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Abstract: In this discussion paper we present an idea of using techniques known from systems
theory to show existence for a class of non-linear partial differential equations (pde’s). At the
end of the paper a list of research questions and possibe approaches is given.
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1. INTRODUCTION

Consider the heat equation on the spatial interval [0, 1]
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with boundary conditions
ox ox

where f represents the boiling curve, see van Gils (2010).
The boiling curve describes the non-linear relation between
the temperature and the heat flux at the boundary.

We write the non-linear pde (1)—(2) as the linear system

oz 0?%x

3 G0 =5 ®)

Or Ox

2c00=0,  Ze)=u) (4)
y(t) =x(1,1) (5)

with the non-linear feedback
u(t) = f(y(t)).

The linear system (3)—(5) has nice properties, such as
existence of unique solutions for any initial condition
in L?(0,1) and any input in L? (0,00). The non-linear
boiling curve is (uniformly) Lipschitz continuous, and by
using Logemann and Ryan (2003) (see also Section 2) we
conclude that the non-linear pde (1)—(2) possesses a unique
solution for any initial condition.
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In the following section we shall make the above assertion
more precise. In Section 3 we show how this idea can be
further extended.

2. LOCAL EXISTENCE

The theory of well-posed infinite-dimensional systems is
now well-established and can be found in books, see e.g.
Staffans (2005) and (Jacob and Zwart, 2012, Chapter
13). In essence well-posedness states that the (abstract)
differential equation on the Hilbert space X

() = Az(t) + Bu(t), (7)
y(t) = Cz(t) + Du(?) (8)

possesses for every zop € X, u € L} _([0,00);U) a
unique solution with z(¢) continuous w.r.t. ¢, and y €
L? ([0,00);Y). Hence if the system is well-posed, then we
can write the solution as

2(0) = xg

x(t) =T(t)zo + (B(u)) (1) (9)
y=C(zo) + F(u), (10)

where the first equality holds point-wise in ¢, and the
second is an equality in L?2.

We will assume that our linear pde gives a well-posed linear
system. On the non-linearity we assume that it is locally
Lipschitz continuous from Y to U. Thus for every r > 0
there exists a L(r) such that for all y1,y2 € Y satisfying
[y1]l, [ly2|| < 7 there holds

1 (y1) = f(2)ll < Lr)llyr — w2l- (11)

If L(r) can be chosen independently of r, then the mapping
f is called uniformly Lipschitz continuous. Before we can
formulate the existence result we need to define the feed-
through bound



0 := inf
t>0 weL2(]0,t);U)
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For a finite-dimensional systems ¢ = ||D||. This also holds
for infinite-dimensional systems if B or C' is a bounded
operator, see (7) and (8), respectively. If the transfer
function G(s) of the system (7)—(8) has the property that

lim G(s) =0, (13)

Re(s)—o0

then § = 0 as well. We make the claim that § equals
lim SUP Re(s)— o0 HG(S)H

Theorem 1. Consider the well-posed system (9)—(10), and
let L(r) denote the Lipschitz constant, see (11), and let
d denote the feed-through bound. If §L(r) < 1, then
there exits a solution of the abstract non-linear differential
equation

i(t) = A+ B(f(h(Cx))),  (0) =0 (14)
on the time interval [0, tyax). Here y1 = h(ys2) if and only
if yo+ Df(y1) = y1. If f is uniformly Lipschitz continuous

and § = 0, then h(y2) = y2 and tmax = 00.

Proof. The proof is done by applying a fixed point
argument on (10) with w replaced by f(y). Under the
above conditions there will exists a fixed point yri, €
L?([0,t1);Y) for sufficiently small ¢;. Now substituting
u = f(yriz) into (9) gives the desired solution of the non-
linear equation.

Using this theorem we look once more at the example
in Section 1. It is well-known that (3)—(5) defines a well-
posed system with § = 0. Furthermore, the boiling curve
is uniformly Lipschitz continuous, and so by Theorem 1
we have that (1)—(2) possesses a unique solution for every
initial condition.

3. EXAMPLES
3.1 Heat equation with a non-linear term

Suppose we want to use the above presented technique to
prove that the following non-linear pde possesses a unique
solution.

oz O?*x 9
with homogeneous boundary conditions
x(0,t) =0, z(1,t) = 0. (16)

If we would choose U = X =Y = L?(0,1) and f(y) = y?,
then we have a problem, since f maps outside the input
space L2(0,1). So to use the theory we have to choose
other spaces, and/or operators. We discuss two options.

Choosing other spaces If we want to keep f(y) = 92,
then we have to change the input and output. One option
is the following. As state space and output space we
take X = Y = L2(0,1), and as input space we take
U = L'(0,1). For these spaces we write the non-linear

(15) with the homogeneous boundary conditions as the
abstract system (7)—(8) with

62
Ag =5 (17)
D(A)={ge X |g,geX, and g(0) =0=g(0)} (18)
B=1d,C=al, (19)

where 1d denotes the inclusion from L!(0,1) in L2(0,1),
which is only densely defined. Furthermore, we define

fly) =y

By the Cauchy-Schwarz inequality it is not hard to show
that f is (locally) Lipschitz continuous from Y to U. Hence
to use the idea presented in Section 2 we must have that
the system (17)—(19) is well-posed.

Since the input space has become a Banach space, Theo-
rem 1 has to be formulated in general Banach spaces. Once
this is done, there is another possibility for formulation
(15).

As input, state, and output space we choose L>°(0,1).
Furthermore, A remains the same as in (17) and (18),
and B = C = I. It is clear that f is (locally) Lipschitz
continuous on L°°, and since we can easily check that
Theorem 1 holds on general Banach spaces, when B and
C are bounded, we obtain that (15) possesses a unique
solution on L*>°(0, 1) for every initial condition in L>°(0, 1).
In the next part we show that by choosing another f we
can obtain existence on L?(0,1)

Choosing another f  As spaces we choose U = X
Y = L?(0,1) and we choose A with its domain as in (1
and (18), respectively. The input operator we choose the
identity. However, we choose the output operator as

2

co=32, (20)
on the domain
D(C)={geX|ge X}
and we choose
¢ 2
() ©) = | [ tman (21)
0

It is well-known that the system 3(A, B, C) is well-posed,
and furthermore, it is not hard to show that f is (lo-
cally) Lipschitz continuous from L?(0,1) to L?(0,1). Since
f(C(x)) = 22, Theorem 1 gives that (15) possesses a
unique solution on L?(0,1) for every initial condition in
L2(0,1).

3.2 Non-linear Hamziltonian systems

A general Hamiltonian system can be written as

Ox 0

—((,t) = — t

51 (G0 = 57 W) (C.1),

where N is the variational derivative of the Hamiltonian

with respect to x. For such a system Theorem 1 cannot be

applied directly. Therefor we perturb the pde and consider
ox 0%z 0
(1) =e=—=(C,t) + — t).
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(22)

(23)



We are going to study this equation assuming homoge-
neous boundary conditions. Again we have the two op-
tions.

Choosing other spaces  The easiest choice seems to be
to choose all spaces to be L>°(0,1) and A as e times the
operator in (17) with domain (18), C =1 and B = a%. If
N is (locally) Lipschitz continuous on L* and the system
is well-posed, then we find a unique solution on L>°(0,1).

Choosing another f  Here we can apply a similar trick
as in the previous example. We choose A as ¢ times the
operator in (17) with domain (18), B = 8% and C as (20).
Furthermore,

¢

W) () =N / y(m)dr

0

It is known that the system X(A, B, C) is well-posed on
L?(0,1), but the feed-through bound is non-zero. Hence if
the above defined f is locally Lipschitz, then we still need
to check whether the Lipschitz constant and ¢ is smaller
than 1. Once that is checked, we can conclude by Theorem
1 that (23) possesses a unique solution on L?(0, 1).

4. CONCLUSION

In this paper we discussed the possibility of using feedback
theory for showing existence of solutions. As may be clear
from the presented work several steps still need additional
analysis. We present them in a list

(1) Prove Theorem 1.

The idea of the proof is presented here, but the
details all need to be worked out.

(2) Formulate and prove Theorem 1 on a general Banach
space.

(3) Find standard examples of linear systems that are
well-posed in Banach spaces, especially in L*°. In par-
ticular, investigate the well-posedness of the system
in Choosing other spaces in Subsection 3.2.

(4) Fill in the details of the argument presented in
Choosing another f in Subsection 3.2.

(5) Investigate the behavior of the solution of (23) when
€ approaches zero. In particular, is this solution
converging to a solution of (23)?
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