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Bibliography on the control of tubular reactors

Georgakis,et al. CES 1977
LQ control

Moghadama et al Automatica 2013
Aksikas et al. Automatica 2009

Nonlinear control
Hudon et al. CACE 2008 (Lyapunov based control)
Vilas et al. CES 2007 (robust NL control)
Cougnon et al. AICHE J 2006 (Lyapunov based control)
Bošković and Krstić CACE 2002 (backstepping control)
Christofides NA 2001 (Galerkin reduction and Lyapunov
techniques)

Passive control design
Ruszkowski et al. AIChE j 2005
Alonso and Ydstie Automatica 2001
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Objectives

Stabilization of a tubular reactor at the desired steady state
profile (zd ) using the thermodynamic availability A as
Lyapunov function in the setting of the irreversible
thermodynamics
The distributed control variable Tj

Existing results

Stabilization of non isothermal Continuous Stirred Tank Reactors
(CSTR)(JPC, 2012, Hoang et al.)
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The thermodynamic variables and main laws

The extensive variables z
The intensive variables w

First law: conservation of the internal energy
Second law: concavity of the entropy function w.r.t.
element of z(other than s) or u

The Gibbs equation and the Gibbs-Duhem equation

du = wT dz and u = wT z =⇒ dwT z = 0
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The local equilibrium assumption for PDEs models

Local state and specific properties are equivalent on small
enough scales
The Gibbs equation becomes (v is the mean velocity)

Du
Dt = wT Dz

Dt with D
Dt = ∂

∂ + v ∂
∂ the material derivative

This formula is used to compute the irreversible entropy
production =⇒ ∂ts

The integral formulation in a simple 1D case

d
dt

(∫ xb+vt

xa+vt
ρu
)

=
(∫ xb+vt

xa+vt
ρ
∂u
∂t

)
+ [vρu]xb+vt

xa+vt

=

∫ xb+vt

xa+vt

(
ρ
∂u
∂t

+ vρ
∂u
∂x

)
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The availability function for PDEs models

From this point : ds = w tdz, zT =
(
u . . . ωi

)
and wT =

( 1
T . . . −µi

T

)
The specific availability a = −(w − wd)T z is convex (s = wT z)
w.r.t. z and positive

Figure: availability function
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The availability function for PDEs models

The availability over a fixed domain A

A(t) =
∫ L

0 a(x , t) =
∫ L

0 −(w(z)− wd(x))T z(x , t)

dA(t)
dt = d

dt

∫ L
0 −(w − wd)T z wT z = s

dA(t)
dt =

∫ L
0 ∂ta =∫ L

0 −(w(z)− wd(x))T∂tz + v
∫ L

0

(
∂(w(z)−wd (x))

∂t

)T
z or

dA(t)
dt =

∫ L
0 −

(
∂ts(x , t)− wT

d ∂tz(x , t)
)
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The main assumptions

Only longitudinal axis is under consideration.
The reacting mixture is ideal and incompressible.
The pressure P is constant.
The average fluid velocity v is constant.
The linear density ρ is constant.
The chemical reaction νAA −→ νBB. The kinetics r is first
order w.r.t. A. The kinetic constant is given by the
Arrhenius law.
The distributed heat exchange q(x) with the jacket is given
by q(x) = C(T (x)− Tj(x)) where Tj(x) is the jacket
temperature at x and T (x) the temperature in the reactor.
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the model

∂tz = −∂xF + R + gq

with z = (ρh ρωA ρωB), F = Fdis + Fconv ,R =
(
0 −r r

)T and

g =
(
1 0 0

)T .

Boundary conditions
Continuity of flux at x = 0 (species, enthalpy)
∂zx(t)|L = 0

10 / 17



Introduction Review of irreversible thermodynamics The 1D model of the tubular reactor The control Conclusion

Open loop simulation

Tinlet = 330K ,wAin = 1 (initial state profile : Tj(x ,0) = 350K )
Tjd (x ,0) = 370K

Figure: local availability function at L/120, L/2 and L
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The control problem

The stabilization problem around a desired profile

The objective is that the closed loop dynamics of A be s.t.

dA
dt ≤ −

∫ L
0 (w − wd)T K (w − wd)

Set w̃ = w − wd

dA(t)
dt =

∫ L
0 ∂ta =

∫ L
0 −w̃T∂tz + v

∫ L
0

(
∂x w̃

)T
z

Remind the dynamics: ∂tz = −∂xF + R + gq

dA(t)
dt =

[w̃T F ]L0 −
∫ L

0 w̃T (R + gq(Tj))−
∫ L

0

(
∂w̃
∂x

)T
Fdis +

∫ L
0

(
∂wd
∂x

)T
Fcon
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The proposed solution

Tj(x , t) as control variable only

dA(t)
dt =

∫ L
0 ∂ta =

∫ L
0 −w̃T

(
− ∂xF + R + gq

)
+ v

∫ L
0

(
∂x w̃

)T
z

q(x , t) =

[
w̃T
(

R + ∂xF
)

+ v ∂w̃
∂x

T
z + K w̃T w̃

]
w̃h

It can be then easily deduced the distributed control

Tj(x , t) =

[
w̃T
(

R + ∂xF
)

+ v ∂w̃
∂x

T
z + K w̃T w̃

]
Cw̃h

+ T (x)
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The first simulation results

Figure: Profile at s=40s of temperature and the desired one (left with
T (x ,0) = Td (x)− 10 and right with T (x ,0) = Td (x) + 10 in closed
loop and open loop
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Conclusion

Improve the results
Do the same procedure with the reduced availability ar

a = (
1
T
− 1

Td
)h+(−µA

T
+
µAd

Td
)ρ$A +(−µB

T
+
µAd

Td
)ρ$B (1)

The chem. potential of species i in a ideal mixture (
P = Pref ):

µi = µiref + cpi (T − Tref )− cpi T ln(
T

Tref
)︸ ︷︷ ︸

wri

+ RTln($i)︸ ︷︷ ︸
The mixing part

.

The reduced availability :
ar = w̃hh + w̃ rAρ$A + w̃ rBρ$B

Property
ar is a positive quantity.
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Tinlet = 330K ,wAin = 1 (initial state profile : Tj(x ,0) = 350K )
Tjd(x ,0) = 370K

Figure: left: local reduced availability function at L/120, L/2 and
L right: local a
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Thank you for your attention ...
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