration, thus
the tri-axiality function can be rewritten as:

Fi ¼ 1þ f �i nano−struct:ð Þ: ðA21Þ

where fi⁎ is a function depending on the parameters of the structura-
tion. Finally the relation (A17) reads as:

1

Fi
σ2
σ1

; σ3
σ1

	 
 ¼
X2
j¼1

βj

1þ f �ij nano−structð Þ with∑
j
βj ¼ 1: ðA22Þ

The Eqs. (A16) and (A22) constitute the foundation of the model
and the two functions gi

m0i
mmax

	 

and f �ij nano−struct:ð Þ will be identi-

fied in the Section 6 of the text.
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