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ABSTRACT   

Based on a modal description of the evolution Kerr combs in a whispering-gallery mode resonator, we numerically 
investigate the phase behavior of the different spectral lines of the spectrum. We show that a stable phase relation exist 
between adjacent modes in primary combs. This result is of great interest for metrological applications were one phase 
noise is an issue. For high input power however, chaotic signals are observed.  

Keywords: Kerr frequency combs, Whispering-gallery mode resonators, Nonlinear dynamics 
 

INTRODUCTION  
Optical frequency combs are sets of regularly spaced spectral lines in the optic frequency range. They are usually 
generated from mode-locked femtosecond laser, since a periodic train of pulses yield such equidistant lines in the 
spectral domain. Those combs have many applications in time-frequency metrology, spectroscopy, navigation systems, 
sensing [1,2] … A new way of generating these frequency combs has recently been demonstrated and it relies on the 
optical Kerr effect in ultra-high-Q whispering-gallery mode (WGM) resonators [3]. In such resonators, the resonant light 
is enhanced and nonlinear effects can occur at low input powers. In particular, four-wave mixing (FWM) allows for the 
creation and mixing of frequencies under strict laws of energy and momentum conservation. Only frequency lines 
separated by the free spectral range (FSR) of the resonator can exist, and a Kerr comb is finally created.  

The modeling of this process is however quite complex, since many interactions can occur between modes through the 
χ(3)

SYSTEM UNDER STUDY 

 susceptibility of the medium. A few works have been published on this topic [4,5], and a recent work using a modal 
approach has been proposed [6]. In this work, we use this model to perform numerical simulations and study the 
mechanism allowing phase locking during the growth of the Kerr comb. 

The typical scheme of comb generator in a WGM resonator is presented in Figure 1. A continuous-wave laser is 
amplified and coupled to a WGM resonator thanks to a tapered fiber. In a fiber with such a diameter (~ 3µm), an 
important fraction of the propagating mode is located in the air, as an evanescent field. By bringing the fiber close to the 
resonator, light can be coupled inside the WGM resonator. The light at the output of the fiber is monitored either in the 
spectral domain with a spectrum analyzer, either in the temporal domain with an oscilloscope.   

Figure 1. Experimental setup of the Kerr combs generation in a WGM resonator. A continuous laser is amplified and 
coupled to a WGM resonator using a tapered fiber. The output is either acquired with a spectrum analyzer or an 
oscilloscope. 

The size of the WGM resonator is chosen so that its FSR is in the wanted frequency range. In our case, we will focus on 
millimeter-sized resonators for a 10-GHz range FSR. The bulk medium of the resonator can be amorphous (e. g. fused 
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silica) or crystalline. The latter requires a symmetry inversion for the Kerr nonlinearity to be significant. This is the case 
in CaF2 an MgF2 crystals, which are characterized by very low absorption losses, leading to potential ultra-high Q-
factors. Our study takes the example of a 5-mm diameter CaF2 (n=1.43 at 1550 nm) resonator, with a 13.4 GHz FSR and 
a quality factor of 3.109

 

. 

MODAL DESCRIPTION 
The modal description proposed in [6] starts from the Maxwell equation and derives the temporal evolution of each 
resonant mode in the cavity. It takes into account both the FWM gain and the dispersion of the cavity. Using a slowly 
varying amplitude expansion, the rate equations describing the evolution of the envelope 𝐴𝜂 of each mode is obtained: 
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The modal bandwidth Δ𝜔𝜂 corresponds to the inverse of the modal photon lifetime. 𝑔0 stands for the FWM gain while  
Λ𝜂
𝛼𝛽𝜇 is the intermodal coupling factor between the four interacting modes. The resonator’s dispersion is taken into 

account in the 𝜛𝛼𝛽𝜇𝜂 = 𝜔𝛼 − 𝜔𝛽 + 𝜔𝜇 − 𝜔𝜂 parameter, since it would be null in the case of perfectly equidistant 
spectral lines. Finally, the last term corresponds to the external pumping of the cavity, with amplitude 𝐹𝜂 and angular 
frequency Ω0.  

 

 
 

Figure 2. Simulated combs using the modal description for various pumping power. a) Just above threshold, only a couple of 
side lines are excited, separated from the central line by 9 FSR. b) At higher excitation, a primary comb is fully formed. c) 
When still increasing the pump power, a secondary comb appears, making the interval between adjacent spectral lines half 
of the one of the primary comb. d) Finally, at high power, each resonant mode is populated. 

These equations can be numerically solved with a fourth-order Runge-Kutta algorithm. In the following simulations, 201 
modes were studied, corresponding to a ~20 nm wavelength span. Each mode is initialized with a random complex 
amplitude taken in a Gaussian distribution with mean value and standard deviation equal to 10, corresponding to an 
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average of 100 photons in each mode, since �𝐴𝜂�
2
 is the number of photon in the 𝜂P

th mode. Simulations are performed 
for a total duration of 2 ms, such that the steady state, if any, is reached. The combs displayed in Figure 2 correspond to 
various pumping amplitude expressed in �𝐴0𝑡ℎ�

2
 units, where �𝐴0𝑡ℎ�

2
 is the threshold number of photons in the pumping 

mode. The parameters used in these simulations are Ω0 − 𝜔0 = 0 (the pump laser is perfectly resonant), the dispersion 
term 𝜛𝛼𝛽𝜇𝜂 = 1

2
𝜁(𝑙𝛼2 − 𝑙𝛽2 + 𝑙𝜇2 − 𝑙𝜂2) where 𝑙𝛼2  corresponds to the 𝛼P
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 mode index and the parameter 𝜁=11800 rad 
corresponds to a small, anomalous dispersion. As shown in [6], the presented computer-simulated combs are in good 
agreement with experimental results already obtained. 

PHASE EVOLUTION AND LOCKING 
The numerical simulation of the model allows us to follow the evolution of the phase of each spectral line separately. 
However, the relative phases of the different modes with the pump mode are not trivial, and, according to our model’s 
equation, we should study the following quantity: 

arg �
𝐴𝜂𝑒𝑖𝜛0𝜂𝑡

𝐴0
� 

This argument compares the phases of the 𝜂P

th

In Figure 3, we present the results for WGM resonator excited at 1.4�𝐴0𝑡ℎ�
2
, leading to a primary comb. The relative 

phase of each excited mode and the pump mode is plotted as a function of time. At this pump power, the interval 
between each mode is of 9 FSR, and the dispersion compensation was adjusted accordingly.  

 mode and the pump mode and takes into account the effect of the 
dispersion. If this quantity tends to a finite value, the two modes will be phase-locked.  

Figure 3. Evolution of the corrected phase between the 5 first excited modes, mode 9, 18, 27, 36 and 45. The y-scale was 
shifted by 2𝜋 for each mode, for a better visibility of the figure. The 9th

 

 mode is the first appearing and its phase is locked to 
the pump since the very beginning. On the contrary, the higher order mode are locked successively to the pump.  

The resulting curves show that the 9th mode, that is the first excited mode, is very quickly phase locked. The following 
modes are phase-locked only after, and the farther the later. Before being phase locked, the different modes oscillate 
freely at their natural frequency. 
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For higher pump power, a secondary comb appears for a pump power of 1.63�𝐴0𝑡ℎ�
2
, as shown on Figure 2. The relative 

phase of the modes is plotted on Figure 4. As in the previous case, the primary comb (modes 10, 20, …) is still quickly 
phase-locked to the pump. However, this secondary mode does not follow the same relationship and oscillate at its own 
frequency. 

Figure 3. Evolution of the relative phase for a secondary comb, at 1.63�𝐴0𝑡ℎ�
2
 pump power. The primary comb is still phase-

locked, but the secondary comb does not seem to obey any relationship with the pump mode. 

Still increasing the power, at 2.1�𝐴0𝑡ℎ�
2
, the generated comb displays now chaotic behavior, and the phase no longer 

follows the pump mode. A similar pattern to the previous case is still visible, where the primary comb does not show fast 
and brutal changes in phase while in-between modes do. Actually, the farther the mode under study is from one mode of 
the primary comb, the faster its phase drifts.  

Figure 3. Evolution of the relative phase for a chaotic comb, at 2.11�𝐴0𝑡ℎ�
2
 pump power. The phase locking shows signs of 

chaotic behavior, yet the changes are less brutal for modes next to a primary comb mode. 
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CONCLUSION 
In this work, we studied the evolution of the phase of the mode relatively to the central mode. This study must take into 
account the dispersion-induced drift, varying in 𝑙2. Using a Runge-Kutta approach we show that phase-locking between 
each mode of the primary comb occurs while the comb is being generated. This results confirm the metrological interest 
for such combs. When the secondary comb appears, however, the new spectral lines do not follow this pattern. 
Increasing the pump power leads to a chaotic behavior of the phase, yet the phase drift is smaller for modes near or on 
the primary comb.  
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