Introduction	Review of irreversible thermodynamics
00	0000

The 1D model of the tubular reactor

The control Conclusion

Availability based Stabilization of Tubular Chemical Reactors

W. Zhou , F. Couenne , B. Hamroun , and Y. Le Gorrec*

LAGEP, UMR CNRS 5007- Université Lyon 1-France * FEMTO-ST/AS2M, Besançon, France

TFMST 2013 - 16 July 2013

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
00	0000	000	000	

- Introduction
- Provide the irreversible thermodynamics
- The 1D model of the tubular reactor
- The control
- Onclusion and perspective

Introduction ●○	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
Bibliography	on the control of tubular reactors			

- - Georgakis, et al. CES 1977
 - LQ control
 - Moghadama et al Automatica 2013
 - Aksikas et al. Automatica 2009
 - Nonlinear control
 - Hudon et al. CACE 2008 (Lyapunov based control)
 - Vilas et al. CES 2007 (robust NL control)
 - Cougnon et al. AICHE J 2006 (Lyapunov based control)
 - Bošković and Krstić CACE 2002 (backstepping control)
 - Christofides NA 2001 (Galerkin reduction and Lyapunov techniques)
 - Passive control design
 - Ruszkowski et al. AIChE j 2005
 - Alonso and Ydstie Automatica 2001

Introduction ○●	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
Objectives				

- Stabilization of a tubular reactor at the desired steady state profile (*z_d*) using the thermodynamic availability A as Lyapunov function in the setting of the irreversible thermodynamics
- The distributed control variable T_i

Existing results

• Stabilization of non isothermal Continuous Stirred Tank Reactors (CSTR)(JPC, 2012, Hoang et al.)

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
The thermody	mamic variables and main laws			

- The extensive variables z
- The intensive variables w
- First law: conservation of the internal energy
- Second law: concavity of the entropy function w.r.t. element of *z*(other than *s*) or *u*

The Gibbs equation and the Gibbs-Duhem equation

 $du = w^T dz$ and $u = w^T z \Longrightarrow dw^T z = 0$

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
00	0000	000	000	
The local equ	ilibrium assumption for PDEs models			

The local equilibrium assumption for PDEs models

- Local state and specific properties are equivalent on small enough scales
- The Gibbs equation becomes (v is the mean velocity)

$$\frac{Du}{Dt} = w^T \frac{Dz}{Dt}$$
 with $\frac{D}{Dt} = \frac{\partial}{\partial} + v \frac{\partial}{\partial}$ the material derivative

This formula is used to compute the irreversible entropy production $\implies \partial_t s$

The integral formulation in a simple 1D case

$$\frac{d}{dt} \left(\int_{x_{a}+vt}^{x_{b}+vt} \rho u \right) = \left(\int_{x_{a}+vt}^{x_{b}+vt} \rho \frac{\partial u}{\partial t} \right) + [v \rho u]_{x_{a}+vt}^{x_{b}+vt}$$
$$= \int_{x_{a}+vt}^{x_{b}+vt} \left(\rho \frac{\partial u}{\partial t} + v \rho \frac{\partial u}{\partial x} \right)$$

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
00	0000	000	000	

The availability function for PDEs models

From this point :
$$ds = w^t dz, \, z^{ op} = (u \dots \omega_i)$$
 and $w^{ op} = (rac{1}{T} \dots rac{-\mu_i}{T})$

The specific availability $a = -(w - w_d)^T z$ is convex $(s = w^T z)$ w.r.t. *z* and positive

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
00	0000	000	000	

The availability function for PDEs models

The availability over a fixed domain A

$$A(t) = \int_0^L a(x,t) = \int_0^L -(w(z) - w_d(x))^T z(x,t)$$

$$\frac{dA(t)}{dt} = \frac{d}{dt} \int_0^L -(w - w_d)^T z \quad w^T z = s$$

$$\frac{dA(t)}{dt} = \int_0^L \partial_t a = \int_0^L -(w(z) - w_d(x))^T \partial_t z + v \int_0^L \left(\frac{\partial(w(z) - w_d(x))}{\partial t}\right)^T z \text{ or}$$

$$\frac{dA(t)}{dt} = \int_0^L -\left(\partial_t s(x, t) - w_d^T \partial_t z(x, t)\right)$$

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor ●○○	The control	Conclusion
The main assu	umptions			

- Only longitudinal axis is under consideration.
- The reacting mixture is ideal and incompressible.
- The pressure *P* is constant.
- The average fluid velocity v is constant.
- The linear density ρ is constant.
- The chemical reaction *v_AA* → *v_BB*. The kinetics r is first order w.r.t. *A*. The kinetic constant is given by the Arrhenius law.
- The distributed heat exchange q(x) with the jacket is given by $q(x) = C(T(x) - T_j(x))$ where $T_j(x)$ is the jacket temperature at x and T(x) the temperature in the reactor.

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor ●○	The control	Conclusion
the model				

$$\partial_t z = -\partial_x F + R + gq$$

with
$$z = (\rho h \rho \omega_A \rho \omega_B)$$
, $F = F_{dis} + F_{conv}$, $R = \begin{pmatrix} 0 & -r & r \end{pmatrix}^T$ and $g = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$.

Boundary conditions

• Continuity of flux at x = 0 (species, enthalpy)

•
$$\partial z_x(t)|_L = 0$$

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
00	0000	000	000	

Open loop simulation

 $T_{inlet} = 330K$, $w_{A_{in}} = 1$ (initial state profile : $T_j(x, 0) = 350K$) $T_{j_d}(x, 0) = 370K$

Figure: local availability function at L/120, L/2 and L

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
00	0000	000	•00	

The control problem

The stabilization problem around a desired profile

The objective is that the closed loop dynamics of A be s.t.

$$\frac{dA}{dt} \leq -\int_0^L (w - w_d)^T K(w - w_d)$$

Set $\tilde{w} = w - w_d$

$$\frac{dA(t)}{dt} = \int_0^L \partial_t a = \int_0^L -\tilde{w}^T \partial_t z + v \int_0^L \left(\partial_x \tilde{w}\right)^T z$$

Remind the dynamics: $\partial_t z = -\partial_x F + R + gq$

$$\begin{split} \frac{dA(t)}{dt} &= \\ [\tilde{w}^{T}F]_{0}^{L} - \int_{0}^{L} \tilde{w}^{T}(R + gq(T_{j})) - \int_{0}^{L} \left(\frac{\partial \tilde{w}}{\partial x}\right)^{T} F_{dis} + \int_{0}^{L} \left(\frac{\partial w_{d}}{\partial x}\right)^{T} F_{con} \end{split}$$

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
00	0000	000	000	

The proposed solution

$T_i(x, t)$ as control variable only

$$\frac{dA(t)}{dt} = \int_0^L \partial_t a = \int_0^L -\tilde{w}^T \left(-\partial_x F + R + gq \right) + v \int_0^L \left(\partial_x \tilde{w} \right)^T z$$

$$q(x,t) = \frac{\left[\tilde{w}^{T}\left(R + \partial_{x}F\right) + v\frac{\partial\tilde{w}}{\partial x}^{T}z + K\tilde{w}^{T}\tilde{w}\right]}{\tilde{w}_{h}}$$

It can be then easily deduced the distributed control

$$T_{j}(x,t) = \frac{\left[\tilde{w}^{T}\left(R + \partial_{x}F\right) + v\frac{\partial\tilde{w}}{\partial x}^{T}z + K\tilde{w}^{T}\tilde{w}\right]}{C\tilde{w}_{h}} + T(x)$$

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control ○○●	Conclusion	
The first simulation results					

Figure: Profile at s=40s of temperature and the desired one (left with $T(x,0) = T_d(x) - 10$ and right with $T(x,0) = T_d(x) + 10$ in closed loop and open loop

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
Conclus	sion			

- Improve the results
- Do the same procedure with the reduced availability *a_r*

$$a = \left(\frac{1}{T} - \frac{1}{T_d}\right)h + \left(-\frac{\mu_A}{T} + \frac{\mu_{A_d}}{T_d}\right)\rho \varpi_A + \left(-\frac{\mu_B}{T} + \frac{\mu_{A_d}}{T_d}\right)\rho \varpi_B$$
(1)

The chem. potential of species i in a ideal mixture ($P = P_{ref}$):

$$\mu_{i} = \underbrace{\mu_{i_{ref}} + c_{p_{i}}(T - T_{ref}) - c_{p_{i}}T\ln(\frac{T}{T_{ref}})}_{W_{ri}} + \underbrace{RTIn(\varpi_{i})}_{The \ mixing \ part}.$$

The reduced availability :

$$\boldsymbol{a}_{r} = \tilde{\boldsymbol{w}}_{h}\boldsymbol{h} + \tilde{\boldsymbol{w}}_{r_{A}}\rho \boldsymbol{\varpi}_{A} + \tilde{\boldsymbol{w}}_{r_{B}}\rho \boldsymbol{\varpi}_{B}$$

Property

IICIUSIUI

 a_r is a positive quantity.

 Introduction
 Review of irreversible thermodynamics
 The 1D model of the tubular reactor
 The control
 Conclusion

 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<

 $T_{inlet} = 330K$, $w_{A_{in}} = 1$ (initial state profile : $T_j(x, 0) = 350K$) $T_{jd}(x, 0) = 370K$

Figure: left: local reduced availability function at L/120, L/2 and L right: local a

Introduction	Review of irreversible thermodynamics	The 1D model of the tubular reactor	The control	Conclusion
00	0000	000	000	

Thank you for your attention ...