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Abstract—The design and engineering of original crypto-
graphic solutions is a major concern to provide secure in-
formation systems. In a previous study, we have described a
generator based on chaotic iterations, which uses the well-known
XORshift generator. By doing so, we have improved the statistical
performances of XORshift and make it behave chaotically, as
defined by Devaney. The speed and security of this former
generator have been improved in a second study, to make its
usage more relevant in the Internet security context. In this
paper, these contributions are summarized and a new version
of the generator is introduced. It is based on a new Lookup
Table implying a large improvement of speed. A comparison and
a security analysis between the XORshift and these three versions
of our generator are proposed, and various new statistical results
are given. Finally, an application in the information hiding
framework is presented, to give an illustrative example of the
use of such a generator in the Internet security field.

Keywords-pseudorandom number generators; Chaotic se-
quences; Statistical tests; Discrete chaotic iterations; Information
hiding.

I. INTRODUCTION

To use a pseudorandom number generator (PRNG) with a
large level of security is necessary to satisfy the Internet secu-
rity requirements to support activities as e-Voting, information
hiding, and the protection of intellectual property [1], [2], [3].
This level depends on the proof of theoretical properties and
results of numerous statistical tests. Many PRNGs, based for
instance on linear congruential methods and feedback shift-
registers [4], [5], [6], have been proven to be secure, following
a probabilistic approach. More recently, several researchers
have explored the idea of using chaotic dynamical systems to
reinforce the security of these important tools [7], [8], [9]. But
the number of generators claimed as chaotic, which actually
have been proven to be unpredictable (as it is defined in the
mathematical theory of chaos) is very small.

This paper extends a study initiated in [10], [11], [12], in
which we tried to fill this gap. In [12], it is proven that chaotic
iterations (CIs), a suitable tool for fast computing iterative
algorithms, satisfies the topological chaotic property, as it is
defined by Devaney [13]. In [10] the chaotic behavior of CIs
is exploited in order to obtain an unpredictable PRNG, which
depends on two logistic maps. Lastly, in [11], a new version
of this generator using decimations has been proposed and
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XORshift has replaced the logistic map. We have shown that,
in addition of being chaotic, this generator can pass the NIST
(National Institute of Standards and Technology of the U.S.
Government) battery of tests [14], widely considered as a
comprehensive and stringent battery of tests for cryptographic
applications.

In this paper, a new version of this chaotic PRNG is
introduced. It is based on a Lookup Table (LUT) method.
After having introduced it, we will give a comparison of the
speed, of the statistical properties, and of the security for all
of these generators based on XORshift generator [15]. These
results added to its chaotic properties allow us to consider
that this new generator has good pseudorandom characteristics
and is able to withstand attacks. After having presented the
theoretical framework of the study and a security analysis, we
will give a comparison based on new statistical tests. Finally a
concrete example of how to use these pseudorandom numbers
for information hiding through the Internet is detailed.

The remainder of this paper is organized in the following
way. In Section II, some basic definitions concerning chaotic
iterations and PRNGs are recalled. Then, the generator based
on LUT discrete chaotic iterations is presented in Section III.
In Section IV, various tests are passed to make a statistical
comparison between this new PRNG and other existing ones.
In the next sections, a potential use of this PRNG in some
Internet security field is presented, namely in information
hiding. The paper ends with a conclusion section where
the contribution is summarized and intended future work is
presented.

II. REVIEW OF BASICS

A. Notations

~1; N� → {1, 2, . . . ,N}
S n → the nth term of a sequence S = (S 1, S 2, . . .)
vi → the ith component of a vector: v = (v1, v2, . . . , vn)
f k → kth composition of a function f

strategy → a sequence which elements belong in ~1; N�
S → the set of all strategies

Ck
n → the binomial coefficient

(
n
k

)
= n!

k!(n−k)!
∧ → the bitwise exclusive or



2

+ → the integer addition
� and �→ the usual shift operators

(X, d) → a metric space
bxc → returns the highest integer smaller than x
n! → the factorial n! = n × (n − 1) × · · · × 1
N∗ → the set of positive integers {1,2,3,...}
& → the bitwise AND

B. Chaotic iterations

Definition 1 The set B denoting {0, 1}, let f : BN −→ BN be
an “iteration” function and S ∈ S be a chaotic strategy. Then,
the so-called chaotic iterations are defined by [16]:


x0 ∈ BN ,

∀n ∈ N∗,∀i ∈ ~1; N�, xn
i =

{
xn−1

i if S n , i
f (xn−1)S n if S n = i.

(1)

In other words, at the nth iteration, only the S n−th cell is
“iterated”. Note that in a more general formulation, S n can
be a subset of components and f (xn−1)S n can be replaced by
f (xk)S n , where k < n, describing for example delays transmis-
sion. For the general definition of such chaotic iterations, see,
e.g., [16].

Chaotic iterations generate a set of vectors (Boolean vectors
in this paper), they are defined by an initial state x0, an iteration
function f , and a chaotic strategy S .

Algorithm 1 An arbitrary round of the old
CI(XORshift1,XORshift2) generator

a← XORshi f t1()
m← a mod 2 + c
while i = 0, . . . ,m do

b← XORshi f t2()
S ← b mod N
xS ← xS

end while
r ← x
Return r

C. Old CI(XORshift, XORshift) algorithm

The basic design procedure of the old CI generator [10]
is recalled in Algorithm 1. The internal state is x (N bits),
the output state is r (N bits), a and b are computed by two
XORshift generators. Finally, N and c > 3N are constants
defined by the user.

D. New CI(XORshift, XORshift) algorithm

Algorithm 2 summarizes [11] the basic design procedure of
the new generator. The internal state is x (a Boolean vector
of size N), the output state is r (N bits). a and b are those
computed by the two XORshifts. The value f (a) is an integer,
defined as in Equation 2. Lastly, N is a constant defined by
the user.

mn = f (yn) =



0 if 0 6 yn

232 <
C0

N
2N ,

1 if C0
N

2N 6
yn

232 <
∑1

i=0
Ci

N
2N ,

2 if
∑1

i=0
Ci

N
2N 6

yn

232 <
∑2

i=0
Ci

N
2N ,

...
...

N if
∑N−1

i=0
Ci

N
2N 6

yn

232 < 1.

(2)

Algorithm 2 An arbitrary round of the new
CI(XORshift1,XORshift2) generator

1: while i = 0, . . . ,N do
2: di ← 0
3: end while
4: a← XORshi f t1()
5: m← f (a)
6: k ← m
7: while i = 0, . . . , k do
8: b← XORshi f t2() mod N
9: S ← b

10: if dS = 0 then
11: xS ← xS

12: dS ← 1
13: else if dS = 1 then
14: k ← k + 1
15: end if
16: end while
17: r ← x
18: Return r

III. LUT CI(XORSHIFT,XORSHIFT) ALGORITHMS AND
EXAMPLE

A. Introduction

The LUT CI generator is an improved version of the new
CI generator. The key-ideas are:
• To use a Lookup Table for a faster generation of strate-

gies. These strategies satisfy the same property than the
ones provided by the decimation process.

• And to use all the bits provided by the two inputted
generators (to discard none of them).

These key-ideas are put together by the following way.
Let us firstly recall that in chaotic iterations, only the cells

designed by S n−th are “iterated” at the nth iteration. S n can
be either a component (i.e., only one cell is updated at each
iteration, so S n ∈ ~1; N�) or a subset of components (any
number of cells can be updated at each iteration, that is,
S n ⊂ ~1; N�). The first kind of strategies are called “unary
strategies” whereas the second one are denoted by “general
strategies”. In the last case, each term S n of the strategy
can be represented by an integer lower than 2N , designed
by Sn, for a system having N bits: the kth component of
the system is updated at iteration number n if and only if
the kth digit of the binary decomposition of Sn is 1. For
instance, let us consider that Sn = 5, and that we iterate on a
system having 6 bits (N = 6). As the integer 5 has a binary
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decomposition equal to 000101, we thus conclude that the cells
number 1 and 3 will be updated when the system changes
its state from xn to xn+1. In other words, in that situation,
Sn = 5 ∈ ~0, 26 − 1� ⇔ S n = {1, 3} ⊂ ~1, 6�. To sum up, to
provide a general strategy of ~1; N� is equivalent to give an
unary strategy in ~0; 2N − 1�. Let us now take into account
this remark.

Until now the proposed generators have been presented in
this document by using unary strategies (obtained by the first
inputted PRNG S ) that are finally grouped by “packages”
(the size of these packages is given by the second generator
m): after having used each terms in the current package
S mn

, ..., S mn+1−1, the current state of the system is published as
an output. Obviously, when considering the new CI version,
these packages of unary strategies defined by the couple
(S ,m) ∈ ~1; N�×~0; N� correspond to subsets of ~1; N� having
the form

{
S mn

, ..., S mn+1−1
}
, which are general strategies. As

stated before, these lasts can be rewritten as unary strategies
that can be described as sequences in ~0; 2N − 1�.

The advantage of such an equivalency is to reduce the
complexity of the proposed PRNG. Indeed the new CI(S ,m)
generator can be written as:

xn = xn−1 ∧ Sn. (3)

where S is the unary strategy (in ~0; 2N − 1�) associated to
the couple (S ,m) ∈ ~1; N� × ~0,N�.

The speed improvement is obvious, the sole issue is to
understand how to change (S ,m) by S. The problem to
consider is that all the sequences of ~0; 2n − 1� are not
convenient. Indeed, the properties required for the couple
(S ,m) (S must not be uniformly distributed, and a cell cannot
be changed twice between two outputs) must be translated
in requirements for S if we want to satisfy both speed and
randomness. Such constrains are solved by working on the
sequence m and by using some well-defined Lookup Tables
presented in the following sections.

B. Sequence m

In order to improve the speed of the proposed generator, the
first plan is to take the best usage of the bits generated by the
inputted PRNGs. The problem is that the PRNG generating the
integers of mn does not necessary takes its values into ~0,N�,
where N is the size of the system.

For instance, in the new CI generator presented previously,
this sequence is obtained by a XORshift, which produces
integers belonging into ~0, 232 − 1�. However, the iterated
system has 4 cells (N = 4) in the example proposed previously
thus, to define the sequence mn, we compute the remainder
modulo 4 of each integer provided by the XORshift generator.
In other words, only the last 4 bits of each 32 bits vector
generated by the second XORshift are used. Obviously this
stage can be easily optimized, by splitting this 32-bits vector
into 8 subsequences of 4 bits. Thus, a call of XORshift() will
now generate 8 terms of the sequence m, instead of only one
term in the former generator.

This common-sense action can be easily generalized to any
size N 6 32 of the system by the procedure described in

Algorithm 3. The idea is simply to make a shift of the binary
vector a produced by the XORshift generator, by 0, N, 2N,...
bits to the right, depending on the remainder c of n modulo
bN/32c (that is, a � (N × c)), and to take the bits between the
positions 32 − N and 32 of this vector (corresponding to the
right part “&(2N −1)” of the formula). In that situation, all the
bits provided by XORshift are used when N divide 32.

Algorithm 3 Generation of sequence bn

1: c = n mod b32/Nc
2: if c = 0 then
3: a← XORshi f t()
4: end if
5: bn ← (a � (N × c))&(2N − 1)
6: Return bn

This Algorithm 3 produces a sequence (bn)n∈N of integers
belonging into ~0, 2N − 1�. It is now possible to define the
sequence m by adapting the Equation 2 as follows.

mn = f (bn) =



0 if 0 6 bn < C0
N ,

1 if C0
N 6 bn <

∑1
i=0 Ci

N ,

2 if
∑1

i=0 Ci
N 6 bn <

∑2
i=0 Ci

N ,
...

...

N if
∑N−1

i=0 Ci
N 6 bn < 2N .

(4)

This common-sense measure can be improved another time
if N is not very large by using the first Lookup Table of this
document, which is called LUT-1. This improvement will be
firstly explained through an example.

Let us consider that N = 4, so the sequence (bn)n∈N belongs
into ~0, 15�. The function f of Equation 4 must translate each
bn into an integer mn ∈ ~0, 4�, in such a way that the non-
uniformity exposed previously is respected. Instead of defining
the function f analytically, a table can be given containing
all the images of the integers into ~0, 15� (see Table I for
instance). As stated before, the frequencies of occurrence of
the images 0,1,2, 3, and 4 must be respectively equal to C0

4
24 ,

C1
4

24 , C2
4

24 , C3
4

24 , and C4
4

24 . This requirement is equivalent to demand
Ci

N times the number i, which can be translated in terms of
permutations. For instance, when N = 4, any permutation of
the list [0,1,1,1,1,2,2,2,2,2,2,3,3,3,3,4] is convenient to define
the image of [0,1,2,...,14,15] by f .

This improvement is implemented in Algorithm 4, which
return a table lut1 such that mn = lut1[bn].

Algorithm 4 The LUT-1 table generation
1: for j = 0...N do
2: i = 0
3: while i < C j

N do
4: lut1[i] = j
5: i = i + 1
6: end while
7: end for
8: Return lut1
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TABLE I
A LUT-1 TABLE FOR N = 4

bn 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

mn 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4

C. Defining the chaotic strategy S with a LUT
The definition of the sequence m allows to determine the

number of cells that have to change between two outputs of
the LUT CI generator. There are Cm

N possibilities to change m
bits in a vector of size N. As we have to choose between these
Cm

N possibilities, we thus introduce the following sequence:

wn = XORshi f t2() mod Cm
N (5)

With this material it is now possible to define the LUT that
provides convenient strategies to the LUT CI generator. If the
size of the system is N, then this table has N + 1 columns,
numbered from 0 to N. The column number m contains Cm

N
values. All of these values have in common to present exactly
m times the digit 1 and N −m times the digit 0 in their binary
decomposition. The order of appearance of these values in the
column m has no importance, the sole requirement is that no
column contains a same integer twice. Let us remark that this
procedure leads to several possible LUTs.

Algorithm 5 LUT21 procedure
1: Procedure LUT21(M,N, b, v, c)
2: count ← c
3: value← v
4: if count == M then
5: lut2[M][num] = value
6: num = num + 1
7: else
8: for i = b....N do
9: value = value + 2i

10: count = count + 1
11: Call recurse LUT21(M,N, i + 1, value, count)
12: value = v
13: count = c
14: end for
15: end if
16: End Procedure

An example of such a LUT is shown in Table III, when
Algorithm 6 gives a concrete procedure to obtain such tables.
This procedure makes recursive calls to the function LUT21
defined in Algorithm 5. The LUT21 uses the following vari-
ables. b is used to avoid overlapping computations between
two recursive calls, v is to save the sum value between these
calls, and c counts the number of cells that have already been
processed. These parameters should be initialized as 0. For
instance, the LUT presented in Table III is the lut2 obtained
in Algorithm 5 with N = 4.

D. LUT CI(XORshift,XORshift) Algorithm
The LUT CI generator is defined by the following dynam-

ical system:
xn = xn−1 ∧ Sn. (6)

TABLE II
RESULTS OF DIEHARD BATTERY OF TESTS

No.Test name Generators

XORshift old CI new CI LUT CI

1 Overlapping Sum Pass Pass Pass Pass
2 Runs Up 1 Pass Pass Pass Pass

Runs Down 1 Pass Pass Pass Pass
Runs Up 2 Pass Pass Pass Pass
Runs Down 2 Pass Pass Pass Pass

3 3D Spheres Pass Pass Pass Pass
4 Parking Lot Pass Pass Pass Pass
5 Birthday Spacing Pass Pass Pass Pass
6 Count the ones 1 Pass Pass Pass Pass
7 Binary Rank 6 × 8 Pass Pass Pass Pass
8 Binary Rank 31 × 31 Pass Pass Pass Pass
9 Binary Rank 32 × 32 Pass Pass Pass Pass
10 Count the ones 2 Pass Pass Pass Pass
11 Bit Stream Pass Pass Pass Pass
12 Craps Wins Pass Pass Pass Pass

Throws Pass Pass Pass Pass
13 Minimum Distance Pass Pass Pass Pass
14 Overlapping Perm. Pass Pass Pass Pass
15 Squeeze Pass Pass Pass Pass
16 OPSO Pass Pass Pass Pass
17 OQSO Pass Pass Pass Pass
18 DNA Pass Pass Pass Pass

Number of tests passed 18 18 18 18

Algorithm 6 LUT-2 generation
1: for i = 0....N do
2: Call LUT21(i,N, 0, 0, 0)
3: end for
4: Return lut2

TABLE III
EXAMPLE OF A LUT FOR N = 4

HH
HHw

m m = 0 m = 1 m = 2 m = 3 m = 4

w = 0 0 1 3 7 15

w = 1 2 5 11

w = 2 4 6 13

w = 3 8 9 14

w = 4 10

w = 5 12
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m 0 3 2 1
c 0 2 5 2
S 0 13 12 4
x0 x0 x1 x2 x3

0 0 1 0 0
1 1 0 1 0
0 0 0 0 0
0 0 1 1 1

Binary Output: x0
1 x0

2 x0
3 x0

4 x1
1 x1

2 x1
3 x1

4 x2
1 x2

2... = 0100100101010001...
Integer Output: x0, x1, x2, x3... = 4, 11, 8, 1...

TABLE IV
EXAMPLE OF A LUT CI(XORSHIFT,XORSHIFT) GENERATION

where xO ∈ ~0, 2N − 1 is a seed and Sn = lut2[wn][mn] =
lut2[wn][lut1[bn]], in which bn is provided by Algorithm 3
and wn = XORshi f t2() mod Cm

N . An iteration of this generator
is written in Algorithm 7. Let us finally remark that the two
inputted XORshift can be replaced by any other operating
PRNG.

Algorithm 7 LUT CI (XORshift,XORshift) algorithm
1: c = n mod b32/Nc
2: if c = 0 then
3: a← XORshi f t1()
4: end if
5: bn ← (a � (N × c))&(2N − 1)
6: mn = lut1[bn]
7: dn = XORshi f t2()
8: wn = bn mod Cm

N
9: S n = lut2[m][w]

10: x = x ∧ S n

11: Return x

E. LUT CI(XORshift,XORshift) example of use

In this example, N = 4 is chosen another time for easy
understanding. As before, the initial state of the system x0

can be seeded by the decimal part t of the current time. With
the same current time than in the examples exposed previously,
we have x0 = (0, 1, 0, 0) (or x0 = 4).

Algorithm 4 provides the LUT-1 depicted in Ta-
ble I. The first XORshift generator has returned y =

0, 11, 7, 2, 10, 4, 1, 0, 3, 9, .... By using this LUT, we obtain m =
0, 3, 2, 1, 2, 1, 1, 0, 1, 2, .... Then the Algorithm 6 is computed,
leading to the LUT-2 given by Table III.

So chaotic iterations of Algorithm 7 can be realized, to
obtain in this example: 0100100101010001... or 4,9,5,1...

IV. STATISTICAL ANALYSIS

In order to make a fair comparison, we decided to choose
the best parameters for each generator. According to the
experiments, these values are N = 4 for the old CI, N = 32
for the new one, and finally N = 8 for the LUT CI generator
(see Sections IV-A, IV-B, and IV-C respectively).

TABLE VI
COMPARISON BETWEEN THE PRESENTED PRNGS FOR A 2 × 108 BITS

SEQUENCE

Methods XORshift Old CI New CI LUT CI

Monobit 0.6055 0.5689 0.0029 0.0471
Serial 0.7021 1.5765 0.3845 0.2232
Poker 7.957 6.3683 5.882 5.166
RunS 26.1022 28.4237 24.8094 21.9861

Autocorrelation 1.1628 0.3403 1.4220 0.4410
Time 9.33s 49.55s 28.82s 11.24s

A. NIST

In our experiments, 100 sequences (s = 100) of 1,000,000
bits are generated and tested. If the value PT of any test is
smaller than 0.0001, the sequences are considered to be not
good enough and the generator is unsuitable. Table V shows
PT of sequences based on discrete chaotic iterations using
different schemes. If there are at least two statistical values in
a test, this test is marked with an asterisk and the average value
is computed to characterize the statistics. We can see in Table
V that old, new, and LUT CI(XORshift, XORshift) generators
have successfully passed the NIST statistical test suite. In
particular, the score of the XORshift generator is better when
this last is embedded into any of the three proposed scheme
(indeed, XORshift alone fails one of the NIST tests).

B. Diehard

Table II gives the results derived from applying the
DieHARD battery [17] of tests to the PRNGs considered in
this work. As it can be observed, all the generator presented
in this document can pass the DieHARD battery of tests.

C. Comparative test parameters

We show in Table VI a comparison in comparative test
parameters [11] among the generators LUT CI(XORshift,
XORshift), New CI (XORshift, XORshift), their old version:
Old CI(XORshift, XORshift), and a PRNG based on a simple
XORshift. Time (in seconds) is related to the duration needed
by each algorithm to generate a 2×108 bits long sequence. The
test has been conducted using the same computer and compiler
with the same optimization settings for both algorithms, in
order to make it as fair as possible. The results confirm that the
proposed LUT CI is the fastest CI PRNG, while the statistical
results is better for most of the parameters, leading to the
conclusion that this new PRNGs is more secure than the other
ones.

In addition, a comparison of overall stability from 5 × 104

to 8 × 105 for these generators has been given in Figure 1.
It can be seen that LUT CI and new CI are dominant in all,
especially when the sequences are very long.

D. Varying the output size

The size of the outputs (N, in number of bits) produced by
each of the proposed generators only depend on the size of the
initial state x0. Moreover, as the “CI process” is fundamentally
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TABLE V
NIST SP 800-22 TEST RESULTS (PT )

Method XORshift old CI new CI LUT CI

Frequency (Monobit) 0.779188 0.145326 0.719747 0.657933

Frequency within a Block 0.779188 0.028817 0.071177 0.719747

Runs 0.514124 0.739918 0.911413 0.224821

Longest Run of Ones in a Block 0.883171 0.554420 0.779188 0.494392

Binary Matrix Rank 0.851383 0.236810 0.924076 0.023545

Discrete Fourier Transform (Spectral) 0.834308 0.514124 0.911413 0.514124

Non-overlapping Template Matching* 0.506389 0.512363 0.501621 0.437726

Overlapping Template Matching 0.534146 0.595549 0.275709 0.017912

Maurers Universal Statistical 0.366918 0.122325 0.419021 0.897763

Linear Complexity 0.275709 0.249284 0.779188 0.678686

Serial* (m=10) 0.328499 0.495847 0.933624 0.444265

Approximate Entropy (m=10) 0.000000 0.051942 0.262249 0.319084

Cumulative Sums (Cusum) * 0.720350 0.074404 0.368618 0.171384

Random Excursions * 0.396803 0.507812 0.518462 0.356105

Random Excursions Variant * 0.576643 0.289594 0.548078 0.587062

Success 14/15 15/15 15/15 15/15

a negation of bits, the size of the system does not really
impact the speed of these PRNGs, at least for reasonable
values of N. As various N values can be relevant, depending
on the application, we thus investigate whether the statistical
performances of the CI generators are impacted when N
changes.

We can show in Table VII that, for the three CI gen-
erators, various N lead to success for both the NIST and
DIEHARD tests. Concerning the whole TestU01 [18], various
consequences can be dressed. Firstly, the LUT CI generator
is unsuitable for N = 32, due to its too large consumption
of memory resources when generating and using the LUTs.
Secondly, this last generator is the only one capable to pass the
whole TestU01 with only N = 4 cells. Finally, all the proposed
generators have better scores than the XORshift they use.

E. Devaney’s chaos property

Generally, the quality of a PRNG depends, to a large
extent, on the following criteria: randomness, uniformity, in-
dependence, storage efficiency, and reproducibility. A chaotic
sequence may satisfy these requirements and also other chaotic
properties, as ergodicity, entropy, and expansivity. A chaotic
sequence is extremely sensitive to the initial conditions. That
is, even a minute difference in the initial state of the system
can lead to enormous differences in the final state, even
over fairly small timescales. Therefore chaotic sequences fit
the requirements of pseudorandom sequences well. Contrary
to XORshift, our generator possesses these chaotic proper-
ties [12],[10]. However, despite a large number of papers pub-
lished in the field of chaos-based pseudorandom generators,
the impact of this research is rather marginal. This is due
to the following reasons: almost all PRNG algorithms using
chaos are based on dynamical systems defined on continuous
sets (e.g., the set of real numbers). So these generators are
usually slow, requiring considerably more storage space and

lose their chaotic properties during computations. These major
problems restrict their use as generators [19].

In this paper we don’t simply integrate chaotic maps hop-
ing that the implemented algorithm remains chaotic. Indeed,
the PRNG we conceive is just discrete chaotic iterations
and we have proven in [12] that these iterations produce a
topological chaos as defined by Devaney: they are regular,
transitive, and sensitive to initial conditions. This famous
definition of a chaotic behavior for a dynamical system implies
unpredictability, mixture, sensitivity, and uniform repartition.
Moreover, as only integers are manipulated in discrete chaotic
iterations, the chaotic behavior of the system is preserved
during computations, and these computations are fast.

V. APPLICATION EXAMPLE IN DIGITAL WATERMARKING

Information hiding has recently become a major information
security technology, especially with the increasing impor-
tance and widespread distribution of digital media through
the Internet [20]. It includes several techniques like digital
watermarking. The aim of digital watermarking is to embed
a piece of information into digital documents, such as pic-
tures or movies. This is for a large panel of reasons, such
as: copyright protection, control utilization, data description,
content authentication, and data integrity. For these reasons,
many different watermarking schemes have been proposed in
recent years. Digital watermarking must have essential charac-
teristics, including: security, imperceptibility, and robustness.
Chaotic methods have been proposed to encrypt the watermark
before embedding it in the carrier image for these security
reasons. In this paper, a watermarking algorithm based on the
chaotic PRNG presented above is given, as an illustration of
use of this family of CI PRNG.

A. Most and least significant coefficients

Let us first introduce the definitions of most and least
significant coefficients.
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TABLE VII
TESTU01 STATISTICAL TEST

PRNG Battery Parameters Statistics N=4 N=8 N=16 N=32

Single

Rabbit 32 × 109 bits 40 - - - 3

XORshift

Alphabit 32 × 109 bits 17 - - - 0
Pseudo DieHARD Standard 126 - - - 3

FIPS 140 2 Standard 16 - - - 0
Small Crush Standard 15 - - - 1

Crush Standard 144 - - - 29
Big Crush Standard 160 - - - 44

Number of failures 518 - - - 80

Old CI

Rabbit 32 × 109 bits 40 1 2 2 3
Alphabit 32 × 109 bits 17 0 0 2 2

Pseudo DieHARD Standard 126 0 0 0 0
FIPS 140 2 Standard 16 0 0 0 0
Small Crush Standard 15 0 0 1 0

Crush Standard 144 2 9 16 46
Big Crush Standard 160 3 18 30 78

Number of failures 518 6 29 51 129

New CI

Rabbit 32 × 109 bits 40 0 0 0 0
Alphabit 32 × 109 bits 17 0 0 0 0

Pseudo DieHARD Standard 126 2 0 0 0
FIPS 140 2 Standard 16 0 0 0 0
Small Crush Standard 15 0 0 0 0

Crush Standard 144 0 0 0 0
Big Crush Standard 160 0 0 0 0

Number of failures 518 2 0 0 0

LUT CI

Rabbit 32 × 109 bits 40 0 0 0 -
Alphabit 32 × 109 bits 17 0 0 0 -

Pseudo DieHARD Standard 126 0 0 0 -
FIPS 140 2 Standard 16 0 0 0 -
Small Crush Standard 15 0 0 0 -

Crush Standard 144 0 0 0 -
Big Crush Standard 160 0 0 0 -

Number of failures 518 0 0 0 -

Definition 2 For a given image, the most significant co-
efficients (in short MSCs), are coefficients that allow the
description of the relevant part of the image, i.e. its most rich
part (in terms of embedding information), through a sequence
of bits.

For example, in a spatial description of a grayscale image, a
definition of MSCs can be the sequence constituted by the first
three bits of each pixel as shown in Figure 2(b). In a discrete
cosine frequency domain description, each 8 × 8 block of the
carrier image is mapped to a list of 64 coefficients. The energy
of the image is contained in the first of them. After binary
conversion, the first fourth coefficients of all these blocks can
constitute a possible sequence of MSCs.

Definition 3 By least significant coefficients (LSCs), we
mean a translation of some insignificant parts of a medium in

a sequence of bits (insignificant can be understand as: “which
can be altered without sensitive damages”).

These LSCs can be for example, the last three bits of the
gray level of each pixel, in the case of a spatial domain
watermarking of a grayscale image, as in Figure 2(c).

(a) Lena

(b) MSCs of Lena

(c) LSCs of Lena

Fig. 2. Spatial MSCs and LSCs of Lena

Discrete cosine, Fourier, and wavelet transform can be used
to define LSCs and MSCs, in the case of frequency domain
watermarking, among other possible choices. Moreover, these
definitions are not limited to image media, but can easily be
extended to the audio and video media as well.
LSCs are used during the embedding stage: some of the least
significant coefficients of the carrier image will be chaotically
chosen and replaced by the bits of the mixed watermark. With
a large number of LSCs, the watermark can be inserted more
than once and thus the embedding will be more secure and
robust, but also more detectable.
The MSCs are only useful in the case of authentication:
encryption and embedding stages depend on them. Hence, a
coefficient should not be defined at the same time, as a MSC
and a LSC; the last can be altered, while the first is needed
to extract the watermark.
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Fig. 1. Overall Sequence Stability Comparison

B. Stages of the algorithm

Our watermarking scheme consists of two stages: (1) mix-
ture of the watermark and (2) its embedding.

1) Watermark mixture: Firstly, for safety reasons, the wa-
termark can be mixed before its embedding into the image.
A common way to achieve this stage is to use the bitwise
exclusive or (XOR), for example, between the watermark and
the above PRNG. In this paper, we will use another mixture
scheme based on chaotic iterations. Its chaotic strategy, defined
with our PRNG, will be highly sensitive to the MSCs, in the
case of an authenticated watermark, as stated in [12].

2) Watermark embedding: Some LSCs will be substituted
by all bits of the possibly mixed watermark. To choose the
sequence of LSCs to be altered, a number of integers, less
than or equal to the number N of LSCs corresponding to a
chaotic sequence

(
Uk

)
k
, is generated from the chaotic strategy

used in the mixture stage. Thus, the Uk-th least significant
coefficient of the carrier image is substituted by the kth bit of
the possibly mixed watermark. In the case of authentication,
such a procedure leads to a choice of the LSCs which are
highly dependent on the MSCs. For the detail of this stage
see Section VI-A2.

3) Extraction: The chaotic strategy can be regenerated,
even in the case of an authenticated watermarking because the
MSCs have not been changed during the stage of embedding
the watermark. Thus, the few altered LSCs can be found, the
mixed watermark can then be rebuilt, and the original water-
mark can be obtained. If the watermarked image is attacked,
then the MSCs will change. Consequently, in the case of
authentication and due to the high sensitivity of the embedding
sequence, the LSCs designed to receive the watermark will be
completely different. Hence, the result of the recovery will

have no similarity with the original watermark: authentication
is reached.

VI. EVALUATION OF THE PROPOSED SCHEME

In this section, a complete application example of the above
chaotic watermarking method is given and its robustness to
some attacks is studied. This case study enables us to precise
the details of the algorithm and evaluate it.

A. Stages and details

1) Images description: Carrier image is Lena, a 256
grayscale image of size 256 × 256 (see Figure 2(a)). The
watermark is the 64×64 pixels binary image depicted in Figure
3(a). The embedding domain will be the spatial domain. The
selected MSCs are the four most significant bits of each pixel
and the LSCs are the three last bits (a given pixel will at most
be modified of four levels of gray by an iteration). Before its
embedment, the watermark is mixed with chaotic iterations.
The system to iterate, chaotic strategy S n and iterate function
are defined below.

2) Embedding of the watermark: To embed the watermark,
the sequence (Uk)k∈N of altered bits taken from the M LSCs
must be defined. To do so, the strategy (S k)k∈N of the encryp-
tion stage is used as follows:{

U0 = S 0

Un+1 = S n+1 + 2 × Un + n (mod M) (7)

to obtain the result depicted in Figure 4(b). The map θ 7→ 2θ of
the torus, which is a famous example of topological Devaney’s
chaos [13], has been chosen to make (Uk)k∈N highly sensitive
to the chaotic strategy (S k)k∈N. As a consequence, (Uk)k∈N is
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(a) Wa-
termark

(b) Watermarked Lena

(c) Differences with original

Fig. 3. Watermarked Lena and differences

highly sensitive to the alteration of the MSCs. In case of au-
thentication, any significant modification of the watermarked
image will lead to a completely different extracted watermark.

B. Robustness results

To prove the efficiency and the robustness of the proposed
algorithm, some attacks are applied to our chaotically water-
marked image. For each attack, a similarity percentage with
the original watermark is computed. This percentage is the
number of equal bits between the original and the extracted
watermark, shown as a percentage. A result less than or
equal to 50% implies that the image has probably not been
watermarked.

1) Cropping attack: In this kind of attack, a watermarked
image is cropped. In this case, the results in Table VIII have
been obtained. In Figure 4, the decrypted watermarks are
shown after a crop of 50 pixels and after a crop of 10 pixels,
in the authentication case.

(a) Unauthentica-
tion
(10 × 10)

(b) Authentication
(10 × 10)

(c) Unauthentica-
tion
(50 × 50)

Fig. 4. Extracted watermark after a cropping attack (zoom ×2)

By analyzing the similarity percentage between the original
and the extracted watermark, we can conclude that in the
case of unauthentication, the watermark still remains after

TABLE VIII
ROBUSTNESS AGAINS ATTACKS

Attacks UNAUTHENTICATION AUTHENTICATION

C
ro

pp
in

g Size (pixels) Similarity Size (pixels) Similarity

10 99.48% 10 49.68%
50 97.63% 50 54.54%

100 91.31% 100 52.24%
200 68.56% 200 51.87%

R
ot

at
io

n

Angle (degree) Similarity Angle (degree) Similarity

2 97.41% 2 70.01%
5 94.67% 5 59.47%

10 91.30% 10 54.51%
25 80.85% 25 50.21%

JP
E

G
co

m
pr

es
si

on

Compression Similarity Compression Similarity

2 82.95% 2 54.39%
5 65.23% 5 53.46%

10 60.22% 10 50.14%
20 53.17% 20 48.80%

G
au

ss
ia

n
no

is
e

Standard dev. Similarity Standard dev. Similarity

1 74.26% 1 52.05%
2 63.33% 2 50.95%
3 57.44% 3 49.65%

a cropping attack. The desired robustness is reached. It can
be noticed that cropping sizes and percentages are rather
proportional. In the case of authentication, even a small change
of the carrier image (a crop by 10 × 10 pixels) leads to a
really different extracted watermark. In this case, any attempt
to alter the carrier image will be signaled, thus the image is
well authenticated.

2) Rotation attack: Let rθ be the rotation of angle θ around
the center (128, 128) of the carrier image. So, the transforma-
tion r−θ◦rθ is applied to the watermarked image. The results in
Table VIII have been obtained. The same conclusion as above
can be declaimed.

3) JPEG compression: A JPEG compression is applied to
the watermarked image, depending on a compression level.
This attack leads to a change of the representation domain
(from spatial to DCT domain). In this case, the results in Ta-
ble VIII have been obtained, illustrating a good authentication
through JPEG attack. As for the unauthentication case, the
watermark still remains after a compression level equal to 10.
This is a good result if we take into account the fact that we
use spatial embedding.

4) Gaussian noise: A watermarked image can be also
attacked by the addition of a Gaussian noise, depending on
a standard deviation. In this case, the results in Table VIII are
obtained.

C. Security study of the proposed information hiding scheme

For the sake of completeness, and to show the effectiveness
of the method, we will now introduce two other strategies
different from the one given in Eq. 7. The proposed scheme
will be rewritten too, in order to give a more theoretical
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evaluation of the security of the proposed information hiding
algorithm.

1) Reformulation of the scheme: Let us consider the
phase space X = ~1; N�N × BN and the map G f (S , E) =(
σ(S ), F f (i(S ), E)

)
, where σ is defined by σ : (S n)n∈N ∈ S→

(S n+1)n∈N ∈ S, and i is the map i : (S n)n∈N ∈ S→ S 0 ∈ ~1; N�.
Using this rewriting of the chaotic iterations presented previ-
ously, let:

• (K,N) ∈ [0; 1] ×N be an embedding key,
• X ∈ BN be the N least significant coefficients (LSCs) of

a given cover media C,
• (S n)n∈N ∈ ~1,N�N be a strategy, which depends on the

message to hide M ∈ [0; 1] and K,
• f0 : BN → BN be the vectorial logical negation.

So the watermarked media is C whose LSCs are replaced
by YK = XN , where [21]:{

X0 = X
∀n < N, Xn+1 = G f0 (Xn) .

2) New examples of strategies:
a) CIIS strategy: Let us first introduce the Piecewise

Linear Chaotic Map (PLCM, see [22]), defined by:

Definition 4 (PLCM)

F(x, p) =


x/p if x ∈ [0; p]

(x − p)/( 1
2 − p) if x ∈

[
p; 1

2

]
F(1 − x, p) else.

where p ∈
]
0; 1

2

[
is a “control parameter”. Then, we can define

the general term of the strategy (S n)n in Chaotic Iterations with
Independent Strategy (CIIS) setup by the following expression:
S n = bN × Knc + 1, where:

p ∈
[
0; 1

2

]
K0 = M ⊗ K
Kn+1 = F(Kn, p),∀n ≤ N0

in which ⊗ denotes the bitwise exclusive or (XOR) between
two floating part numbers (i.e., between their binary digits
representation). Lastly, to be certain to enter into the chaotic
regime of PLCM [22], the strategy can be preferably defined
by: S n =

⌊
N × Kn+D

⌋
+ 1, where D ∈ N large enough: we thus

iterate the PLCM a certain number of times before taking
terms of the strategy.

b) CIDS strategy: The same notations as above are used.
We define Chaotic Iterations with Dependent Strategy (CIDS)
strategy as follows: ∀k 6 N,

• if k 6 N and Xk = 1, then S k = k,
• else S k = 1.

In this situation, if N > N, then only two watermarked contents
are possible with the scheme proposed previously, namely:
YK = (0, 0, · · · , 0) and YK = (1, 0, · · · , 0). Indeed, in CIIS, the
strategy is independent from the cover media X, whereas in
CIDS the strategy will be dependent on X.

3) Evaluation of the stego-security: Let K be the set of
embedding keys, p(X) the probabilistic model of N0 initial
host contents, and p(Y |K1) the probabilistic model of N0
watermarked contents. We suppose that each host content
has been watermarked with the same key K1 and the same
embedding function e.

Definition 5 The embedding function e is stego-secure if and
only if [23]: ∀K1 ∈ K,p(Y|K1) = p(X).

Let us now study the stego-security of the scheme. We will
prove that,

Proposition 1 The information hiding scheme using the CIIS
strategy is stego-secure, whereas CIDS is not stego-secure.

Proof: Let us suppose that X ∼ U
(
BN

)
in a CIIS

setup. We will prove by a mathematical induction that
∀n ∈ N, Xn ∼ U

(
BN

)
. The base case is immediate, as

X0 = X ∼ U
(
BN

)
. Let us now suppose that the statement

Xn ∼ U
(
BN

)
holds for some n. Let e ∈ BN and Bk =

(0, · · · , 0, 1, 0, · · · , 0) ∈ BN (the digit 1 is in position k).
So P

(
Xn+1 = e

)
=

∑N
k=1 P (Xn = e + Bk, S n = k) . These two

events are independent in CIIS setup, thus: P
(
Xn+1 = e

)
=∑N

k=1 P (Xn = e + Bk) × P (S n = k). According to the inductive
hypothesis: P

(
Xn+1 = e

)
= 1

2N

∑N
k=1 P (S n = k). The set of

events {S n = k} for k ∈ ~1; N� is a partition of the universe of
possible, so

∑N
k=1 P (S n = k) = 1.

Finally, P
(
Xn+1 = e

)
= 1

2N , which leads to Xn+1 ∼ U
(
BN

)
.

This result is true ∀n ∈ N, we thus have proven that,

∀K ∈ [0; 1],YK = XN0 ∼ U
(
BN

)
when X ∼ U

(
BN

)
,

which concludes the first claim of the proposition. Let us now
prove the second part of it.

Due to the definition of CIDS, we have P(YK =

(1, 1, · · · , 1)) = 0. So there is no uniform repartition for the
stego-contents YK .

VII. CONCLUSION AND FUTURE WORK

In this paper, the pseudorandom generator proposed in
our previous works has been improved in terms of speed
and randomness. By using some well-defined Lookup Tables
and due to a rewrite of the way to generate strategies, the
generator based on chaotic iterations works faster and is more
secure. The speed and randomness of this new LUT CI PRNG
has been compared to its former versions and to XORshift.
This comparison shows that LUT CI(XORshift, XORshift)
offers a sufficient speed and level of security for a whole
range of Internet usages as cryptography and data hiding.
This generator has been used to develop a scheme in the
information hiding domain, whose robustness and security has
been detailed in the previous section. Further readings about
the security of such a chaos-based watermarking scheme can
be found in, e.g., [24], [25].

In future work, we will continue to explore new strategies
and iteration functions. Its chaotic behavior will be deepened
by using the various tools provided by the mathematical theory
of chaos. New statistical tests will be used to compare this
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PRNG to existing ones. Additionally a probabilistic study of
its security will be done. Lastly, new applications in computer
science will be proposed, especially in the Internet security
field.
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