
Names in BibTEX and MlBibTEX

Jean-Michel Hufflen
LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 Besançon Cedex
France
hufflen (at) lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

Within the bibliographical entries managed by BibTEX, the bibliography proces-
sor usually associated with LATEX, person and organisation names are specified
with a rough syntax, whose details are not very well known. Likewise, the features
related to formatting names within bibliography styles are often viewed as ob-
scure. We explain these points in detail, giving some cases difficult or impossible
to handle with BibTEX. Then we show how these problems can be solved within
MlBibTEX, our reimplementation of BibTEX focusing on multilingual features
and using an extension of XSLT as the language for bibliography styles.
Keywords BibTEX, MlBibTEX, Bibliographies, bibliography styles, specifying
and formatting person names.

1 Introduction

Specifying meta-information related to persons is a
difficult problem within databases from a general
point of view. It is well known that the parts con-
stituting the name of a person are insufficient to
characterise only one person. However, we do not go
thoroughly into this point and only focus on names
we can find within bibliographical databases. Man-
aging this information is crucial: it may be used for
searching bibliographical databases, and many bib-
liography styles sort references w.r.t. alphabetical
order of authors or editors.

When users typeset documents with the LATEX
word processor [15], searching bibliographical data-
bases for citations and assembling references into a
‘Bibliography’ section, put at the end of a printed
document, is usually done with the BibTEX bib-
liography processor [20]. Formats for names are
defined as part of bibliography styles: first names
may be abbreviated or put in extenso, they can be
written before or after the last name, . . . BibTEX
uses a rough syntax for specifying authors’ and ed-
itors’ names within bibliographical entries. This
syntax is suitable for simple cases, and powerful
since it includes many interesting and useful fea-
tures, sometimes not well known due to their com-
plexity. In addition, some of these features are doc-
umented only partially, as far as we know, although
many details are given in the second edition of the

LATEX Companion [16, § 13.2.2]. Likewise, the prim-
itive format.name$ function, which formats names
within BibTEX’s bibliography styles [19] is power-
ful but uses quite complicated patterns, documented
only partially. In fact, only a small fraction of its
expressive power is used in practice.

So we begin by describing BibTEX’s syntax for
names, with its advantages and limitations. We
also show how names are formatted, as precisely as
possible. Then we explain how these points have
been improved within MlBibTEX (for ‘MultiLingual
BibTEX) [7], our reimplementation focusing on mul-
tilingual aspects. Last, we discuss aspects of inter-
nationalization.

Reading this article requires good knowledge of
BibTEX as an end-user, and a bit of experience with
bibliography styles, that is, a good knowledge of the
notions described in [16, § 13.6]. We will recapitu-
late more technical points, however.

2 How names are processed by BibTEX

2.1 Names’ components

Inside AUTHOR and EDITOR fields, BibTEX allows the
specification of successive names, separated by the
‘and’ keyword, as shown in Figure 1. A large list
of names that is not typed in extenso is ended with
‘and others’:
{Karl-Heinz Scheer and Clark Darlton and
others}

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1001

Jean-Michel Hufflen

@BOOK{feist-wurts1991,
AUTHOR = {Raymond E. Feist and

Janny Wurts},
TITLE = {Servant of the Empire},
PUBLISHER = {Grafton Books},
ADDRESS = {London},
YEAR = 1991}

Figure 1: Example of BibTEX’s bibliographical entry.

A name consists of four components: First (for
a first name), von (for a particle), Last (for a last
name), and Junior (for a suffix), and recognizes
them in the following possible syntaxes [20, § 4]:
(i) First von Last
(ii) von Last, First
(iii) von Last, Junior, First
As suggested by the word capitalisation used within
this terminology—originating from BibTEX—the
words belonging to the von field are supposed to
begin with a lowercase character, whereas the words
belonging to the First and Last fields are supposed
to begin with an uppercase character, e.g.:

Catherine Crook︸ ︷︷ ︸
First

de︸︷︷︸
von

Camp︸ ︷︷ ︸
Last

The rule common to these three syntaxes: if there
is only one word, it is taken as the Last part, even if
this word does not begin with an uppercase letter,
e.g.:

{-}ky︸ ︷︷ ︸
Last

If we consider the (i) syntax, two other rules are
used when a name is split into its components:
• the von part takes as many words as possible,

provided that its first and last words begin with
a lowercase letter, e.g.:1

Jean︸ ︷︷ ︸
First

de la Fontaine du︸ ︷︷ ︸
von

Bois Joli︸ ︷︷ ︸
Last

let us notice that the First part can be empty,
whereas the Last part cannot:

jean de la fontaine du bois︸ ︷︷ ︸
von

joli︸ ︷︷ ︸
Last

• if all the words begin with an uppercase letter,
the last word is the Last component, and the
First part groups the other words, e.g.:

1 Only the following name is imaginary (although it is
derived from a French poet’s name). All the others— some
being pseudonyms—name real persons, even if some look
strange. That is, the problems raised by BibTEX in the ex-
amples we give may arise in real situations.

Kim Stanley︸ ︷︷ ︸
First

Robinson︸ ︷︷ ︸
Last

If we consider the (ii) or (iii) syntaxes, the von part
takes as many words as possible, provided that only
its last word begins with a lowercase letter, e.g.:

De la Fontaine du︸ ︷︷ ︸
von

Bois Joli︸ ︷︷ ︸
Last

, Jean︸ ︷︷ ︸
First

2.2 Using braces

If the first letter of a word is surrounded by braces,2
it is supposed to be uppercase, unless it follows a
TEX command and is lowercase. Here are some ex-
amples:

• Alfred Elton {van}︸ ︷︷ ︸
First

Vogt︸ ︷︷ ︸
Last

• Alfred Elton︸ ︷︷ ︸
First

{\relax van}︸ ︷︷ ︸
van

Vogt︸ ︷︷ ︸
Last

(\relax is a dummy command [14, Ch. 24]),

• Alfred Elton {\relax Van}︸ ︷︷ ︸
First

Vogt︸ ︷︷ ︸
Last

Remark 1 Non-letter characters are ignored when
BIBTEX determines whether the first letter of a word
is lower- or uppercase. That is why it considers
‘{-}ky’ (see above) to begin with a lowercase letter,
ignoring the hyphen sign between braces.

As mentioned in [16, § 13.2.2], enclosing some
characters between braces serves four purposes:

• treating accented letters—accented by means
of TEX commands—as single letters:

Christian Vil{\‘{a}}

• treating multiple words as one, especially when
a component (Last) consists of a single word by
default:

Michael︸ ︷︷ ︸
First

{Marshall Smith}︸ ︷︷ ︸
Last

this feature being commonly used for specifying
an organisation name, which consists of only a
Last part:

EDITOR =
{{Science Fiction and Fantasy

Writers of America, Inc.}}

• treating ‘and’ as an ordinary word3 (see the ex-
ample above);

2 In the following, we do not consider the braces that
might delimit the value of a BibTEX field. ‘Braces’ should
be understood as ‘additional braces’ in such a case.

3 ‘and’ is viewed as a keyword only at the topmost level,
not surrounded by additional braces.

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Names in BibTEX and MlBibTEX

• delimiting substrings which should not change
case when the change.case$ function [16, Ta-
ble 13.8] is applied.4

2.3 Words vs tokens

In the above subsections, ‘word’ has been used in
the common sense, that is, ‘an independent unit of
the vocabulary of a language’ [18], so that adjacent
words are syntactically separated by space charac-
ters or punctuation signs. In fact, if we wish to char-
acterise this notion in the sense of successive tokens
handled by BibTEX inside a string representing a
name, the separators are whitespace characters5 —
space, tabulation, line feed, form feed, and carriage
return—unbreakable space characters, specified by
‘~’ as in TEX, and the hyphen sign ‘-’. Such a choice
allows BibTEX to process all the components of a
first name more easily when it is abbreviated, even
if these tokens are separated by hyphen signs, as in
French:

Jean-Pierre Andrevon

However this design choice causes strange behaviour
to happen in some particular cases:

Jean-Claude Smit︸ ︷︷ ︸
First

- le︸︷︷︸
von

-B{\’e}n{\’e}dicte︸ ︷︷ ︸
Last

whereas this name has only First and Last parts, as
suggested by the single space character. Of course,
this name should be specified by:

Jean-Claude︸ ︷︷ ︸
First

{Smit-le-B{\’e}n{\’e}dicte}︸ ︷︷ ︸
Last

More precisely, BibTEX retains only the first sepa-
rator between two tokens, omitting any additional
separators from the output:

Edgar␣␣Rice =⇒ Edgar␣Rice
Edgar␣~Rice =⇒ Edgar␣Rice
Edgar~␣Rice =⇒ Edgar~Rice
Karl-␣Heinz =⇒ Karl-Heinz

It also omits any separator before the first token.

Remark 2 That is why we put the hyphen sign be-
tween braces in ‘{-}ky’ (see above). If the braces
are removed, the hyphen disappears.

Now let us assume that there is no von part.

• If the Last part follows the ‘~’ sign, the ‘~’ is
omitted:

Kenneth︸ ︷︷ ︸
First

~Robeson︸ ︷︷ ︸
Last

4 . . . although this use is rare within AUTHOR or EDITOR
fields. See more details in Figure 3.

5 This terminology originates from the Scheme program-
ming language [11, § 6.3.4]: such characters are recognised by
the char-whitespace? function of this language.

• If the Last part follows the ‘-’ character, the
word before belongs to this part, too:

Louis-Albert︸ ︷︷ ︸
Last

2.4 Applying a bibliography style

In general, we can see that strings are not handled
homogeneously in bst, the language used to write
BibTEX’s bibliography styles [19]. Let us consider
the three following bst functions:

S text.length$
S I text.prefix$

S I1 I2 substring$
where S is a string and I, I1, I2 are integers. The
bst language is based on handling a stack, so the
arguments are passed to a function by putting their
values before the function name.6 These three func-
tions respectively push (return) the length of S; the
first I characters of S; and I2 characters of S, start-
ing at position I1 if I1 > 0, or ending at this posi-
tion if I1 < 0, in which case positions are counted
backward from the end of the string.

Braces do not count when the text.length$
function is called, but they do for the substring$
function, as shown by the examples of Figure 2. We
also see that the substring$ function may push a
string where braces are unbalanced. Braces do not
count for the text.prefix$ function, either, and we
can observe strange behaviour:
• if an unbalanced left or right brace is encoun-

tered, it is put into the string pushed,
• right braces closing unbalanced left braces are

added at the end of the string pushed.
The substring$ function counts each character, in
the sense that any typed character is relevant, in-
cluding enclosed braces and characters surrounded
by braces. Other functions— text.length$ and
text.prefix$—consider that if a left brace is im-
mediately followed by a ‘\’ character, the complete
group between the left enclosing brace and the corre-
sponding right one is viewed as one single character.
Such a group is called special character within
BibTEX’s terminology [16, pp. 768–769]. This dis-
tinction between special characters and other groups
surrounded by braces explains some results shown in
Figure 2. Anyway, let us notice that this distinction
is recognised by the change.case$ function:

S S0 change.case$

—where S is a string—converts S to lowercase
(resp. uppercase) if S0 is the string "l" (resp. "u"),

6 MlBibTEX’s compatibility mode allows users to see how
this stack works [9].

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1003

Jean-Michel Hufflen

"Charles" text.length$ pushes #7 % ‘#’ begins a number.
"{Ch}arles" text.length$ #7

"{\relax Ch}arles" text.length$ #6
"{ \relax Ch}arles" text.length$ #15 % Space after ‘{’.

"Charles" #1 #1 substring$ "C"
"{Ch}arles" #1 #1 substring$ "{" % Unblanced brace!

"{\relax Ch}arles" #1 #2 substring$ "{\"
"B{\’a}rt{\’o}k" #-2 #3 substring$ "’o}"

"Charles" #1 text.prefix$ "C"
"{Ch}arles" #1 text.prefix$ "{C}"
"}{Ch}arles" #1 text.prefix$ "}{C}"

"{\relax Ch}arles" #1 text.prefix$ "{\relax Ch}"
"{ \relax Ch}arles" #8 text.prefix$ "{ \relax }"
"{ \relax Ch}arles" #3 text.prefix$ "{ \r}" % Cut command’s name!

Figure 2: Examples with functions dealing with strings in bst.

"frank" =⇒ "FRANK"
"{frank}" =⇒ "{frank}"
"{\relax frank}" =⇒ "{\relax FRANK}"
"{\relax {frank}}" =⇒ "{\relax {FRANK}}"
"{\relax {{frank}}}" =⇒ "{\relax {{FRANK}}}"
"{\a frank \b f}" =⇒ "{\a FRANK \b F}"
"{ \relax frank}" =⇒ "{ \RELAX FRANK}"
"{{\relax frank}}" =⇒ "{{\relax frank}}"

Figure 3: Effect of ... "u" case.change$.

and pushes the result. If S0 is "t", S is converted to
lowercase except for the first character or the first
group if S begins with a left brace. As shown by the
examples given in Figure 3, the non-command parts
of a special character are processed like ordinary
characters—even if some subparts are surrounded
by braces—whereas all the other groups surrounded
by braces are left unchanged by the change.case$
function. That recalls what is written in [16, p. 768]
about protecting some uppercase letters . . . pro-
vided that the first character after a left brace is
not a ‘\’ character.

Let us now go back to the operations returning
subparts of a string. We see that this data struc-
ture is handled with difficulty in the bst language,
except for simple strings. If we consider values of
the AUTHOR and EDITOR fields, the usual way to deal
with them is the format.name$ function, used as
follows:

S1 I S2 format.name$
where S1,S2 are strings and I is a natural number.
This function formats the Ith name of S1 according
to the pattern given by S2, and pushes the result.
The pattern is written as follows:
• if characters are not enclosed by braces, they

are unconditionally inserted into the result;

"Frank Frazetta" =⇒ "Frazetta, +Frank:"
"{-}ky" =⇒ "{-}ky, :"

Figure 4: ... "{ll}, {+ff}:" format.name$.

• at the first level:

– if braces enclose other characters than let-
ters, they also are unconditionally inserted
into the result;

– if braces enclose letters other than ‘f’, ‘j’,
‘l’, ‘v’ (for ‘First ’, ‘Junior ’, ‘Last ’, ‘von’),
it is an error;7

– a single letter (‘f’, etc.) inserts an abbre-
viation of the corresponding part (see be-
low), while a doubled letter (‘ff’) inserts
the complete part.

Examples are given in Figure 4.
Let us say that ‘f’ or ‘ff’, ‘j’ or ‘jj’, . . . are

called subpatterns.8 Each part is processed as fol-
lows:
• if this part is absent within the person name,

the complete specification surrounded by braces
is ignored;

• if this part is not empty:

– all the characters before the subpattern
are inserted before the corresponding part;

– if the subpattern is immediately followed
by a group surrounded by braces, this last
group—which may be empty—replaces
the separator between two adjacent tokens
of the corresponding part;

7 If an error occurs, such a bst function pushes a dummy
value: an empty string in this case.

8 This terminology is used within the source files of
MlBibTEX’s compatibility mode.

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Names in BibTEX and MlBibTEX

last => Le Clerc De La Herverie first => Jean-Michel-Georges-Albert

"{ll}" =⇒ Le~Clerc De La~Herverie "{f}" =⇒ J.-M.-G.-A
"{ll/}" =⇒ Le~Clerc De La~Herverie/ "{f/}" =⇒ J.-M.-G.-A/
"{ll/,}" =⇒ Le~Clerc De La~Herverie/, "{f/,}" =⇒ J.-M.-G.-A/,
"{ll{/},}" =⇒ Le/Clerc/De/La/Herverie, "{f{/},}" =⇒ J/M/G/A,
"{ll{},}" =⇒ LeClercDeLaHerverie, "{f{},}" =⇒ JMGA,
"{ll~}" =⇒ Le~Clerc␣De␣La~Herverie␣ "{f~}" =⇒ J.-M.-G.-A
"{ll~~}" =⇒ Le~Clerc De La~Herverie~ "{f~~}" =⇒ J.-M.-G.-A~
"{ll{~}~}" =⇒ Le~Clerc~De~La~Herverie␣ "{f{~}~}" =⇒ J~M~G~A␣
"{ll{~}~~}" =⇒ Le~Clerc~De~La~Herverie~ "{f{~}~~}" =⇒ J~M~G~A~
"{ll{/},~}" =⇒ Le/Clerc/De/La/Herverie,␣ "{f{/},~}" =⇒ J/M/G/A,␣
"{ll{/}~,~}" =⇒ Le/Clerc/De/La/Herverie~,␣ "{f{/}~,~}" =⇒ J/M/G/A~,␣
"{ll{/}~~,~~}" =⇒ Le/Clerc/De/La/Herverie~~,~ "{f{/}~~,~~}" =⇒ J/M/G/A~~,~

last => Zeb Chillicothe Mantey last => Cousin De Grainville

"{ll}" =⇒ Zeb~Chillicothe~Mantey "{ll}" =⇒ Cousin De~Grainville

Figure 5: Examples of using patterns with the format.name$ function of BibTEX.

– the other characters following the subpat-
tern are inserted after the corresponding
part.

If ‘~’ characters are put at the end of characters
following a subpattern or a separator replacement:
• one ‘~’ causes a space character (‘␣’) to be in-

serted after the name’s part,
• if there are several ‘~’ characters, the first is

dropped, while the others are inserted after the
name’s part;

at other places, tilde characters are inserted like or-
dinary characters.9

Let us assume that there are several tokens for
a name’s part. By default—without separator re-
definition—a ‘~’ character is inserted:
• always between the next-to-last and last tokens,
• between the first and second tokens: if there are

three or more tokens, and the first token is one
or two letters long, a special character or period
belonging to an abbreviated word is counted as
one letter.

All these cases are summarised in the examples given
in Figure 5.

A token is abbreviated by retaining only its first
letter. So, other characters inserted before this first
letter may be dropped. When BibTEX abbreviates a
name part, it recognises special characters, as shown
in Figure 6. But it does not insert braces for other
groups surrounded by braces, as the text.prefix$
function would do: compare the examples given in
Figures 2 & 6 for the string {Ch}arles. Last, let us

9 Let us notice that, in contrast, any occurrence of the
space character is processed w.r.t. a ‘standard way’.

mention that by default—without separator redefi-
nition—this first letter is followed by a period char-
acter and the separator—a space, ‘~’ or ‘-’ charac-
ter—put after this token. This mark after the first
letter is not appended after the abbreviation of the
last token. Some of these rules might seem strange
if we think of them only in relation to abbreviat-
ing first names, but let us recall that some styles
use initials of the von and Last parts as labels of
bibliographical references. For example, the alpha
bibliography style uses the {v{}}{l{}} pattern to
generate these labels.

2.5 Criticism

The functions provided by BibTEX work fine in most
practical cases, in the sense that most BibTEX end-
users accept the results of the standard bibliography
styles. However, the cases not ‘naturally’ included
in this framework are difficult to handle. A simple
example is given by abbreviations. Let us consider
the two following names:

Edgar Rice Burroughs Jon L White
The {f.} subpattern would cause a period to be
appended after ‘R’ in ‘E. R. Burroughs’, but in-
correctly abbreviates the second example to ‘J. L.
White’.10 The {f} subpattern correctly puts ‘J. L
White’ in the second case, but then a period is miss-
ing after Edgar Rice Burroughs’ middle name. In
addition, it is difficult to specify a particular ab-
breviation for a middle name only. For example,
Nicholas deBelleville Katzenbach’s middle name is
correctly abbreviated to ‘deB.’.

10 Anyway, [2, § 14.4] recommends the systematic use of
a final period. But such a sign is supposed to replace some
letters omitted.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1005

Jean-Michel Hufflen

Charles =⇒ C
{Ch}arles =⇒ C
{\relax Ch}arles =⇒ {\relax Ch}
{-}ky =⇒ k

Figure 6: Abbreviating first names in bst.

From a general point of view, some workarounds
exist, but may be viewed as hacks. Often they con-
sist in inserting LATEX commands into fields’ values.
For example:
• a command deferring the right case [16, p. 767]:

Maria {\MakeUppercase{d}e La}︸ ︷︷ ︸
von

Cruz

so BibTEX interprets ‘{de...}’ as the begin-
ning of the von part, because the ‘d’ letter is
lowercase, even though LATEX will typeset ‘De’
when the command is processed;
• inserting a dummy accent command [13, § 251]:

{\relax Ph}ilippe Djian

in order for this French first name to be abbre-
viated to ‘Ph.’ because French digraphs— ‘ch’
is a digraph for ‘[M]’— should not be reduced.
Other ‘tricks’ are more subtle. For example,

standard bibliography styles put a space character
between the von and Last part. That is suitable for
most cases, e.g., ‘Lyon Sprague de Camp’, but not
when the particle ends with an elision, e.g., ‘Guy
d’Antin’. Testing whether or not the von part ends
with an apostrophe character (“ ’ ”) is tedious, be-
cause the bst language does not provide a natural
way to store part of a name in a variable. In ad-
dition, let us not forget that there may be several
names inside an AUTHOR or EDITOR field, which com-
plicates the search of the accurate indices. One so-
lution is:

Guy d’\unskip Antin
—see [14, Ch. 24] about the \unskip command—
but this is not fully satisfactory: it works only if
we are sure that the text.prefix$ function is not
applied to the von part for a prefix length greater
than 2. Likewise, the change.case$ function should
not be used (cf. supra). Protecting this \unskip
command by braces:

Guy d’{\unskip} Antin

would solve these problems but annihilate the effect
of this command. The insertion of an \aftergroup
command [14, Ex. 24.7], deferring some tokens until
the end of a group is processed:

Guy d’{\aftergroup\unskip} Antin

is useless because the offending space character fol-
lows the brace closing the group with \aftergroup.
And this space, not surrounded by braces, is needed
when BibTEX separates the von and Last parts. The
best solution—cf. [14, Ch. 24]— is:

Guy d’{\aftergroup\ignorespaces} Antin

in the sense that it works in most cases, provided
that the abbreviated first name is not to be followed
by a delimiter, as in ‘[Guy d’]Antin’.

As mentioned above, the format.name$ func-
tion allows good control of separators between the
tokens belonging to a same part. However, some
limitations exist. For example, let us consider:

Ursula Kroeber {Le~Guin}

By default— that is, using the {ff} pattern—an
unbreakable space character will be inserted between
the ‘actual’ first name (‘Ursula’) and the middle
name (’Kroeber’). If we would like to allow a line-
break after the first name because the bibliography
will be typeset on a small text width, we can do that
by the ‘{ff{ }}’ pattern. But such a redefinition is
impossible for the two tokens of the last name (‘Le
Guin’), surrounded by braces. In such a case, the
name may be specified by:

Le Guin, Ursula Kroeber

but braces are needed for an organisation name:

AUTHOR = {{Hidalgo~Trading~Company}}

and redefining the separator between words becomes
impossible by means of the format.name$ function
since BibTEX considers there to be only one token.
We can program this operation with the functions
substring$ and *—concatenation of two strings
[16, Table 13.8]—but it is very tedious.

From our point of view, the use of additional
braces belongs to BibTEX’s ‘philosophy’, but is com-
plicated in the sense that some functions process
braced groups opening a TEX command differently
from other groups surrounded by braces. Often this
design choice is good— for example, it allows the
change.case$ function to change the case of ac-
cented letters typed by means of TEX commands—
but other operations are difficult to perform. The
insertion of (LA)TEX commands seems to us to be
just a workaround. It works since BibTEX is used
in conjunction with LATEX. That was true when
BibTEX came out,11 but is not always the case nowa-
days. BibTEX may be used to generate bibliogra-
phies displayed on Web pages written in HTML,12

11 Initially, BibTEX was designed to work with Scribe [22].
12 HyperText Markup Language. See [17] for an intro-

duction.

1006 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Names in BibTEX and MlBibTEX

<nbst:template match="von">
<nbst:variable name="the-part" select="."/>
<nbst:value-of select="$the-part"/>
<nbst:if test=’substring($the-part,string-length($the-part),1) != """’>

<!-- ‘"’ is a predefined entity for an apostrophe character [21, p. 48]. -->
<nbst:text> </nbst:text>

</nbst:if>
</nbst:template>

Figure 8: Putting a particle’s name down.

<author>
<name>

<personname>
<first abbrev="L. Sprague">

Lyon Sprague
</first>
<von>de</von>
<last>Camp</last>

</personname>
</name>
<and/>
<name>

<personname>
<first>David</first>
<last>Drake</last>

</personname>
</name>

</author>

Figure 7: Internal representation of names using
XML in MlBibTEX.

by means of a converter like BibTEX2HTML [3]. An-
other example, closer to LATEX, is Hans Hagen’s for-
mat ConTEXt [4]. Using LATEX commands within
values associated with BibTEX fields can cause trou-
ble when these programs run (some examples con-
cerning ConTEXt and solutions are given in [10]).

3 How names are processed by MlBibTEX

3.1 Implementation issues

We suggest that the components of a name should be
directly accessible by means of different placehold-
ers within the functions of a bibliography style. As
explained in [7], parsing bibliographical entries from
a .bib file results in an XML13 tree in MlBibTEX.14
The organisation of our elements is a revision and

13 EXtensible Markup Language. See [21] for an intro-
duction.

14 More precisely, an XML tree represented in Scheme using
the conventions of SXML (Scheme implementation of XML)
[12].

extension of the DTD15 given in [6], influenced by
BibTEX. Concerning names, fields related to au-
thors and editors are split into subtrees, as shown
in the example of Figure 7. In fact, this figure is a
‘pretty-printing’ of such a tree: in reality, the con-
tents of text nodes—e.g., first, von, last—are
‘space-normalised’, that is, stripped of leading and
trailing whitespace characters, multiple consecutive
occurrences of whitespace characters being replaced
by a single space character. Likewise, most of the
blank nodes16 pictured in Figure 7 do not exist in
the ‘actual’ representation. Besides, this representa-
tion uses Latin 1 encoding,17 and some special char-
acters of LATEX are processed; for example, the ‘~’
character is replaced by an unbreakable space char-
acter (numbered 160 in Latin 1). In addition, some
LATEX commands are expanded; for example, accent
commands applied to suitable letters are replaced
by the corresponding accented letters included in
Latin 1 [9].

Bibliography styles are written using the nbst18

language, close to XSLT,19 a language of transfor-
mations used for XML texts. This nbst language is
described in [7].

An example written using nbst is given in Fig-
ure 8. If the von part of a name exists, this template
is invoked, the contents of this von part is written
down. This part is followed by a space character,
unless its last character is an apostrophe. This tem-
plate allows the two examples given above— ‘Lyon
Sprague de Camp’ and ‘Guy d’Antin’— to be dis-
played nicely. Of course, this is an ad hoc solution,
but it shows that we get the full expressive power of

15 Document Type Definition. A DTD defines a document
markup model [21, Ch. 5].

16 Anonymous text nodes whose contents are only white-
space characters; two examples can be found around the and
tag in Figure 7. In XML, all characters are preserved [21,
p. 38].

17 Future versions of MlBibTEX should be able to deal with
Unicode characters [24].

18 New Bibliography STyles.
19 EXtensible Stylesheet Language Transformations. See

[21, Ch. 6] for ashort introduction.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1007

Jean-Michel Hufflen

a programming language. In addition, we can call
functions written in Scheme—the implementation
language of MlBibTEX—for difficult cases [7, 8].

3.2 Syntactic issues

MlBibTEX can process any .bib file designed for ‘old’
BibTEX, except that square brackets are syntactic
delimiters used for multilingual features [7]. So,
most of the ‘tricks’ used within ‘old’ .bib files should
work. In addition, MlBibTEX allows more explicit
syntax for the components of a person name and the
abbreviation of a first name, when needed:
first => ..., von => ..., last => ...,
junior => ..., abbr => ...

The order of the keywords is irrelevant and some
may be absent, provided that the last name is spec-
ified. For example:

first => Kim Stanley, last => Robinson

where the von field is empty, and the abbreviation of
the first name is standard, that is, ‘K.~S.’ Let us no-
tice that in MlBibTEX, the period character ending
an abbreviation belongs to it by default. In addition,
this new syntax can be used with ‘old’ bibliography
styles, written in bst, as we show in Appendix A.

You can mix the ‘old’ and ‘new’ syntaxes, in
which case a name is parsed like (i) if no comma
occurs before a keyword, like (ii) (resp. (iii)) if the
number of commas not followed with a keyword is
one (resp. two) and the keywords give additional
information. Let us give some examples:

Robinson, first => Kim Stanley

is allowed, because ‘Robinson’ is parsed as the Last
part, so ‘Kim Stanley’ is allowed to be the First
part. But:

Kim Stanley, last => Robinson WRONG!

is an incorrect specification, because ‘Stanley’ is
supposed to be the Last part, so this part cannot be
redefined to ‘Robinson’.

In practice, mixing the old and new syntaxes is
useful when we have just to give a specific abbrevi-
ation for a first name:

Lyon Sprague de Camp, abbr => L. Sprague

Roughly speaking, this syntax is close to Ada’s for
passing values inside a subprogram call [23, § 6.4].

Other keywords can be used for both an organ-
isation name and a key for sorting:

EDITOR = {org => \TUG 2006,
sortingkey => TUG2006}

As in BibTEX, co-authors are connected with
the ‘and’ keyword. After the different co-authors,

MlBibTEX allows the addition of collaborators, in-
troduced by the ‘with’ keyword:20

Clive Cussler with Paul Kemprecos

The format for several co-authors and collaborators:
... and ... and ... with ... with ...

In the present article’s bibliography, reference [16]
gives an example of how such an entry using several
co-authors and collaborators is formatted. As in
BibTEX, the ‘others’ keyword can be used when
additional names are left unspecified: ‘and others’
(resp. ‘with others’) for additional unspecified co-
authors (resp. collaborators).

Multilingual switches with a default21 are al-
lowed for names, which is useful for names originat-
ing in languages using other alphabets:
AUTHOR =
{[Сергей Сергеевич Прокофьев] * russian
[Sergey Sergeyevich Prokofiev]}

4 Internationalization of names

MlBibTEX allows names to be displayed according
the cultural background of a language. For example,
accurate templates of the nbst language [8] allow
names of Hungarian people:

AUTHOR = {[Béla Bartók] : magyar}

to be displayed like ‘Bartók Béla’— that is, the last
name at first, followed by the first name—whereas
other names (English, French, . . .) are displayed
as usual, that is, the first name followed by the
last name. However, the specification of any person
name has to be dispatched into the four components
inherited from BibTEX. This is not a problem re-
lated to parsing, because the new keywords allow us
to specify each component separately. In practice,
some cases are solved by extending the First part in
order to include:
• a middle name for American people:

Ursula K. Le Guin

• a patronym (father’s first name) for a Russian
name, here ‘Sergey, Sergey’s son’:

Сергей Сергеевич Прокофьев

Other cases may more difficult to handle. Here are
some exotic examples given in [27]:
• an Assyrian name consisted of a personal name,

the father’s name, and the grandfather’s name,

20 . . . at the topmost level only. See Footnote 3, p. 1002.
21 This means that something is always produced, even if

no information is available in the reference’s language. In
other words, this kind of switch never yields nothing. See [7]
for more details.

1008 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Names in BibTEX and MlBibTEX

• in South India, a personal name may be pre-
ceded by the father’s name, usually written
as an initial, and possibly replaced or supple-
mented by the birthplace or mother’s house
name, e.g. ‘Trivandrum R. S. Mani’.22

We plan to go thoroughly into this notion when
the document model of the bibliographies handled
by MlBibTEX is revised by using schemas. For small
examples of using the XML Schema standard for
describing an organisation for names, [25, pp. 91–
107] can be consulted. DocBook, an XML system
for writing structured documents [26], proposes a
more open approach: some optional elements are
defined—e.g., honorific (see Figure 9)— includ-
ing a hold-all element, othername, for information
that does not fit in other categories. This element—
which may be repeated—has a role attribute that
classifies the different kinds of these ‘other’ names.
However, official documents do not make precise the
possible values for this attribute: so names’ taxon-
omy is not really fixed in DocBook, except for classic
cases, for example, ‘mi’ for ‘middle names’, as given
in [26, p. 149]. Figure 9 shows a DocBook example,
including language information. This information is
not only a single identifier, like an option of the babel
package, but allows the specification of variants of a
language. It consists of a two-letter language code
using lowercase letters, optionally followed by a two-
letter country code using uppercase letters [1]: ‘fr’
is for the French language, ‘BE’ for Belgium. Such el-
ements are not limited to a bibliography: as another
example, the specification of an author’s article also
uses them [26, p. 143].

Another formalism belonging to the XML fam-
ily widely used for bibliographical metadata is the
Dublin Core,23 but here the contents of the elements
representing people’s names are just strings; such el-
ements are not structured by means of subelements
as in DocBook. For example, an entity primarily re-
sponsible for making the content of a resource may
be a person name and is specified by the dc:creator
element. BibTEX-like syntax is used in practice, as
shown in Figure 10; [27] gives some guidelines.

5 Further development and conclusion

As mentioned above, MlBibTEX includes a compati-
bility mode, so it can apply ‘old’ bibliography styles,
written using bst.24 To put this implementation of
bst into action, of course, we studied the behaviour

22 In such a case, periods are sometimes omitted.
23 The Dublin Core metadata standard is a simple yet ef-

fective element set for describing a wide range of networked
resources. See [5] for more details.

24 See [9] for an overview of the functions of this mode.

<author>
<honorific>Sir</honorific>
<firstname>Arthur</firstname>
<surname>Conan Doyle</surname>

</author>

<author>
<firstname>Edgar</firstname>
<surname>Burroughs</surname>
<othername role="mi">Rice</othername>

</author>

<author lang="fr-BE">
<firstname>J.-H.</firstname>
<surname>Rosny</surname>
<lineage>
<!-- Junior, Senior, etc. [26, p. 308]. -->
aîné

</lineage>
</author>

Figure 9: Names specified using DocBook.

<dc:creator>Kay, Guy Gavriel</dc:creator>
<dc:creator xml:lang="fr">
<!-- xml:lang is a predefined attribute in XML

[21, p. 41], its values are codes described in
[1].

-->
Pierre Pelot

</dc:creator>

Figure 10: Examples with the Dublin Core.

of this language’s functions precisely, preparing very
many tests. That is why we hope that, in particular,
we know precisely how BibTEX deals with names.
This task of reverse engineering showed us that it
was designed in order for current format operations
to be specified concisely. The price paid is compli-
cated specification of general cases.

Due to the huge number of BibTEX database
files written by end-users, a successor of BibTEX has
to ensure compatibility with existing .bib files. So
we have to pay attention whenever we introduce new
syntactic sugar: could existing files be processed as
previously? Another question is: could we add more
and more syntactic sugar to a formalism without
damaging it? Redefining a new one might be bet-
ter . . .

We think that the work on the new features of
MlBibTEX should be done based on a specification
in XML, and some improvements can be given syn-
tactic sugar, usable within .bib files. For example,
we plan to add a space-after attribute to the von
element:

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1009

Jean-Michel Hufflen

<von space-after="no">d'</von>

and specify empty space after a particle by an addi-
tional comma in AUTHOR and EDITOR fields:
{first => Guy, von => d’„ last => Antin}

or—when the von part is specified last— :
{first => Gilles, last => Argyre,
von => d’,}

On the contrary, future features related to per-
son names whose structure is to be studied will be
added only to the XML document model of bibli-
ographies, when it is ready. We think that BibTEX
has not been much used for such names, so there
should be no need for additional syntactic sugar and
MlBibTEX should be able to get such information by
parsing XML files.

6 Acknowledgements

Many end-users told me that they had difficulty un-
derstanding names’ specification within BibTEX. I
was thinking of them when I was writing this article
and I hope they will enjoy reading it as much as I
enjoyed writing it. Many thanks to Karl Berry and
Barbara Beeton, both of whom proofread a first ver-
sion, suggested some improvements and additional
examples.

A MlBibTEX’s names within the
compatibility mode

As abovementioned, MlBibTEX allows users to run
‘old’ bibliography styles of BibTEX [19], by means
of a compatibility mode, sketched in [9]. This com-
patibility mode, programmed in Scheme, actually
uses a stack and allows users to learn the bst lan-
guage easily, since they can run a bst program step
by step. The data used within the result of parsing
.bib files are serialised w.r.t. types used within the
bst language’s functions, that is, strings, integers,
and literals [16, Table 13.8]. Each function belong-
ing to the bst library is implemented by a Scheme
function.

If you push a string and would like to give it to
the Scheme function implementing format.name$,
only the conventions of BibTEX will be put into
action. If the value of an AUTHOR or EDITOR has
been processed by MlBibTEX’s parser and has to be
passed to the compatibility mode, the transmitted
value is a list consisting of a string S, followed by a
vector,25 whose size is the number of the names of
S. Let us consider a name belonging to S, for each
part of it—First, Junior, Last, von, w.r.t. this or-

25 Vectors of Scheme are analogous to arrays of ‘classical’
programming languages.

der—a pair of indices shows where this part begins
and ends. This part is replaced by the false value—
#f—if it does not exist. Unless a name only consists
of a Last part, the possible syntaxes for the string
S are either (ii) or (iii)—cf. § 2.1.

An example is given in Figure 11: given three
nperson ames specified by means of keywords, we
show the three elements of the corresponding struc-
ture passed to the compatibility mode. Index pairs
are organised into vectors: one vector for the parts
of each, these three vectors being elements of a vec-
tor of vectors. If such a list, beginning with the
‘*name*’ marker, is popped by another function than
b-bst-format.name$ and b-bst-num.names$, the
implementations of format.name$ and num.names$,
only the string is retained.

This design choice allows us to show BibTEX’s
behaviour by default if these two functions are given
only a string. But if end-users take advantage of the
specification of name parts by means of keywords,
we do not need workaround within the strings passed
to these two functions. We do not have to put ad-
ditional braces or dummy LATEX commands. Be-
sides, our indices are coherent with the way used by
Scheme for selecting substrings: they are characters
beginning with a first inclusive index and ending
with a second exclusive index. For example, let s
to be the long string given in Figure 11: the expres-
sion (substring s 14 19) evaluates to the string
"J.-H.".

Last, the names of collaborators, introduced af-
ter an occurrence of the ‘with’ keyword (cf. § 3.2),
are ruled out. Anyway, let us remark that these
names would be processed improperly by BibTEX’s
bibliography styles.

References

[1] Harald Tveit Alvestrand: Request for
Comments: 1766. Tags for the Identification
of Languages. UNINETT, Network Working
Group. March 1995. http://www.cis.
ohio-state.edu/cgi-bin/rfc/rfc1766.
html.

[2] The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a
manual of style revised and expanded. 1993.

[3] Jean-Christophe Filliâtre and Claude
Marché: The BIBTEX2HTML Home Page.
June 2006. http://www.lri.fr/~filliatr/
bibtex2html/.

[4] Hans Hagen: ConTEXt, the Manual.
November 2001. http://www.pragma-ade.
com/general/manuals/cont-enp.pdf.

1010 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

Names in BibTEX and MlBibTEX

first => J.-H., last => Rosny, junior => jeune and
first => Pierre Alexis, last => Ponson du Terrail and
first => Eric, von => Van, last => Lustbader

((*name*)
"Rosny, jeune, J.-H. and Ponson du Terrail, Pierre Alexis and Van Lustbader, Eric" .
#(#((14 . 19) (7 . 12) (0 . 5) #f) ; The order is First, Junior, Last, von. The First part of the first

; element starts at position 14 and ends just before position 19. This
; element does not have a von part.

#((43 . 56) #f (24 . 41) #f)
#((76 . 80) #f (65 . 74) (61 . 64))))

Figure 11: How MlBibTEX’s names are sent to ‘old BibTEX’s functions.

[5] Diane Hillman: Using Dublin Core.
November 2005. http://dublincore.org/
documents/usageguide/.

[6] Jean-Michel Hufflen: “Multilingual Features
for Bibliography Programs: From XML to
MlBibTEX”. In: EuroTEX 2002, pp. 46–59.
Bachotek, Poland. April 2002.

[7] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.
July 2003.

[8] Jean-Michel Hufflen: “Bibliography Styles
Easier with MlBibTEX”. In: Proc. EuroTEX
2005, pp. 179–192. Pont-à Mousson, France.
March 2005.

[9] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006
conference. April 2006.

[10] Jean-Michel Hufflen: “MlBibTEX Meets
ConTEXt”. In: EuroTEX 2006 conference,
preprints, pp. 71–76. Debrecen, Hungary. July
2006.

[11] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson,
Norman I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes,
Eugene Edmund Kohlbecker, Jr, Donald
Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5

Report on the Algorithmic Language
Scheme”. HOSC, Vol. 11, no. 1, pp. 7–105.
August 1998.

[12] Oleg E. Kiselyov: XML and Scheme.
September 2005. http://okmij.org/ftp/
Scheme/xml.html.

[13] Marie-Paule Kluth : FAQ LATEX française
pour débutants et confirmés. Vuibert

Informatique, Paris. Également disponible sur
CTAN:help/LaTeX-FAQ-francaise/. Janvier
1999.

[14] Donald Ervin Knuth: Computers
& Typesetting. Vol. A: The TEXbook.
Addison-Wesley Publishing Company,
Reading, Massachusetts. 1984.

[15] Leslie Lamport: LATEX: A Document
Preparation System. User’s Guide and
Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1994.

[16] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion.
2nd edition. Addison-Wesley Publishing
Company, Reading, Massachusetts. August
2004.

[17] Chuck Musciano and Bill Kennedy: HTML
& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[18] Oxford Advanced Learner’s Dictionary of
Current English. Oxford University Press.
1989.

[19] Oren Patashnik: Designing BIBTEX
Styles. February 1988. Part of the BibTEX
distribution.

[20] Oren Patashnik: BIBTEXing. February 1988.
Part of the BibTEX distribution.

[21] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[22] Brian Keith Reid: SCRIBE Document
Production System User Manual. Technical
Report, Unilogic, Ltd. 1984.

[23] S. Tucker Taft and Robert A. Duff, eds.:
Ada 95 Reference Manual. Language and
Standard Libraries. No. 1246 in LNCS.
Springer-Verlag. International Standard
ISO/IEC 8652:1995(E). 1995.

TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting 1011

Jean-Michel Hufflen

[24] The Unicode Consortium: The Unicode
Standard Version 4.0. Addison-Wesley.
August 2003.

[25] Eric van der Vlist: XML Schema. O’Reilly
& Associates, Inc. June 2002.

[26] Norman Walsh and Leonard Muellner:
DocBook: The Definitive Guide. O’Reilly
& Associates, Inc. October 1999.

[27] Andrew Waugh: Representing People’s
Names in Dublin Core. February 1998.
http://dublincore.org/documents/
name-representation/.

1012 TUGboat, Volume 0 (2060), No. 0—Proceedings of the 2060 Annual Meeting

