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ABSTRACT: An approach for unsupervised damage detection in ring-shaped Organic Matrix Composites
(OMC) under loading based on acoustic emissions (AE) is proposed. It relies on a specific clustering algorithm
called Gustafson-Kessel (GK) that manages fuzzy memberships to clusters and complex cluster’s shape. A
methodology is proposed to 1) make the algorithm robust to initialisation in order to obtain reproducible results
and reliable statistical models representing OMC damages, 2) detect and assess AE activity (AEA) over time
for AE data mining to emphasize the more relevant AE data in a huge amount of AE hits, 3) adapt the statistical
models based on statistical process control using imprecise updating rate automatically tuned.

1 INTRODUCTION

Composite materials are getting increasing impor-
tance in structural applications and require reliable
design rules. Most of the current theories and tools
have insufficient accuracy to predict the deformation,
strength and damage of composite materials exposed
to a combination of in-service multiaxial stresses and
environmental loadings (Kaddour and Hinton 2012).
Typically the observed failure consists of inter-fibre
matrix cracking, fibre breakage and a variety of in-
terfacial failure (like fibre-matrix debonding, splitting
or inter-ply delamination). These damages are almost
always accompanied by releases of heat and stress-
wave propagation due to microstructural changes.

Acoustic emissions (AE) are relevant for dam-
age detection and the monitoring of their evolu-
tion (Huguet et al. 2002, Momon et al. 2012). Analy-
sis of AE signals is performed by pattern recognition
techniques (PRT) which are considered as suitable
tools to identify distinct “groups” in AE signals based
on a large number of relevant features. The groups are
called “clusters” when unsupervised PRT are applied
and, in that case, PRT are called clustering algorithm,
whereas groups are called classes when using super-
vised or partially supervised PRT (Momon et al. 2012,
Ramasso et al. 2012). Clusters can then be associated
to damages using knowledge from the field (Fig. 1).

The detection of clusters highly depends on sev-
eral conditions, such as the experimental configura-
tion, the material, the geometry of the specimen and,

Figure 1: Bridging the gap from AE data to damages illustrated:
The ring-shaped specimen (1) considered is submitted to quasi-
static loading (2) that generates AE data (3) which are analysed
using PRT (4) in order to estimate data-driven damage models
(5). The test is performed until failure (6).

as well, on the existence of AE sources not correlated
to specimen failure. AE signals are also influenced by
attenuation, dispersion and the position of the source.
In this context, supervised PRT would build partic-
ular damage models dependent on these conditions,
and thus, unsupervised PRT appear more suitable for
AE analysis in environments with limited constraints.

The main objective of this work is unsupervised
damage detection using clustering algorithms, where
each cluster is supposed to represent a damage family.
Detecting damages accurately is a difficult problem
since one may face with several challenges:

Challenge 1 The choice of features. According to the



algorithm used for damage detection, different
subsets of features may lead to different results.

Challenge 2 The number of damage families is not
always well defined and well known.

Challenge 3 Robustness of algorithms to initialisa-
tion of clustering algorithms has to be ensured
for practical real-life applications in order to re-
trieve results easily.

Challenge 4 The revision of models obtained by
clustering without re-training (using all past data
but only the current ones).

In this paper, we consider tubular composite struc-
tures (described in Section 2) submitted to quasi-static
loading up to failure. The detection and monitoring of
damages is based on AE data for which some specific
unsupervised PRT are proposed to tackle challenges 1
and 4 cited before:

Batch estimation of damage data-driven models
(Fig. 2). This first tool is proposed to analyse the
data in batch mode, i.e. using all data from an
experiment after failure (Section 3).

Figure 2: Bridging the gap from AE data to damages by building
statistical modelling in batch mode.

Online updating of damage data-driven models
(Fig. 3) to take into account possible changes
in the structure over time. The updating is per-
formed online without re-training, using a suit-
able criterion for data cleansing that drastically
decrease time-consumption (Section 4).

Figure 3: Models updating: online processing.

2 EXPERIMENTAL PLATFORM

This work deals with the health assessment of tubu-
lar composite structures. Such structures are used in
many application fields, such as speed rotors, fly-
wheels, pressure vessels, transportation systems and

so on. Their stress state is most of the time com-
plex (multiaxial and heterogeneous) due to the com-
bination of loads which makes particularly difficult
the prediction of damage occurrence. Health was as-
sessed on composite split disks submitted to quasi-
static loading up to failure. The tests were performed
according to ASTM D2290 “Apparent hoop tensile
strength of plastic or reinforced plastic pipe by split
disk method”. Rings were produced by machining
filament-wound carbon fibre reinforced epoxy tubular
structures intended for the manufacturing of flywheel
rotors with a [(90o)6] lay-up configuration.

The transient elastic waves were recorded at the
material surface using a multi-channels data acqui-
sition system from Euro Physical Acoustics Corp.
(MISTRAS Group). The system is made up of minia-
ture piezoelectric sensors with a range of resonance
of 250− 325kHz, preamplifiers with a gain of 40dB
and a 20− 1000kHz filter, a PCI card with a sampling
rate of 2MHz and the AEWin software. Two sensors
were coupled on the specimen faces using a silicon
grease. The calibration of the system was performed
after installation of the transducers on the specimen
and before each test using a pencil lead break proce-
dure. A part of the ambient noise was filtered using a
threshold of 45dB. The acquisition parameters: PDT
(Peak Definition Time) = 60µsec; HDT (Hit Defini-
tion Time) = 120µsec and HLT (Hit Lock Time) =
300µsec were identified using preliminary measure-
ments. A damage scenario for each specimen was pre-
sented (Placet et al. 2012) using infrared thermogra-
phy, optical observation and analysis of the mechani-
cal behaviour. Fig. 4 is a partial scenario for the con-
sidered specimen.

Figure 4: The scenario.

The stress vs. time is depicted in Figure 5(a) as well
as the amplitude of acoustic emissions in Figure 5(b).
The latter shows many AE hits all along the experi-
ment (48000 data points) with a huge proportion char-
acterised by low values (< 75dB). As expected, most
of the AE activity is present after 337sec. but a large



number of AE hits are detected when the hydraulic
actuator is being pressurized (> 218sec.). The goal of
the clustering algorithm is to find out which type of
damage appear at each time despite this huge amount
of data. In particular, the size of the clusters are not
expected to be the same, i.e. the number of AE hits
per damage can differ from a damage to another. De-
tection of damage based on AE signals in a noisy en-
vironment is particularly crucial for industrial appli-
cation. An increase in the amplitude and frequency
thresholds could filter these noise signals but also im-
portant events related to the matrix damage.
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Figure 5: Stress and features vs time.

The next section is dedicated to the presentation
of the Gustafson-Kessel algorithm investigated in this
paper to establish a scenario by processing AE.

3 BATCH SEGMENTATION

In the following K denotes the number of clusters.

3.1 Why the Gustafson-Kessel algorithm? Which
features? Which number of clusters?

Many approaches for AE data processing presented in
the literature rely on the Principal Component Anal-
ysis (PCA) to pre-process the data. The PCA is used
to “automatically” select a subset of features but it
also modifies the feature space by combining the orig-
inal features. This algorithm assumes that 1) the linear
combination of features improves the relevancy of the
principal components and 2) a large variance implies
meaningfulness.

Other approaches rely on a specific subset of fea-
tures, for example frequency-based ones (Sause et al.
2012) or other subsets selected by prior knowledge
such as energy, rise time, duration, amplitude, and so
on (Gutkin et al. 2011). The subsets, together with the
number of clusters, can also be selected by a greedy
approach consisting in applying the clustering algo-
rithm on combinations of features and selecting the
one which maximises a given criterion (Halkidi et al.
2001, Sause et al. 2012). The goal of the criterion is
generally to evaluate the quality of the partition pro-
vided by the clustering. Most of criterion are based on
the Euclidean distance to assess the membership of

a AE hit to a given cluster. However, the applicabil-
ity of this approach is limited to clustering algorithms
which are based on the Euclidean distance.

The PCA is generally used jointly with the K-
means. The main reason to account for the perfor-
mance of this couple is actually due to the link
between both tools (Ding and He 2004). Com-
pared to usual approaches based on K-means or
FCM (Momon et al. 2012) that use the Euclidean
distance, the GK algorithm investigated here takes
the distribution of the data points into account with
a modified Mahalanobis distance for each cluster
which is iteratively adapted to fit ellipse-shaped clus-
ters. By looking at some results of AE segmentation in
the literature, the use of ellipses seems more adapted
than circles to represent AE data. In the GK algo-
rithm, the covariance between each pair of features
is estimated so that possible redundancy or comple-
mentarity between features can be taken into account.

In this paper, GK is investigated using a specific
subset of features obtained from AEWin software:
Energy, Absolute energy, Amplitude, Reverberation
frequency and Average frequency. As proposed
in (Barat et al. 2010), a median filter (size 9) was ap-
plied, to remove some spikes in particular AE hits due
to electric and electromagnetic noise. To keep impor-
tant information contained in energy-based features,
only the two others were filtered. Compared to aver-
age (such as performed in PCA), the median does not
create new artificial values from original features. The
features were normalised using a simple standardisa-
tion because each feature does not contribute equally
to the multidimensional analysis due to the scale. It
is a feature-wise and reversible process that enables
PRT to converge more easily.

3.2 Robustness to initialisation using the ARI

A proposed methodology to cope with the problem of
initialisation is summarized in Figure 6.

Initialise
clusters centers

randomly

K-means FCM

Initialise GK
parameters

Initialise GK
parameters

GK from K-means GK from FCM

ARI (1)

ARI (2)

Step 1

Step 2

Step 3

Figure 6: Method to initialisation GK.



To illustrate the problem and the solution, let con-
sider the set of the aforementioned features. An initial
position of K = 4 and 6 clusters was selected ran-
domly, and then K-means and FCM were run. Both
generated partitions were compared using the Ad-
justed Rand Index (ARI) (Nguyen et al. 2009) which
is a value in [−1,1] that tends to 1 when the two parti-
tions are close. To emphasize the impact of initialisa-
tions, we consider 100 initial clusters’ centers and run
K-means and FCM on features. The initial positions
were drawn randomly: First, K values were obtained
by dividing the scale of each feature space into K
equally-spaced groups, 50 samples were drawn with
report to a uniform distribution and 50 other sam-
ples drawn according to a gaussian distribution with
unit variance both centered on the K groups’ center
(Fig. 7). The partition from K-means and FCM were
compared the 100 runs using the ARI.
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Figure 7: Sampling initial data points in feature space (K = 6).

At least, when using the same initial position of
clusters, both algorithms are expected to provide an
ARI close to 1. On the opposite, K-means and FCM
generate different partitions with an ARI spread only
[0,1] with mean 0.522 ± 0.11 (Fig. 8). GK was run
100 times using the clusters’ position ofK-means and
FCM (as proposed in Fig. 6). Since the partitions of
both latter algorithms are generally different (with re-
port to the ARI), one can expect different partitioning
results using GK. On the opposite, the latter performs
well whatever the initialisation is provided either by
K-means or FCM (ARI close to 1 for every cases,
Fig. 8). Figure 8 also emphasizes that K = 6 led to an
ARI with limited variance compared to K = 4 for K-
means, while GK was able to converge in both cases.

Conclusively, according to the ARI, GK seems the
most robust clustering algorithm compared to K-
means and FCM with report to initialisation condi-
tions when considering this specimen. Our many ex-
periments with different configurations of the spec-
imens led us to the same conclusion. Moreover, the
partition generated by GK (with the proposed initial-
isation) seems closer to the expected behavior of the
structure than the other algorithms (see next sections).

3.3 Validation of the number of clusters

One possibility to select a well suited value for K,
is to try different K and select the one that opti-
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Figure 8: ARI forK-means vs FCM, and for GK withK = 4 and
6. Boxplot represents the median value, first and third quartile
and extreme points.

mises a given criterion. Among all criterion available
in the literature, the so-called Davies and Bouldin in-
dex (DB) (Halkidi et al. 2001) is frequently applied
to quantify the “goodness” of a partition of AE data.
The DB index depends on the average distances of all
patterns in clusters i and j to their respective cluster’s
centers. We propose to use the same distance as in the
clustering algorithm, that is here the modified Maha-
lanobis distance given by d2ik = ‖xk − vi‖2Ai

= (xk −
vi)

TAi(xk − vi), where Ai = [ρi det(Fi)]
1/q F−1i , i =

1 . . .K, ρi is the cluster volume of the i-th cluster
(generally assumed equal to 1), Fi is the fuzzy covari-
ance matrix given by Fi =

∑N
k=1(uik)

β(xk− vi)(xk−
vi)

T/
∑N

k=1(uik)
β where β sets the fuzzyness of the

partition (generally assumed equal to 2), N the total
number of points, uik is degree of membership of data
point xk to the i-th cluster and vi is the i-th cluster’s
center (see (Gustafson and Kessel 1978) for details).

To estimate the number of clusters, we considered
two main configurations: Conf1 – GK with selected
features, Conf2 – K-means+PCA as usually applied
for AE data analysis. The PCA was applied on a sub-
set of features (after standardisation) made of rise
time, counts, energy, duration, amplitude, average fre-
quency, RMS, ASL, reverberation and initiation fre-
quency, strength and absolute energy (available in
AEWin software). For the PCA and K-means algo-
rithms, the built-in MATLAB functions were used
with “replicate” and “singleton” options for improved
convergence and empty clusters management. For
these two cases, the DB index was estimated (on av-
erage over 10 runs):

Conf1 For GK with selected features (and median
filtering): 0.472± 0.027 (K = 4), 0.513± 0.03
(K = 5) and 0.582± 0.02 (K = 6). ARI equal
to 1 in all cases in one iteration showing that
the data were easily partitioned using GK for the
three cases. K = 4 appeared DB-optimal.

Conf2 For K-means+PCA (without filtering):
0.9205± 0.02, 0.9602± 0.01, 1.0123± 0.07 for
K = 4,5,6. K = 6 appeared DB-optimal.

With the PCA, GK does not generally led to an ARI
equal to 1 meaning that the data may not be well sep-



arated. In the sequel, K = 6 was selected for compar-
ison purpose between K-means+PCA and GK.

3.4 Sequence of damages

To compare both K-means and GK approaches, sev-
eral tests were performed. Figures 9 and 10 present
the sequence obtained with GK and K-means respec-
tively. The vertical axis corresponds to the log CSCA
that is the logarithm of the cumulative occurrence of
AE hits in a given cluster (see (Ramasso et al. 2012)
for details). The number of AE hits per cluster for all
configurations is given in Table 1. The cluters are also
represented in the Duration/Amplitude space (Fig. 11)
for better understanding.
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Figure 9: GK with selected features: damage sequence. On the
right, a zoom of the graph on the left between 340 and 400 sec.
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Figure 10: K-means+PCA: damage sequence.On the right, a
zoom of the graph on the left between 340 and 400 sec.

Conf1 / Fig. 9 – GK with selected features provided
a sequence of damages that began at 34sec. by the
cluster corresponding probably to electric and elec-
tromagnetic noise. In fact, at this time the machine
was turned off and the recorded events probably orig-
inated from the experimental apparatus surrounding
the tensile machine. The number of hits increased sig-
nificantly when the hydraulic power unit of the ma-
chine was turned on, at 134sec. This cluster was made
of 89% of AE hits (Tab. 1) and was characterised by
low durations and low amplitudes (Fig. 11(a)), which
are consistent with the characteristics of the electric
noise and electromagnetic interferences. The second

cluster appeared around 218sec., when the hydraulic
actuator of the tensile machine was pressurized. This
latest was attributed to the hydraulic noise generated
by the servo valve of the testing machine. This was
consistent with the increase in activity in this clus-
ter observed after 337sec., when the load was applied
to the specimen. Cluster 2 was made of 9% of the
AE hits and was located at mid amplitude and du-
rations. Several seconds after starting the tensile test
(around 342sec.), cluster 3 appeared. This one is ob-
viously describing the rubbing of the specimen on the
clamps (half-cylinder) since until 350sec. the tensile
stress did not significantly increase when the actua-
tors moved widely. This self-alignment of the clamps
can generate much friction between the connecting
arms, the pins, the half-cylinders and the specimen.
Amplitudes and durations were higher in this clus-
ter than in the two previous ones. Cluster 4 started
around 353sec., when the stress started forthrightly to
increase (i.e. after the self-alignment of the clamps).
The number of hits increased widely in this cluster
up to mid-load. This cluster was attributed to the ma-
trix micro-cracking. The evolution of the log CSCA
of this cluster was characterised by “stairs”, during
the first part of the tensile test, corresponding to a
high number of AE hits at a given instant, proba-
bly when micro-cracking coalesced. Cluster 5 was
likely to correspond to the hoop splitting. This one
started around 360sec. in agreement with the optical
and infrared observations (Fig. 4) and also in agree-
ment with the change in sign of the transverse strain
also represented in Fig. 4. For this notched ring, nu-
merical simulations clearly showed a positive trans-
verse strain in the gauge part of the specimen, while
a negative strain was calculated for unnotched rings.
This change of sign experimentally observed traduces
the complete hoop splitting of the specimen at the
edge of the notches. The hits in this cluster were
characterised by high amplitudes and durations which
were typically attributed in the literature to interfacial
failure. Almost simultaneously cluster 6 started. The
log CSCA was characterised by a few “stairs” corre-
sponding to rare events (with respect to the total num-
ber of hits). This cluster was composed of only 21
hits with the highest amplitudes and energies. One can
also observe that these stairs corresponded to huge in-
creases in the cumulated energy (Fig. 4). This cluster
undoubtly represents the fibres breakage.

Conf2 / Fig. 10 – The sequence provided by K-
means was quite different. Only the two last clus-
ters were similar, may be due to their specific char-
acteristics (in particular highly energetic). The four
first clusters had a much higher proportion than with
Conf1. Clusters 1 and 2 appeared frequently and were
made of many AE hits (67% and 16%, Tab. 1). Am-
plitudes and durations spread from 45dB to 88dB and
covered 2/3 of the duration range. The occurrence
of cluster 2 around 135sec. corresponded to the hy-
draulic group unit starting that may not generate dam-



Conf1 42973 (89.73%) 4242 (8.86%) 467 (0.98%) 111 (0.23%) 62 (0.13%) 21 (0.04%)
Conf2 32297 (67.46%) 7762 (16.21%) 5470 (11.43%) 2187 (4.57%) 141 (0.29%) 19 (0.04%)

Table 1: Number of AE hits in each cluster for the four configurations (sorted by size): GK + selected features (Conf1), Kmeans+PCA
(Conf2).

(a) Conf1: GK + selected features (col. 1-2, lines 1-3) (b) Conf2: K-means + PCA

Figure 11: Duration (y, log., ∈ [0,4.9]) vs Amplitude (x, dB, ∈ [45,99]) with clusters for Conf1 and Conf2 (3 lines and 2 column for
each). Clusters numbers appear in each subfigure.

ages. In GK, this event was classified in the first clus-
ter. Cluster 3 was made of low amplitudes and dura-
tions and started early (338sec.) corresponding to the
tensile test starting. Thus, this cluster may be related
to rubbing and friction noise. Cluster 4 started when
the scissions were observed (Fig. 4), with “stairs” dur-
ing splitting. Compared to GK, the number of AE hits
was quite important meaning that more than 5400 AE
hits were related to scissions while this value is di-
vided by more than 10 with GK.

4 ONLINE UPDATING

The online GK algorithm was proposed in (Georgieva
and Filev 2009) for online data streams partition-
ing, i.e. clusters’ parameters are updated as new data
points arrive. The possibility to add/remove clus-
ters (Serir et al. 2012) is not considered here. The
main contribution is a method to adapt the updating
rate automatically.

4.1 Acoustic Emission Activity (AEA) estimation

When looking at the time-index of recorded waves
(Fig. 12(a)), more or less AE hits appear. The acqui-
sition time is thus irregular and continuous. Making it
discrete (here with sample time τ = 0.25sec.), one ob-
tains the result in Figure 12(b) that characterises the
AE activity (AEA). We observe such a pattern in sev-
eral configurations with 5 main phases: 1) an increas-
ing phase (accomodation), 2) a decreasing phase, 3)
a steady phase, 4) a gradual increasing phase (pos-
sibly damages) and 5) some peaks with decreasing
trend (fibre breakage). The peaks (Fig. 12(b)) corre-
spond to an activity level during which some relevant

AE hits may appear. The level can thus be used for the
segmentation of AE data (called Online Segmentation
Algorithm, OSA).

Formally, let t ∈ < the acquisition time, T =
{t1, t2 . . . tj . . . tN} the set of time instants of AE hits,
and T (j) the j-th element. A bin of time-instants is
Bi =

[
B−i ;B+

i

)
, i= {1 . . .R}withB−i = T (1) + (i−

1)τ and B+
i = T (1) + iτ , i.e. a bin is defined as an in-

terval with width τ , and R is the total number of bins.
The number of AE hits in the i-th bin is

H(i) =
N∑
j=1

11
(
B−i ≤ T (j) < B+

i

)
, i = 1 . . .R. (1)

The level of activity is quantified by merging consec-
utive binsBi andBi−1 in increasing trend until a peak.
Let I = {I1, I2 . . . Ij . . .} the set of bins after merging
at least two consecutive bins:

Il = {Bi ∈ B | H(i) ≥ H(i− 1),B+
i−1 = B−i } (2)

If a bin is composed only of data points belonging
to the “largest” cluster – i.e. the more frequent clus-
ter, corresponding possibly to noise or to phenomenon
which have a limited impact on the structure, for ex-
ample, the cluster 1 in Fig. 11(a) – the AEA is not
taken into account. This simple rule allows one to fil-
ter out some AEA, for example, in Fig. 12(b), no AEA
was kept between 218sec. and 338sec. despite peaks.

4.2 Evolving GK (EGK) algorithm

Let q the dimension of the feature space (here q = 4),
xk ∈ <q is the feature vector at instant k (for exam-
ple amplitude, energy, absolute energy, reverberation
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(b) AEA presence (black intervals)
and discrete time (continuous line)
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Figure 12: Making time discrete, detection of AEA, and AEA’s level for the first specimen.

frequency and average frequency). Given xk, let p the
closest cluster given by minimizing the Mahalanobis-
like distance to each cluster, i.e. p = argminKc=1 d

2
ck.

The p-th cluster’s updating is performed by modify-
ing its parameters vp,k (center) and Fp,k (covariance)
for the current time k. As in Kohonen’s rule, the clos-
est cluster’s center is moved towards xk:

vp,k+1 = vp,k + θ∆ , (3)

where ∆ = xk− vp,k and θ ∈]0,1[ is the updating rate.
The inverse of the fuzzy covariance matrix as well as
its determinant, which are used to estimate the dis-
tance to each cluster, are recursively adapted:

F−1p,k+1 = (I −G∆)F−1p,k (1− θ)−1 , (4)

where I is the identity matrix and G =

(1− θ)−1F−1p,k + ∆T
(
θ−1 + ∆ (1− θ)−1F−1p,k∆T

)−1
,

and let ξ = 1− θ+ θ∆F−1p,k∆T, the determinant is

det (Fp,k+1) = (1− θ)n−1 det (Fp,k) ξ . (5)

4.3 Automatic tuning of the updating rate θ

Let θk the updating rate at time-instant tk:

θk ∈ [θmin; θmax], θmin > 0, θmax < 1 (6)

According to authors (Georgieva and Filev 2009),
θ ∈ [0.05,0.3] and is constant. We propose to modify
its value according to the AEA. The updating rate is
considered imprecise by considering a possible range
[θmin; θmax]. When high AEA is present and when it is
not due only to noise, the updating rate should be high
(θmax), while it should be low (θmin) when no AEA is
detected.

To estimate the value of θk with report to AEA, we
make it dependent on the number of hits in a bin. This
value has to be transformed into a normalised value
in [0,1] that will be scaled onto [θmin; θmax]. In online
mode, the maximum number of AE hits is not known

in advance so it is proposed to normalise the num-
ber of hits by using a time-window with length W sec.
over previous peaks. Let λk the resulting signal:

λk =
# hits in the peak

maximum # hits in the time window
(7)

Using statistical process control (Angelov et al. 2010)
(Chap. 12), the Mahalanobis-like distance can be
upper-bounded by χ2

q,β , i.e. the maximal distance for
a given probability of false alarm 1− β, where χ2

q,β
is the chi-square distribution with q degrees of free-
dom. Beyond that distance, the null hypothesis “the
process is in control” is rejected and thus the current
data point is not considered. As proposed in (Angelov
et al. 2010) (Chap. 12), β was set to 0.0455. Given
the Mahalanobis-like distance dpk between point xk
and the closest cluster (p), we thus assert whether data
point xk is located out of the cluster:

Mp,k = min

(
1;

d2pk

(det (Fp,k))
1/q χ2

q,β

)
(8)

such that if point xk is a false alarm then the distance
M is set to 1, otherwise the assigned value is the nor-
malised Mahalanobis-like distance. The value of θk is
finally estimated by:

θk =
λk

(
1−Mp,k

)
1 +

(
t− t0
γ

)2 (9)

where t0 and γ represent the location and the scale of
the Cauchy function used to adjust the imprecision of
θk within a bin. If the current instant k belongs to the
bin Il, the most important part of the bin is assumed
to be the median value of time-instants in that bin
(medianj∈Il Il(j)). The scale γ is traditionally given
by the difference between the third and first quartile
of the time-instants in the bin. The computation of
these parameters requires to wait for a complete burst



which may imply a small time delay (a few millisec-
onds in the worst case). An illustration is depicted in
Figure 12(c) for the considered specimen.

To illustrate the online clustering (OCA) with on-
line segmentation (OSA), we estimated the clus-
ter/damage at each time-step given AE data from a
new specimen with a similar lay-up configuration.
The value of θk over time for the new specimen
was found using the AEA-based approach proposed
above, and this value was used to update clusters pa-
rameters obtained previously. Figure 13(a) shows the
evolution of the sequence over time estimated grad-
ually (point after point) with continuous updating.
Cluster 1 did not occur (while being the most frequent
in Fig. 9) but cluster 2 was the most frequent here.
This cluster corresponded also to noise in Figure 9
(or to a cluster not linked to damages).

The updating rate is depicted in Figure 13(b) where
only some data points were allowed to update the
models, due to the false alarm detection procedure
that only kept data points close to clusters. Impreci-
sion about the parameter is well-managed since the
value of θk varies from 0 to 0.3 according to the prox-
imity to clusters.
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(a) Online clustering al-
gorithm (OCA) results
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Figure 13: Second specimen, OSA / OCA results.

5 CONCLUSION AND FUTURE WORK

From this study, several observations can be listed:

The choice of the clustering validity index to assess
the number of clusters K depends on the algo-
rithm and on features. However, both K and fea-
tures have to be linked with expected damages.

Several algorithms starting with the same initial
points are not able to converge to the same so-
lution. The PCA seems to increase this differ-
ence and, thus, does not seem to be adapted to
the specificities of AE data.

The proposed methodology using GK and some
selected features emphasized the accomodation
phase, micro-cracking, scissions/splitting and fi-
bre breakages. GK manages uncertainty using
ellipse-shaped clusters and always converged to
same solution given different initialisations.

The Online Segmentation Algorithm (OSA) allows
AE data mining by detecting some useful AE hits
based on the acoustic activity (AEA).

The Online Clustering Algorithm (OCA) allows to
detect the clusters as new data arrive based on an
updating rate automatically set within a specified
range to manage imprecision about its value.
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