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Abstract: A nonlinear passivity-based control can be suitably used to achieve stability of
a permanent magnet synchronous machine (PMSM). Nevertheless, passivity properties are
usually lost when such a controller is implemented in a sampled-data context and, as a
consequence, stabilization objectives are degraded. This paper proposes a direct sampled-data
control strategy based on the IDA-PBC techniques, in order to keep the same performances
with a higher sampling period. Therefore, this type of controller is able to be implemented in
a low-performance DSP.

Keywords: Permanent magnet synchronous motor (PMSM), port-controlled Hamiltonian
systems, IDA-PBC, direct sampled-data IDA-PBC.

1. INTRODUCTION

Nowadays, PMSM are used in many fields. This gain in
popularity is due to his attractive features such as: high
power/mass ratio, rapid dynamic response due to high
torque-to-inertia ratio, high efficiency, compactness, and
simple modeling and control [Bose, 2002]. In addition, the
presence of the magnet in the rotor reduced the Joule
losses due to the absence of winding excitation in the rotor
that makes PMSM highly efficient.
Several stable position and velocity controllers for PMSM
have been reported in the control literature, such as the
field oriented control (FOC) and the direct torque con-
trol (DTC)[Buja and Kazmierkowski, 2004, Wang et al.,
2007]. These controllers can be designed using a cascade of
two controllers, for instance, an outer loop for the speed
control and inner loops for the currents control. These
controllers are based on PI or IP controllers, adaptive PI
controller [Li and Liu, 2009], sliding mode controller [Baik
et al., 2002, Laghrouche et al., 2004], predictive controller
[Mariethoz et al., 2009], backstepping controller [Zhou
and Wang, 2002], Lyapunov-based controller [Hernandez-
Guzman and Silva-Ortigoza, 2011] or passivity-based con-
troller [Petrovic et al., 2001, Akrad et al., 2007]. The
recently developed energy-shaping technique [Ortega and
Garcia-Canseco, 2004, Ortega et al., 2008] or intercon-
nection and damping assignment passivity-based control
(IDA-PBC), has been applied to design new globally
stable controllers for PMSMs [Akrad et al., 2007]. In a
practical context, integral action are added in order to
improve the robustness. A technique that preserves the

Halmiltonian form and closed-loop stabiliy with integral
action on the passive outputs is presented in [Donaire
and Junco, 2009, Donaire et al., 2012] and is applied to
PMSM speed control. Nevertheless, in a practical way,
when the controller is implemented by a computer, the
system is placed in a sampled-data context and, as it is
well known, passivity properties are usually lost [Monaco
et al., 2008]. Consequently, passivity based controllers
(PBC) implemented through a zero order holder device
(emulation process) lose their validity. In practice, the
designers choose a sampling period so that the response
time is at least equal to 20 times the sampling period or
opt for very small controller gain value.
In this paper, a direct sampled-data IDA-PBC strat-
egy is proposed to control the currents of a permanent
synchronous motor with a regular field oriented control
strategy. This work is based on a recent theory [Tiefensee
et al., 2010, Monaco et al., 2011] called digital passivity
based control. An analysis on the performances according
to the sampling frequency is discussed. Finally, the com-
putational cost of this new controller is compared with the
usual implementation through emulation of a continuous-
time IDA-PBC strategy.
This paper is organized as follows: In section II, the
regular IDA-PBC method is recalled and applied to the
currents control of a PMSM. The sampled-data passivity
based control strategy is detailed in section III. Finally,
simulations and discussions are treated in section IV.
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2. THE CONTINUOUS-TIME IDA-PBC APPROACH

In continuous time, the fundamental idea of IDA-PBC is
to shape a desired internal structure and then to dissipate
the energy of the whole system through damping injec-
tion. Interconnection and damping assignment passivity-
based control is a technique that shapes the behavior
of nonlinear systems assigning a desired port-controlled
Hamiltonian (PCH) structure to the closed-loop.

2.1 Recalls about the theory

The procedure starts with the system’s description in the
port controlled Hamiltonian structure:

ẋ = [J (x) − R(x)]∇H(x) + g(x)u + ζ
y = gT ∇H(x) (1)

where x ∈ R
n is the state vector, u ∈ R

m is the control
vector, y ∈ R

m is the output vector with m < n, ζ a
perturbation, H : R

n −→ R is the total stored energy,
J (x) = −J (x)T , R(x) = RT (x) ≥ 0 are the interconnec-
tion and damping matrices respectively. PCH model have
been selected by the fact that they are natural candidates
to describe many physical systems.

Proposition 1 : Consider the nonlinear system [Ortega
and Garcia-Canseco, 2004]

ẋ = f(x) + g(x)u (2)

assume there are matrices g⊥(x), Jd(x) = −J T
d (x),

Rd(x) = RT
d (x) ≥ 0 and a function Hd(x) : R

n −→ R

that verify the partial differential equation (PDE)
g⊥(x)f(x) = g⊥(x)[Jd(x) − Rd(x)]∇Hd (3)

where g⊥(x) is a full-rank left annihilator of g(x), that is,
g⊥(x)g(x) = 0, and Hd(x) is such that

x∗ = argmin(Hd(x)) (4)

with x∗ ∈ R
n the (locally) equilibrium point to be

stabilized. Then, the closed-loop system (2) with the
control u, where

u =
[
gT (x)g(x)

]−1
gT (x)

× {[Jd(x) − Rd(x)] ∇Hd − f(x)} (5)

takes the PCH form
ẋ = [Jd(x) − Rd(x)]∇Hd (6)

Stability of x∗ is established noting that, along the trajec-
tories of (6), we have

Ḣd = − [∇Hd]T Rd(x)∇Hd ≤ 0 (7)

Hence, Hd(x) ≥ 0 qualifies as a Lyapunov function. It will
be asymptotically stable if, in addition, x∗ is an isolated
minimum of Hd(x) and also the unique solution of the (8)
: {

x ∈ R
n| [∇Hd]T Rd(x)∇Hd = 0

}
(8)

Asymptotic stability follows immediately invoking the La
Salle’s invariance principle.

2.2 Permanent Magnet Synchronous Motor Control via
IDA-PBC

The model of the synchronous machine is defined in the
(dq) coordinates as follows:

Ld
did

dt
= −Rsid + P ΩLqiq + vd

Lq
diq

dt
= −Rsiq − P Ω(Ldid + φ) + vq

J
dΩ
dt

= P (Ld − Lq) idiq + P φiq − fΩ − τl

(9)

In these equations, P is the number of pole pairs,
vd, vq, id, iq are the voltages and the currents in the
(dq) coordinate, Ld and Lq are the stator inductances
which are equal for surface Permanent-Magnet Machinesin
(PMSM), Rs is the stator winding resistance, τl is an
unknown load torque, f is the friction coefficient, φ and
J are the flux produced by the permanent magnets and
the moment of inertia respectively and Ω the mechanical
speed. The PCH model of the PMSM takes the form (2)
with

g =

[ 1 0
0 1
0 0

]
u =

[
vd

vq

]
ζ =

[ 0
0

−τl

]

J (x) =

[ 0 0 P x2
0 0 −P (x1 + φ)

−P x2 P (x1 + φ) 0

]

R(x) =

[
Rs 0 0
0 Rs 0
0 0 f

]
, x =

[
Ldid

Lqiq

JΩ

]

The desired equilibrium state for synchronous machines is
usually selected based on the so called "maximum torque
per ampere" principle as: x∗ = [0, (Lqτl/P φ), JΩ∗]T . The
design procedure proposed in the latter paragraph leads to
the continuous-time linear controller [Akrad et al., 2007]:

u =
[

(Rs − r1)id − P Ldi∗
qΩ + P (Ld − Lq)iqΩ∗

(Rs − r2)iq + r2i∗
q + P φΩ∗

]
(10)

where r1 and r2 are strictly positive gains. Therefore, the
closed loop plant can be written as:

˙̃x = [Jd − Rd]∇Hd (11)

where x̃ = x − x∗ and Jd(x) − Rd equal to:

Jd(x) − Rd =

[ −r1 P LdΩ (Ld − Lq) iq

−P LdΩ −r2 −φ
− (Ld − Lq) iq φ 0

]

The system storage function Hd is

Hd (x̃) = 1
2

x̃T Q x̃, with Q =

⎡
⎢⎢⎢⎢⎣

1
Ld

0 0

0 1
Lq

0

0 0 P

J

⎤
⎥⎥⎥⎥⎦ (12)

where the minimum is reached at the point of equilibrium
x∗.
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Fig. 1. IDA-PBC structure with a RST speed controller.

Finally, the design of the speed controller is based on a
digital linear controller as shown on Fig. 1 and gives the
desired q-axis current i∗

sq.
Remark 1: Tuning of r1 and r2 In practice, the tuning
of the degree of freedom of nonlinear controller is not easily
as for linear system. Here, if the measured speed is nearly
equal to the desired speed, the controller compensates the
back-emf of the machine and the transfert functions of
the closed-loop currents d and q can be represented by
first order functions, i.e. H(p) = 1

1+τ p with τ = Ld/r1 or
Lq/r2. It immediately follow that the time response of the
closed-loop d or q-axis currents are trd = 3 Ld

r1
or trq = 3 Lq

r2
and easily tune.

3. SAMPLED-DATA IDA-PBC DESIGN

In this section, a new digital controller is developed.
The main objective is to ensure the stabilization at the
equilibrium point x∗ with a good transient response under
large sampling periods.
In this paragraph, the closed-loop continuous-time state
is denoted by xc and continuous-time control by uc. The
sampled-data state under a piecewise controller uk is
denoted, at the time-instants t = kTe by xk, its value
at the instant t = (k + 1)Te is denoted by xk+1. In this
sense, if there exists a piecewise controller uk under which
the energetic behavior of uc is matched at the sampling
instants then, the equality below must be verified for all
xk such that xc(t = kTe) = xk:

Hd(xk+1) − Hd(xk) =
(k+1)Te∫
kTe

Ḣd(xc(τ))dτ (13)

The left hand side of (13) represents the desired energetic
evolution of the sampled-data system and can be com-
puted as follows:

Hd(xk+1) − Hd(xk) = 1
2

(
eTe((J −R)Qx+g(.)uk) − Id

)
(xk − x̄)T Q(xk − x̄) (14)

where ef (.) := 1 +
∑

i≥1
Li

f

i! , is the Lie series operator
associated with a given vector field f , Id the identity
operator and Lf (.) =

∑n
i=1 fi(.) ∂

∂xi
denotes the Lie

derivative operator associated with a given vector field
f on Rn (see [Monaco and Normand-Cyrot, 1997] for
more details). The right hand size of (13) represents the
energetic evolution of xc and can be exactly computed as:

(k+1)Te∫
kTe

Ḣd(xc(τ))dτ

= Hd(xc|t=(k+1)Te
) − Hd(xc|t=kTe )

= xT
k

((
eTe(J −R)Q

)T

QeTe(Jd−Rd)Q − Q

)
xk

The sampled-data controller uk is described by its series
expansion in Te around the continuous-time one uk0 =
uc|t=kTe as uk = uk0 +

∑
i≥1

Te

(i+1)! uki, and each so-
called "corrective" term uki is computed by comparing
and equating homogeneous terms in powers of Te in
the equality (13). The computation of an exact solution
being in general a difficult task due to the nonlinearities
describing the continuous-time dynamics, an interesting
solution can proposed at the first order of approximation,
i.e.

uk = uk0 + Te

2!
uk1 (15)

with:

uk0 = uc (16)
uk1 = u̇c (17)
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It follows that the new control input uk is:

uk = [ Eq. (10) ] + Te

2!

[
vd1
vq1

]
(18)

with

vd1 = Rs − r1
Ld

( − r1id + P Ω(Lqiq − Ldi∗
q)

+ P (Ld − Lq)iqΩ∗) − P 2

J
Ldiqi∗

q

(
(Ld − Lq)id + Φ

)
+

( P

Lq
LdΩ∗ − P Ω∗)

(−r2(iq − i∗
q)

− P Φ(Ω − Ω∗) − P LdidΩ) (19)

vq1 = Rs − r2
Lq

( − r2(iq − i∗
q) − P φ(Ω − Ω∗)

− P LdidΩ
)

(20)

In the case of a non-salient rotor (Ld = Lq = L), the
previous equations become:

vd1 = Rs − r1
L

(−r1id + P LiqΩ − P Li∗
qΩ)

− P 2

J
Li∗

qφiq (21)

vq1 = Rs − r2
L

(−r2(iq − i∗
q) − P LidΩ

− P φ(Ω − Ω∗)) (22)

Remark 2: Numerous systems are described by a first or-
der model, i.e. H(p) = 1

Ap+B that leads to the continuous
passivity controller:

u0 = Bx∗ + (B − Rd)(x − x∗), with Rd ≥ 0 (23)

The corrective terms un are connected by the following
recurrence relation:

u1 = −B − Rd

A
(x − x∗)

un = −Rd

A
un−1, for n ≥ 2

(24)

leading to a simple, few time-consuming computation and
performing controller.

4. SIMULATION AND DISCUSSIONS

To control the speed of the PMSM, a RST controller
ensure this function and the IDA-PBC control the (dq)
currents, as shown on Fig. 1. In order to highlight the
performances of the new digital controller, a comparison
between the latter, emulated controller based on the
continuous-time design and the continuous controller are
detailed for different sampled periods.
Firstly, three control laws are compared for two config-
urations: a) closed-loop dynamique equal to 2 ms and a
sample time Te equal to 1 ms, b) closed-loop dynamique
equal to 0.2 ms and a sample time Te equal to 0.1 ms.
Figs. 2.a-2.b show the step response of current iq con-
trolled at zero speed by the continuous IDA-PBC, emu-
lated IDA-PBC (implementation of the continuous IDA-
PBC with a zero-order holder, Eq. 10), sampled IDA-PBC

(Eq. 18). iqc, iqe and iqk represent the currents controlled
by the continuous IDA-PBC, the emulated IDA-PBC and
sampled IDA-PBC respectevely. The simulation shows
that the current iqe doesn’t reproduce the trajectory of
the current iqc with the adopted tuning. Moreover, this
latter is under-damping compared with iqk in configu-
ration b (see Fig. 2.b). Fig. 2.c show that the sampled-
data controlled reproduce exactly the continuous IDA-
PBC current whit increasement of the expansion order.
Figs. 3-4 show the mechanical speed and the quadrature
current iq which is control by the continuous IDA-PBC,
emulated IDA-PBC or the sample-data IDA-PBC. The
simulation shows that the three current controllers have
the same behavior with a sampling period equal to 100μs.
It is interesting to note that currents iqc and iqk are in
advance compared to the desired currents while the mea-
sured speed doesn’t reached the desired value. It means
that the right part of Equ. 10 introduce a "feedforward"
term in the controller.
Secondly, the sampled period has been increased grad-
ually. Figs. 5-6 show that for a sampling time equal to
Te = 3 ms, the emulated IDA-PBC strategy fail, while
the other one keeps a good performances. It confirms
the effectiveness of this new controller in a sampled-date
context.
While sampled-data controller still ensures a good current
regulation, with acceptable ripple, the emulated strategy
degrades the control objectives. Moreover, the shape of the
current which is controlled by the sampled-data IDA-PBC
remains smooth. The simulation shows that current rip-
ples begin to appear when the sampling period is greater
than 4 ms with the emulated IDA-PBC. It important
to note that the maximum sampling-time given in this
work depend of the machine and the closed-loop dynamic
(tuning of r1 and r2).
Finally, the computational cost of this new controllers are
compared to the regular emulated IDA-PBC, as shown
in Tab. 1. We can notice that the ratio “number of
operations/sampling period” of the two controllers is
lower for the sampled-data controller for the same system
performances. Moreover, the use of higher sampling period
with the new controller reduces the number of push/pop
operations of the stack to save or restore the registers
(computer science).

Table 1. Algorithm complexity

Emulated controller Sample-data controller
Number
of
additions
and sous-
traction

Number
of multi-
plications

Number
of
additions
and sous-
traction

Number
of multi-
plications

Non
salient
machine

3 5 12 18

Salient
machine

4 6 18 29
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5. CONCLUSION

A direct sampled-data controller based on the IDA-PBC
technique is developed for the current control of a PMSM.
Such a controller is compared with the regular imple-
mentation, so-called emulated strategy, which consists
to implement the continuous-time controller through a
zero order holder device. The simulation shows that the
performances of the emulated control decrease while the
sampling period increase. On the contrary, the sampled-
data IDA-PBC ensures a good current control although
the high sampling time.
Acknowledgment: This research was supported by the
PEPS project “GESE: Gestion Echantillonnée des Sys-
tèmes Energétiques”, 2010.

Table 2. Machine parameters

Rated output power Pn = 6 kW
Rated torque Cn = 5.5 N.m
Rated speed N = 6000 rpm
Rated voltage Vn = 350 V
Rated current In = 22.5 A
Stator resistance Rs = 0.165 Ω
Stator inductance d-axis Ld = 0.95 mH
Stator inductance q-axis Lq = 1 mH
Rated flux Φ = 0.03 Wb
Number of pole pairs P = 5
Inertia load J = 6.10−4 Kg.m2

Viscous coefficient f = 0, 0005 N.m/s
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