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Abstract— This paper deals with the control of a class of

simplified models for flexible micro-grippers for DNA manip-

ulation. The overall system is first modelled as a boundary

controlled port Hamiltonian system made up as the inter-

connection of an infinite dimensional system (modelled as an

undamped Timoshenko beam) representing the flexible arm of

the gripper with two finite dimensional systems representing the

DNA bundle and the suspension/actuator mechanism. The base

of the arm is clamped on the suspension mechanism leading to

under actuated system. The controller considered under strict

dissipative port Hamiltonian format uses the velocity of the

base of the tweezers arm as input and generates a force as

output. The exponential stability of the closed loop system is

derived by checking simple conditions on both the infinite and

finite dimensional system.

I. INTRODUCTION

The manipulation of biological molecules by using micro-
mechanical and optical devices such as: magnetic tweezers
[1], [2], optical tweezers [3], AFM cantilevers [4] and mi-
crofibers [5], [6], are nowadays possible thanks to impressive
technological progresses of the last years. The molecules
manipulation is of particular interest for the characterization
of basic properties of biological molecules such as DNA
molecules [7]. Silicon nanotweezers, (Figure 1). are used for
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Fig. 1. Silicon nanotweezers

this purpose: the principle is to trap DNA bundle between
two arm tips using dielectrophoresis and then to characterize
the DNA mechanical properties by using electrostatic actu-
ation. The actuator is also used for monitoring enzymatic
reactions on the DNA. The nanotweezers are so sensitive to

The contribution of Y. Le Gorrec and H. Ramirez has been done
within the context of the NRA project HAMECMOPSYS with ref-
erence code ANR-11-BS03-0002. Further information is available at
http://www.hamecmopsys.ens2m.fr/.

H. Zwart is with the Department of Applied Mathematics, Faculty
of Electrical Engineering, Mathematics and Computer Science, Univer-
sity of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
h.j.zwart@math.utwente.nl

Y. Le Gorrec and H. Ramirez are with FEMTO-ST AS2M, 24 rue Alain
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the stiffness variation of the DNA bundle that they become
flexible and as consequence, current microfabrication pro-
cesses tend to reduce the thickness of the beams in order
to improve the sensitivity of the actuator. This leads to
control problems that may be formulated in terms of partial
differential equations (PDEs).

The framework of infinite dimensional port Hamiltonian
systems has proven to be a powerful tool for the modelling
and control of systems described by PDEs. Indeed, the
definition of Boundary Controlled port Hamiltonian Systems
(BCpHS) [8], [9], [10], [11], [12], have made it possible to
develop constructive results analysis of well-posedness and
stability of solutions.

In [13] it has been shown that the interconnection of a fully
actuated BCpHS with a linear finite dimensional controller
renders the closed-loop system exponentially stable provided
that the finite dimensional system is input strictly passive
and exponentially stable. This result permits to elegantly, and
quite easily, prove the exponential stability for a large class
of linear controllers, in particular those arising from energy
shaping methods using Casimir functions [14], [15].

In this paper we use BCpHS to model and prove the
exponential stability of a class of simplified models of
underactuated silicon nanotweezer for DNA manipulation.
More specifically the port Hamiltonian framework is used
to construct a model of the manipulation process by inter-
connecting the different sub-systems: The infinite dimen-
sional part consisting on the flexible arm of the gripper,
modelled as an undamped Timoshenko beam; and the finite
dimensional parts consisting on the DNA-bundle and the
suspension/actuator mechanism. Preliminary results on a
simplified version of the model have been presented in [16],
[17]. The stabilization of the process is performed by using
a strict dissipative port Hamiltonian controller acting on the
base of the tweezer through the transversal force only, the
arm of the tweezers being clamped. We show that even when
consider the extreme case of an undamped flexible arm, the
closed-loop system is exponentially stable provided that the
boundary controller is input strictly passive. The practical
derivation of such controller (by using immersion/reduction
method through Casimir invariants for example) is not
detailed here. We focus in this paper on the analysis of
the exponential stability of the underactuated closed loop
system by checking simple conditions on both the infinite and
finite dimensional systems and adapting the general result
proposed in [13].

The paper is organized as follows: The first section
presents to port Hamiltonian models of the tweezer, the



DNA and the suspension system as well as the model of
the whole system after interconnection. The second section
is devoted to exponential stability analysis. The paper ends
with a conclusion and some perspectives.

II. PORT HAMILTONIAN MODELLING OF THE FLEXIBLE
MICROGRIPPER

In this paper we consider the simplified model of a
flexible silicon based microgripper (Figure 2) used for DNA
manipulation [18]. We assume that the tweezer is made up of
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Fig. 2. DNA manipulation through port Hamiltonian control

largely flexible arm, that can be considered as a flexible beam
with large deflection clamped to a transverse suspension
system. The trapped DNA bundle is approximated by a
spring/damper-mass-spring/damper system attached at the tip
of the tweezer. The arm is actuated by using electrostatic
forces generated by a comb drive actuator (not represented
in Figure 2). Contrary to the model proposed in [16] (in
which both force and torque at point a are used as control
variables) we consider here the dynamics of the suspension
system (the spring stiffness and damping coefficients are in a
first instance considered constant). We assume that it is only
possible to measure the transversal velocity at point a. The
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Fig. 3. Interconnection and control strategy

whole system can be divided into three subsystems (Figure
3), namely the flexible arm, the DNA-bundle at the tip of the
gripper and the actuated shuttle. Since we assume that the the

flexible arm admits large deflections, we model it as a Tim-
oshenko beam (infinite dimensional system). Furthermore,
we consider the extreme case of an undamped Timoshenko
beam, i.e, without dissipation. The choice of an undamped
beam is motivated by control considerations. It is well known
that dissipation adds robustness to a passive control scheme.
Hence, by considering an undamped Timoshenko beam we
are situating the control problem in a worst case scenario.
We will show that the control is exponentially stable even
when the natural damping is not considered.

The DNA-bundle is modelled as a finite dimensional me-
chanical system. The subsystems are interconnected through
their boundary power conjugated port variables. Let’s note
that only a part of the boundary port variables are used for
the interconnection with the suspension system. The other
part is considered equal to zero to account for the clamping
of the beam. In Figure 3 the interconnection boundary port
variables as well as the causality (depicted with arrows) are
given. It is worth noting that even if the input of the beam
at point a is a velocity (resp. angular velocity) (that is used
for the interconnexion), the output of the port Hamiltonian
controller is the force applied to the shuttle.

A. The Timoshenko beam

The damped and undamped Timoshenko beam has been
widely studied as a distributed parameter port Hamiltonian
system [14] and as BCS [9] and the exponential stability
of the system has been proved for static boundary feedback
[10], [11]. The BCS is defined as
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where the following state (energy) variables have been
defined: x1 = ∂w

∂z (z, t) − φ(z, t) the shear displacement,
x2 = ρ(z)∂w

∂t (z, t) the transverse momentum distribution,
x3 = ∂φ

∂z (z, t) the angular displacement, and x4 = Iρ
∂φ
∂t (z, t)

the angular momentum distribution, for z ∈ (a, b), t ≥ 0,
where w(t, z) is the transverse displacement of the beam
and φ(t, z) is the rotation angle of a filament of the beam.
The coefficients ρ(z), Iρ(z), E(z), I(z) and K(z) are the
mass per unit length, the rotary moment of inertia of a
cross section, Youngs modulus of elasticity, the moment of
inertia of a cross section, and the shear modulus respec-
tively. The matrices P1 and P0 defines the skew-symmetric
differential operator of order 1 acting on the state space
X = L2(a, b, R4), J = P1

∂
∂z +P0. The energy of the beam



is expressed in terms of the energy variables,

E =
1
2
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=
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x(z)�(Lx)(z)dz =

1
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where L = diag
�
K,

1
ρ , EI,

1
Iρ

�
. The boundary port vari-

ables are obtained by using integration by parts and factoriza-
tion in order to define an extended Dirac structure including
the boundary [9]. They also can be directly parametrized
from P1 [9], [10] leading to:

�
f∂,Lx

e∂,Lx

�
=





(ρ−1
x2)(b)− (ρ−1

x2)(a)
(Kx1)(b)− (Kx1)(a)

(I−1
ρ x4)(b)− (I−1

ρ x4)(a)
(EIx3)(b)− (EIx3)(a)
(ρ−1

x2)(b) + (ρ−1
x2)(a)

(Kx1)(b) + (Kx1)(a)
(I−1

ρ x4)(b) + (I−1
ρ x4)(a)

(EIx3)(b) + (EIx3)(a)





.

The control objective is to control the translational and an-
gular position of the DNA-bundle. From the interconnection
structure, the input and output of the beam are selected as
follows:

u =
�
v(b) ω(b) −v(a) −ω(a)

�
,

y =
�
F (b) T (b) F (a) T (a)

�
,

(2)

which is achieved by defining

u = W

�
f∂,Lx

e∂,Lx

�
, y = W̃

�
f∂,Lx

e∂,Lx

�
,

where

W =





1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1
1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1



 ,

W̃ =





0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0



 .

It can by shown that with this choice of input and output the
system (1) defines a an abstract boundary control system.
Furthermore Ax = P1(∂/∂z)(Lx) + P0Lx with domain

D(A) =
�
Lx ∈ H

1(a, b; Rn)
���
�

f∂,Lx(t)
e∂,Lx(t)

�
∈ kerW

�

generates a contraction semigroup on X and the energy
balance equation is defined as:

dE

dt
= u

T
y

In what follows the beam is clamped at point a. We then
split the input/ouput in:

u = [u1, u2] , y = [y1, y2]

with
u1 =

�
v(b) ω(b) −v(a)

�
, u2 =

�
ω(a)

�
,

y1 =
�
F (b) T (b) F (a)

�
, y2 =

�
T (a)

�
,

(3)

Furthermore



u1

u2

y1

y2



 =
1√
2

�
W

�W

� �
P1 −P1

I I

� �
Lx(b)
Lx(a)

�

and one can show (this property will be very important in the
proof of the exponential stability) that even if u2 is chosen
equal to zero, there exists an ε such that:

�u1�2 + �y1�2 ≥ ε�Lx(b)�2 (4)

Such result can be generalized to any u2 corresponding to
conditions at point a.

B. DNA-bundle model
The DNA-bundle is represented by the simple spring-

damper + load + spring-damper system of Figure 4 and
thus admits a port Hamiltonian system representation. In
Figure 4 k1, k2, f1, f2 represent the constants of the springs
and the viscous dampers respectively, M is the mass of
the load, xc1, xc2 the relative positions depicted in Figure
(4). Let us denote with the sub-index b the system rep-
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Fig. 4. DNA model

resenting the DNA-bundle. Then we can write by using
vb = (xc2 − xc1, xc2, Mẋc2)T , ub =

�
F (b) T (b)

�T and
yb =

�
v(b) ω(b)

�T :
�

v̇b = (Jb −Rb) dEb
dvb

+ gbub

yb = g
T
b

dEb
dvb

+ Sbub

with Eb the energy of the system (sum of the kinetic and
potential energies):

Eb(xc2 − xc1, xc2, Mẋc2) =
1
2

�
k1(xc2 − xc1)2 + k2x

2
c2 + Mẋ

2
c2

�
(5)

and

Jb = −J
T
b =




0 0 0
0 0 1
0 −1 0



 , Rb = R
T
b =




k1
f1

0 0
0 0 0
0 0 f2



 ≥ 0

g
T
b =

� 1
f1

0 1
0 0 0

�
Sb =

� 1
f1

0
0 1

fθ

�
> 0

where fθ is the rotational damping constant at the intercon-
nection point.



III. THE CONTROLLER+SUSPENSION SYSTEM

The controller is considered under strict dissipative
port Hamiltonian format, i.e. dynamic system of energy
Ec3(xc3) = 1

2x
T
c3Qc3xc3 defined as

�
xc3 = (Jc3 −Rc3) ∂Ec3(xc3)

∂xc3
+ Bc3uc3

yc3 = B
T
c3

∂Ec(xc3)
∂xc3

+ Dc3uc3

with Jc3 = −J
T
c3, Rc3 = R

T
c3 ≥ 0, Dc3 > 0. The

suspension system is modelled through a spring/damper
system of potential energy:

Es(xa) =
1
2
kx

2
a

The interconnection of these two systems can be written
under port Hamiltonian format:

�
v̇a = (Ja −Ra) dEa

dva
+ gaua

ya = g
T
a

dEa
dva

+ Saua

with va = (xa, xc3) and Ea(va) = Es(xa) + Ec3(xc3) the
energy of the system and:

Ja =
�
0 0
0 Jc3

�
, Ra =

�
1

Dc3+f
BT

c3
Dc3+f

BT
c3

Dc3+f Rc + Bc3BT
c3

Dc3+f

�
≥ 0

ga =

�
− 1

Dc3+f

− BT
c3

Dc3+f

�
Sa =

1
Dc3 + f

> 0

IV. SYSTEMS INTERCONNECTION

In this section we are interested in the interconnection of
the infinite dimensional system with the finite dimensional
ones. First of all let us gather the two finite dimensional
systems as:

�
v̇ = (Jc −Rc) ∂Ec(v)

∂v + gcuc

yc = g
T
c

∂Ec(v)
∂v + Dcuc

(6)

with v = (vb, va), uc = (ub, ua) = (F (b), T (b), F (a)), yc =
(yb, ya) = (v(b), ω(b), v(a)), Ec(v) = Eb(vb) + Ea(va) and

Jc = −J
T
c =

�
Jb 0
0 Ja

�
, Rc = R

T
c =

�
Rb 0
0 Ra

�
≥ 0

gc =
�
gb 0
0 ga

�
Sc =

�
Sb 0
0 Sa

�
> 0

The total energy can be written on the form: Ec(v) =
1
2v

T
Qcv with:

Qc = diag
�

k1, k2,
1
M

, k, Qc3

�
> 0

The interconnection with the infinite dimensional system is
done through the following relation:

�
u1

y1

�
=

�
1
0

�
r +

�
0 −1
1 0

� �
uc

yc

�
(7)

with the additional constraint:

u2 = ω(a) = 0 (8)

Remark 4.1: From the positivity of Rc and the strict
positivity of Sc the dynamic system defined by (6) is
exponentially stable and has all its eigenvalues in the left
hand side of the complex plane.

V. STABILITY ANALYSIS OF THE CLOSED LOOP SYSTEM

The exponential stability of the closed loop system is
derived following two steps. The first one is concerned
with the existence of solutions of the interconneted systems
(finite+infinite dimensional systems). It aims at showing that
the interconnected system defines a contraction semigroup.
The second step consists in finding a Lyapunov function
with exponential decay rate. The fact that the closed loop
system defines a Boundary Control System with contraction
semigroup is derived in Theorem 5.1.

Theorem 5.1: Let the state of the open-loop BCS satisfy
1
2

d
dt�x(t)�2L = u(t)y(t). Consider the LTI strictly passive

finite dimensional system (6) with storage function Ec(t) =
1
2 �v(t), Qcv(t)�Rm , Qc = Q

�
c > 0 ∈ Rm × Rm. Then

the feedback interconnection (7) of the BCS and the finite
dimensional system is again a BCS on the extended state
space x̃ ∈ X̃ = X × V with inner product �x̃1, x̃2�X̃ =
�x1, x2�L + �v1, Qcv2�V . Furthermore, the operator Ae de-
fined by

Aex̃ =
�
JL 0
gcC Jc −Rc

� �
x

v

�
, Cx = IcW̃

�
f∂,Lx

e∂,Lx

�

with Ic =
�
I3 03,1

�

D(Ae) =
��

x

v

�
∈

�
X

V

� ���Lx ∈ H
N (a, b; Rn),




f∂,Lx

e∂,Lx

v



 ∈ ker W̃D

�
,

where
W̃D =

�
W +

�
Sc 0
0 0

�
W̃

�
I

0

�
g

T
c

�

generates a contraction semigroup on X̃ .
Proof: The proof is very similar to the one presented

in [10, Theorem 5.8, pp:120] and in [16] but we consider
here that the feedback is only applied in between u1 and y1

as stated in (7), u2 being freely chosen (equal to zero for the
stability analysis). The proof is performed by showing that
W̃D is full rank and by applying the Lumer-Phillips Theorem
[12, Theorem 6.1.7, pp:69], which is divided in two parts:
showing that Ae is a dissipative operator (i.e. Re�Ax̃, x̃� ≤
0) and that ran(I − Ae) = X̃ = X × V . The fact that

W̃D is full rank is directly derived from the fact that
�
W

W̃

�

and
�
I 0 Sc 0
0 1 0 0

�
ar full rank. From the strict positivity

of Dc it is easy to show that Ae is dissipative using the
Kalman-Yakubovich-Popov (KYP) Lemma [19], [20]. The
second part of the proof, ran(I − Ae) = X̃ , follows if the
matrix (I − (Jc − Rc)) is non-singular. This is true as all
the eigenvalues of the matrix Ac are in the left half of the
complex plane as it is stated in Remark 4.1.
We are now going to prove the exponential stability of the
closed loop system by using the aforementioned contraction
properties and Lyapunov arguments. The stability results
from the strict dissipativity and the exponential stability
of the finite dimensional system and the fact that under



actuation is only considered on the a side of the beam.
The Lyapunov candidate that we propose to use is the total
energy:

Ẽ = E + Ec

To prove the result we first need some technical Lemma (the
proofs are omitted here but can be found in [13] as they
not depend on the fact that the system is partially actuated).
These Lemma are concerned with the energy of the finite
dimensional system (6) and come from its strict dissipativity
and exponential stability properties. Lemma 5.2, 5.3 and
5.4 give bounds on Ec(τ) and

� τ
0 Ec(t)dt with respect to

�uc(t)�2 and �yc(t)�2.
Lemma 5.2: [13] The energy of (6) satisfies for a positive

time τ :

Ec(τ) ≤ κ1Ec(0) + κ3

� τ

0
�uc(t)�2dt (9)

where κ1 = κ4e
−κ2τ with κ2, κ3 and κ4 constants.

Lemma 5.3: [13] There exists positive constants ξ1, ξ2 and
τ0 such for all τ > τ0 the energy of (6) satisfies

� τ

0
Ec(t)dt ≤ξ1

� τ

0
v
�(t)QcRcQcv(t)dt+ (10)

ξ2

� τ

0
�uc(t)�2dt

Lemma 5.4: [13] For every δ1 > 0 there exists a δ2 > 0
such that for all τ > 0 the energy of (6) satisfies the relation
� τ

0
δ1Ec(t)+�yc(t)�2dt ≤ δ2

� τ

0
Ec(t)+�uc(t)�2dt. (11)

We are now going to give some bounds on the total energy
of the system in order to prove its exponential stability. For
that we mainly need the property (4) i.e:

�u1�2 + �y1�2 ≥ ε�Lx(b)�2 (12)

It leads to Lemma 5.5.
Lemma 5.5: Consider a BCS as described in Theorem 5.1

with r(t) = 0, u2 = 0, for all t ≥ 0. Then, the energy of
the system Ẽ(t) = 1

2�x(t)�2L+ 1
2v(t)T

Qcv(t) satisfies for τ

large enough

Ẽ(τ) ≤ c(τ)
� τ

0
�(Lx)(t, b)�2Rdt + 2c(τ)

c1

� τ

0
Ec(t)dt,

Ẽ(τ) ≤ c(τ)
� τ

0
�(Lx)(t, a)�2Rdt + 2c(τ)

c1

� τ

0
Ec(t)dt,

(13)

where c is a positive constant that only depends on τ and c1

a positive constant.
Proof: The proof is based on a multiplier technic and

follows the proof of [13][11]. It mainly uses the contraction
property of the semigroup and (4).
These Lemma allow to prove the exponential stability of the
closed loop system as stated in Theorem 5.6

Theorem 5.6: Consider the BCS defined by Theorem 5.1
with r(t) = 0, u2 = 0, for all t ≥ 0. Then the finite
dimensional system (6) exponentially stabilizes the BCS.

Proof: The time derivative of the total energy is given
by

˙̃
E = −v

�
QcRcQcv − u

�
c Scuc

≤ −v
�

QcRcQcv − σu
�
c uc, since Sc ≥ σI

= −v
�

QcRcQcv − σ�1u
�
c uc − σ�2u

�
c uc

= −v
�

QcRcQcv − σ�1�uc�2 − σ�2�y1�2

= −v
�

QcRcQcv − σ�1�uc�2 − σ�2

�
�y1�2 + �u1�2

�

+ σ�2�u1�2

with �1 + �2 = 1 and where we have used that uc = −y1.
Using (4)we have

˙̃
E ≤ −v

�
QcRcQcv

− σ�1�uc�2 − σ�2��Lx(t, b)�2 + σ�2�yc�2. (14)

Integrating this equation on t ∈ [0, τ ] we have

Ẽ(τ)− Ẽ(0) ≤ −
� τ

0
v
�(t)QcRcQcv(t)dt+

−
� τ

0
σ�1�uc(t)�2 + σ�2��Lx(t, b)�2 − σ�2�yc(t)�2dt.

Next choose τ sufficiently large such that Lemmas 5.3 and
5.5 hold. Using the latter lemma we have

Ẽ(τ)− Ẽ(0) ≤ −
� τ

0
v
�

QcRcQcv + σ�1�uc�2dt

+
σ�2�

c(τ)

�
2c(τ)

c1

� τ

0
Ec(t)dt− Ẽ(τ)

�
+σ�2

� τ

0
�yc�2dt.

Grouping terms we have that

Ẽ(τ)
�

1 +
σ�2�

c(τ)

�
− Ẽ(0) ≤

−
� τ

0
v(t)�QcRcQcv(t)dt− σ�1

� τ

0
�uc(t)�2dt

+σ�2

�� τ

0

2�

c1
Ec(t) + �yc(t)�2dt

�
.

Using Lemma 5.4 with δ1 = 2�
c1

we have

Ẽ(τ)
�

1 +
σ�2�

c(τ)

�
− Ẽ(0) ≤ −

� τ

0
v(t)�QcRcQcv(t)dt

+ σ�2δ2

� τ

0
Ec(t)dt + σ(�2δ2 − �1)

� τ

0
�uc(t)�2dt. (15)

Now, using Lemma 5.3 we obtain

Ẽ(τ)
�

1 +
σ�2�

c(τ)

�
− Ẽ(0) ≤

(σ�2δ2ξ1 − 1)
� τ

0
v(t)�QcRcQcv(t)dt+

σ(�2δ2(1 + ξ2)− �1)
� τ

0
�uc(t)�2dt.

Since �2 may be chosen to be arbitrarily small, i.e, �2 � 1
and since �1 = 1− �2, we finally have that

Ẽ(τ) ≤ c2Ẽ(0) (16)



with c2 = 1

(1+ σ�2�
c(τ) )

< 1 which proves the theorem.
Remark 5.7: An undamped Timoshenko beam has been

considered for the infinite dimensional part of the system. It
should be noticed however that the stability proof also holds
for a damped Timoshenko beam. Indeed, dissipation in the
infinite dimensional model makes the inequalities in Lemma
5.5 strict inequalities.

VI. CONCLUSION

The model of a DNA-manipulation process has been for-
mulated as a BCpHS. This has been achieved by modelling
the sub-systems of the process as port-Hamiltonian systems
and showing that the physically meaningful interconnection
of the sub-models defines a BCpHS. More specifically, the
flexible arm of the micro-gripper has been modelled as a
flexible beam (undamped Timoshenko beam) that is clamped
on one side, the DNA-bundle as a mass-spring-damper
system and the suspension/actuator mechanism as a mass-
spring system. In this model the flexible arm corresponds
to a infinite dimensional system, so the complete DNA
manipulation processes is the interconnection of an infinite
dimensional system and two finite dimensional systems,
where one of the input of the infinite dimensional system
being assigned to zero. The stabilization has been achieved
by interconnecting the suspension/actuator mechanism with
a port-Hamiltonian controller (with realistic sensing and
actuation variables). The complete process then remains a
BCpHS but with respect a new energy function due to the
contribution of the controller. We considered in this paper
that the controller has been designed using a dissipative port
Hamiltonian format. It has been assumed that no natural
damping is present on the infinite dimensional part of the
process, which makes the stability result more interesting,
since natural damping (which is physically present) adds
robustness to the closed-loop system.

Future work aims to include non-linear phenomena in the
suspension/actuator mechanism and DNA-bundle.
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