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ABSTRACT 

In case of a radiological emergency situation involving accidental human exposure, a dosimetry 
evaluation must be established as soon as possible. In most cases, this evaluation is based on 
numerical representations and models of victims. Unfortunately, personalised and realistic human 
representations are often unavailable for the exposed subjects. However, accuracy of treatment 
depends on the similarity of the phantom to the victim. The EquiVox platform (Research of Equivalent 
Voxel phantom) developed in this study uses Case-Based Reasoning (CBR) principles to retrieve and 
adapt, from among a set of existing phantoms, the one to represent the victim. This paper introduces 
the EquiVox platform and the Artificial Neural Network (ANN) developed to interpolate the victim’s 
3D lung contours. The results obtained for the choice and construction of the contours are presented 
and discussed. 
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1. INTRODUCTION 

In case of accidental exposure to radiation, a dosimetry evaluation must be established for each victim 
as soon as possible. In most cases, this evaluation is based on available 3D voxel Phantoms, numerical 
models created from medical images to represent the imaged subject with maximum realism. 
Examples of voxel phantoms for dosimetric assessment following internal contamination or external 
exposure can be found [1, 2, 3, 4, 5]. However, even when medical images are available, the victim’s 
specific phantom is not always accessible since its construction is delicate and time consuming, and in 
emergency cases such time and effort are unaffordable. Moreover, medical images are avoided so as to 
prevent any additional exposure to radiation. Thus, existing models are used even if their 
characteristics differ from the victim’s biometrical data. Dosimetry assessment accuracy and the 
resulting decontaminating medical action is nevertheless highly dependent on the similarity between 
phantom and victim. Hence, the actual work aims at assisting the physician in choosing the fittest 
phantom from the existing and available ones. 

Case-Based Reasoning (CBR) is a problem solving method that uses similar solutions from similar 
past problems in order to solve new problems [6]. Based on the ReEPh (Research of Equivalent 
Phantom) project [7,8], the EquiVox project strikes a new path in the field of problem solving methods 



for the retrieval and the adaptation of 3D phantoms. It uses the CBR-approach to find the most similar 
phantom(s) within any set of phantoms and then attempts to adapt them to the characteristics of the 
target case (the victim). Actually, ReEPh was not able to automatically create new phantoms: it only 
allowed the retrieval and the classification of the stored phantoms through the Graphical User 
Interface (GUI) and the implementation of a K-nearer neighbour (K-nn) algorithm. Whereas the 
ReEPh project’s main purposes were only to retrieve the most accurate stored phantom(s), considering 
a set of known characteristics, and to help the experts in their choice, EquiVox introduces an original 
tool allowing the stored phantoms to be adapted to the victim. This automatic adaptation uses an 
Artifical Neural Network (ANN) tool [9, 10, 11] and requires implementation of a learning step before 
the CBR-adaptation process. 

A large number of phantoms can be found in the literature [12, 13, 14, 15, 16, 17, 18], and radiation 
protection is also divided into numerous sub-domains. Indeed, some phantoms are commonly used by 
experts for external radiotherapy, and others are used by other physicians for evaluation of internal 
doses received. In fact, each expert has his own set of 10 to 20 phantoms. When physician’s usual 
phantoms are all too distant from the victim, the expert must create a new one. Indeed, using iterative 
3D dilatations and contractions, physicians modify the contours of the 3D organs of their phantoms 
until they correspond to those of the victim. They then put them together and obtain the final phantom 
on which the computations will be based [19]. Thus, the adaptation rules are guided by their 
experience and knowledge. The main challenge of EquiVox is to reproduce the same transformation 
process automatically, without human intervention. 

Another requirement of ReEPh and EquiVox is to be able to use any set of phantoms and to help the 
physician to capitalise on them. We also hope that such a platform will be used to automatically create 
a well-fitting phantom for each victim in order to increase the accuracy of dose calculations. At this 
step of the implementation of EquiVox, we relied on phantoms usually used by a team of experts for 
pulmonary anthroporadiametry which consists of evaluating the internal dose inhaled. 

2. CASE MODELISATION 

When radiation overexposure occurs, a dosimetric report must be established for all victims. For each 
victim, the experts’ first task is to choose the most accurate 3D phantom considering the information 
known about the victim. Each phantom has its own characteristics and is chosen by comparing the 
victim’s available measurements and information to his/her characteristics. The phantom is thus 
chosen by analogy. 

As explained, the experts choose the phantom according to the characteristics of the victim. We have 
exhausted the list of useful characteristics furnished by the physicians of the French Institute of 
Radiation and Protection (IRSN). 

Thus, in EquiVox, a problem is described as a set of r descriptors {d1, … , dr}. 

Each expert has his own set of n phantoms: SP = {P1,  , … , Pn}.  

Each Pi is the solution part of a case and represents the contours of m organs.  

Each organ O is a set of q points joined by a Delaunay mesh [20]: Pi={P i
1, … , Pi

m} and Pi
o={C1

i,o, … , 

Cq
i,o} where Cj

i,o denotes the 3D coordinates of point j of organ O of phantom Pi. O ∈ {lung, heart, 
liver, sternum, ribs, scapulae, spine, breasts, skin, oesophagus and thorax}. 

Finally, a case i is: i = { {d 1
i , … , dr

i}, Pi}. We will note t as target case. 



3. RETRIEVAL PHASE 

The purpose of this phase is to sort the phantoms of the EquiVox case-base according to information 
concerning the victim, even if incomplete. Hence, the number of known descriptors influences the 
level of confidence in the proposed EquiVox ranking. Thus, along with the similarity index (Si), a 
confidence index (C) is assessed to associate an error with the retrieved solution. 

In addition, some descriptors may be very important for some types of calculations while others may 
be totally neglected. Since the purpose of EquiVox is to retrieve and adapt phantoms, whatever their 
use, our platform must take into account the importance of each descriptor. Thus, the descriptors were 
weighted, taking into account their importance and influence. As presented in Equations (1) and (2), 
these weights {λ1 , … , λr} are quantitative values associated to each descriptor, amplifying or reducing 
the differences between t and i. They thus stress on the relative influence that one measure represents 
in comparison to the others. 

In fact, when a new problem occurs, some of the victim’s characteristics may be unavailable. Thus, a 
Boolean value δk is associated to each dk. δk is equal to 0 if the value of dk is unknown, and to 1 
otherwise. 

Hence, a classical algorithm for similarity calculation was used, namely the K-nn Algorithm that 
enables a weight to be applied to the descriptor values. 

The Si value is equivalent to the sum of the distances between the descriptors of i and t, each weighted 
accordingly. It is given by the following equation: 

(1)  

. 
∆k is the difference between the maximum and the minimum known values that the descriptor dk can 
take. The Si value is always between 0 and 1. The greater the similarity of i to t, the closer the Si value 
is to 1. 

Since Si only takes into account the known values of t, the confidence index C must be taken into 
account to define the calculation uncertainty. The more values we know, the higher the confidence 
index. Indeed, if the victim’s age is the only known criteria, the similarity value calculated is totally 
insignificant. So C takes into account the number of known values according to the following formula: 

(1)  

In addition, the EquiVox GUI (Graphical User Interface) allows users to graphically compare t to each 
source case i of the case-base. The plotted graph represents a multitude of axes, each equivalent to one 
descriptor of the case. On each axis, the value of the target case descriptor and the one of the selected 
source case are reported. When no descriptor value is given for t, the axis value is put at null; the 
descriptor value of i is still reported on the graph. If the characteristics of i and t are the same, the areas 
will be merged. Thus, the larger the overlapping areas, the more similar i is to t. 

4. ADAPTATION OF 3D LUNG CONTOURS 

Once a matching case is retrieved, the expert can decide either to use the phantom of the most similar 
source cases, or require the EquiVox platform to generate a new phantom, adapting the source cases to 



the target one. Indeed, if some available phantom measurements are too different from those of the 
victim, the expert may decide to adapt one of them or even to create a new phantom which may be 
reused for other problems later. Thus, when the expert requires the generation of a new phantom, the 
contours of the m organs are expected.  

Actually, the first organs experts create in such a personalised process are the lungs. The positions and 
volumes of the other organs are deduced from the lungs. Thus, we first considered the adaptation of 
3D lung contours. 

4.1. Solution space modelisation for 3D lung contours 

As presented in Section 2, the lung contours of phantom Pi are defined in 3D by a set of q points 
joined by a Delaunay mesh: Pi

lung = {C1
i,lung , … , Cq

i,lung} where Ck
i,lung denotes the 3D coordinates of 

point k: Ck
i,lung = {xk

i,lung , yk
i,lung , zk

i,lung}.  

For all the phantoms, the same number of points defines the 3D contours of the lungs. The points have 
been plotted in the same order and in the same Cartesian coordinate system. Thus, the task of the lung 
contour-adaptation phase of EquiVox consists of interpolating the 3D coordinates of the points of t in 
the same order and in the same Cartesian coordinate system. A Delaunay mesh can then be applied so 
as create the contours of the lungs of t. 

4.2. Adaptation rules 

Actually, lung contours and volumes depend mostly on the size of the victim. Indeed, for the lungs, I. 
Clairand et al. [21] proved that the height of a person prevailed for their geometry and volume.  

Thus, when experts decide to create the lung contours of a victim, they choose the lung contours of the 
stored phantom whose height is the closest without taking into account any other characteristic. The 
adaptations are usually done manually, applying mathematical transformations (2D and 3D 
contractions and dilations [19]). These transformations are carried out through 3D modelling tools 
(such as Rhinoceros [22] or CATIA [23]).  

In addition, these transformations are only driven by experience, trials and errors, and may take many 
hours or more. The delay also increases with the number of victims whereas the problem resolution 
delay may be limited. Indeed, in the case of massive irradiation for example, when a disaster such as a 
nuclear explosion occurs, dosimetric reports are required for hundreds of people of different sizes. 

In fact, the creation of new lung contours requires a fast data-driven method, and since there is no 
physical law to governing its design, the expert is not able to explicit a rule for the transformation of 
the lung contours. 

4.3. Method 

Since the mesh and the number of points are not variable, the adaptation must be carried out on the 
point coordinates of the lung contours, point by point. Since no formal equation exists, we must 
discover through a learning method the rules that transform the coordinates of the points on one lung 
contour into other coordinates.  

Consequently, data-driven methods using inductive reasoning are the most suitable approaches; ANN 
and Fuzzy-ANN respond to these requirements. We chose ANN as the tool for this step, assuming this 
could serve as the basis for further work with Fuzzy-ANN if the first results were not convincing.  



We explored the possibility of using a multi-layer perceptron trained with a backpropagation-based 
method. Other interpolation methods were tested: polynomial and Spline ones (cf Subsection 4.3.2). 

4.3.1. ANN inputs, outputs and topology 

To interpolate the 3D lung contours, the height is required. Actually, this is one of the descriptors of 
the EquiVox target and source cases. Let us note hi the descriptor corresponding to the height of the 
case i and ht, the height of the target case t. 

Actually, two different configurations were tested: firstly one ANN with 9 inputs and 3 outputs, and a 
second one with 5 inputs and 1 output. For both of these configurations, two phantoms were 
considered: 

• The source case inf for which hinf is inferior and the closest to ht; 

• The source case sup for which hsup is superior and the closest to ht. 

For the first configuration, the trained ANN interpolates the 3 coordinates of each point of the lung 
contours separately. Thus, the 9 inputs permitting interpolation of the coordinates Ck

lung of the point k 
of t are: 

• The 3 coordinates of point k of the lung contours of inf: Ck
inf,lung = {xk

inf,lung , yk
inf,lung , zk

inf,lung}; 
• The height of inf: hinf; 
• The 3 coordinates of point k of the lung contours of sup: Ck

sup,lung ={xk
sup,lung , yk

sup,lung , 
zk

sup,lung}; 
• The height of sup: hsup; 

• The height of the target case: ht. 

For the second configuration, 3 trained ANN are required: the first ANN learns how to interpolate first 
coordinate x, the second deals with y and the third is dedicated to the interpolation of z. In fact, the 
same ANN is duplicated 3 times. The coordinates are learned separately, thus the inputs of the first 
ANN allowing the interpolation of coordinate xk from t are: 

• xk
inf,lung; 

• hinf; 
• xk

sup,lung; 
• hsup; 

• ht. 

For the second ANN xk
inf,lung and xk

sup,lung are respectively replaced by yk
inf,lung and yk

sup,lung, and zk
inf,lung 

and zk
sup,lung for the third ANN. 

The designed ANN are perceptrons having one hidden layer. There are 10 neurons on the hidden layer 
with a sigmoid activation function. The activation function of the neurons belonging to the output 
layer is linear.  

Such topologies were also chosen and tested with success on the NEMOSIS platform [10] for a similar 
issue: considering a point inside the lungs of a patient, its initial position (when inspiration is 
maximum) and its final one (when inspiration is minimum), a similar ANN interpolated the positions 
of the point during an entire breathing cycle with an error inferior to the spatial resolution of the 
medical images on which the point had been plotted. For NEMOSIS, the number of neurons on the 
hidden layer was optimized using a validation set in addition to the learning set used for the learning 



step. Due to the small number of phantoms (12 phantoms), we decided, for this first step of the 
implementation of the adaptation, not to consider a validation set. Thus, the learning set was composed 
of 9 phantoms, while the 3 remaining phantoms belonged to the test set. We assumed that such a 
topology would deliver sufficiently accurate results. Nevertheless, such a strategy to optimise the 
number of neurons on the hidden layer would have to be implemented in later work. 

4.3.2. ANN learning set and training step 

Training ends when the difference between the expected and the obtained values is minimised. W. 
Hsieh [24] distinguished four algorithms based on the backpropagation method: 

• The BFGS method (Broyden-Fletcher-Goldfarb-Shanno) is a quasi-Newton method, which 
approximates the value of the Hessian matrix of the second derivatives of the function to be 
minimised; 

• The L-BFGS method (Limited memory – BFGS) is an adaptation of the BFGS method which 
optimises the computational resources to use. Both of these methods must be coupled with a 
Wolfe linear search in order to determine an optimal step size between two iterations; 

• The Rprop (Resistant backpropagation) method proposes a first order algorithm but its 
complexity increases linearly with network topology; 

• The iRpropPlus method is one of the fastest and also one of the most accurate algorithms [25]. 
This evolution of the Rprop method allows cancelling some synaptic weight updates in the 
neural network if a negative effect is observed. 

All of these methods were implemented and tested in the EquiVox adaptation phase of lung contours. 
Different required precisions were also tested. Table 1 shows the algorithm that gives the best 
interpolations. 12 interpolations were tested and BFGS gave the best results 11 times. Thus, BFGS 
algorithm with 10-6 as required precision was chosen to train an ANN. 

5. IMPLEMENTATION, TESTS AND RESULTS 

5.1. EquiVox architecture 

The Equivox platform has been implemented and tested on a Personal Computer  equipped with an 
Intel Core 2 Duo CPU, 2.26 GHz, and 2 GiB RAM. The source case descriptors are stored in a 
mySQL database management system (DBMS). Two programming languages were used: Java and C. 
The retrieval phase, the GUIs, and the storage phase modules developed by our team in Java call C 
programs also developped by our team for the adaptation phase. The phantoms were drawn using 
Rhino3D. 

Figure 1 presents the technologies that were used and the data flows over the EquiVox architecture. 
All the phantoms are stored in Rhino3D files. Their characteristics are stored in a database (data flow 
#0 in Figure 1), the lung contours are extracted (data flow #1) and then transmitted to the ANN 
training module (data flow #2) which creates the ANN (data flow #3). When a new phantom is 
required, the target case description is transmitted to the retrieval module (data flow #4) which 
determines the similitude and confidence indices taking into account the source case (data flow #5). If 
required by the experts, the lung adaptation module sends the characteristics of the source cases (data 
flow #6) to the ANN interpolation module (data flow #7) which loads the trained ANN (data flow #8) 
and the coordinates of the contour of the lungs in question (data flow #9) in order to create 
interpolated contours suited to the target case (data flow #10). 

5.2. EquiVox test case-base 



The particular domain of pulmonary anthroporadiametry applied to female subjects was considered for 
the performance evaluation of the EquiVox retrieval and adaptation phase. 

The EquiVox case-base used for the tests contained 24 whole 3D phantoms with 3D organ contours 
and characteristics. These phantoms were manually designed from the ICRP standard female phantom 
[12] for pulmonary anthroporadiametry computations by the team of internal dose evaluation of IRSN 
[19]. These 3D phantoms were developed to cover as well as possible the diversity in the female 
population: thoracic phantoms of cup sizes ranging from A to F and chest girth from 85 to 120 
(European Standard Clothing Units) [26]. These phantoms were developed for in vivo lung counting 
optimisation where volume and weight precisions are available for the following structures: lungs, 
heart, liver, sternum, ribs, scapulae, spine, breasts, skin, and thorax. The following external 
measurements are also available: age, sex, height, weight, cup size, and chest girth (chest and under-
bust circumferences). Thus, all these female phantoms and characteristics formed the 24 source cases 
of the tested EquiVox case-base.  

The experts determined a list of 14 descriptors having varying degrees of influence in the choice of 
phantom for this type of calculation. These descriptors are age, height, weight, sex, wether the victim 
smokes or not, thorax volume, lung volume, extrathoracic thickness, fat-muscle proportion, under-bust 
circumference, wrist diameter, chest circumference, heart volume, and the victim’s origin (target case) 
/ phantom (source case). 

For the adaptation phase tests, the 3D lung contours of these 24 phantoms had been considered and 

extracted. In fact, there are 9 distinct 3D lung contours LCi, i∈ {1,…,9}. For example, a phantom with 
a 90B thorax and one with a 90C have the same 3D lung contours since breast and lung volumes and 
contours are not correlated at all. Thus, 9 distinct phantom heights are reported in Table 2. Each one of 
these 9 3D lung contours is composed of 26723 points plotted in the same order and in the same 
Cartesian reference system as required by EquiVox modelisation. 

5.3. Retrieval phase performances 

In order to evaluate the performance of the EquiVox retrieval phase, the measurements of 80 different 
female subjects randomly selected from the CAESAR database [27] (Civilian American and European 
Surface Anthropometry Resource database) were considered as target cases descriptions. The latter is 
a database of over 2000 optical scans of Italian and Danish male and female subjects. Some of their 
measurements (age, sex, origin, and weight) are also stored with these scans and the spatial resolution 
enabling calculation of chest girth, cup size, and the height of each subject. 

Farah et al. [19, 28] determined 5 sets of victim characteristics which influence the pulmonary 
anthroporadiametry dose computations. The weights λk of the associated descriptors from the set 
influencing the phantom choice the most were set at 4, whereas the weights of those with no influence 
on that type of computation were set at 0. In the case of in vivo counting, it is known that the chest 
circumference and lung volumes are the most important parameters [29]. Hence, their associated 
weights were given the highest value: 4. Moreover, in this example, the weights associated to the 
internal volumes were set at 0.  

For each target case, we compared the source case the expert would have chosen to the classification 
proposed by the EquiVox retrieval phase.  For 75 target cases, the experts and the EquiVox retrieval 
phase chose the same source case first. Thus, 5 times, the EquiVox retrieval phase put the source case 
chosen by the experts in second place. Consequently, in 93.75% of the cases, EquiVox chose the most 
accurate source case regarding the target case description. The 5 target cases, for which the EquiVox 



retrieval phase missed the most accurate solution, can be explained by the influence of all other 
informed descriptors (age, height, weight, etc.). In fact, the difference between the values of these 
descriptors in these 5 target cases adds up and leads to a low similarity index. In addition, when no 
descriptor weighting was assigned (λk=1 ∀ k=1 , … , 14), the EquiVox retrieval phase put the most 
accurate source case in first place only 54 times. 

Table 3 presents an example of the similitude and confidence indexes obtained when comparing the 
same target case to two very different source cases. The descriptor values of source cases 85A and 
120F, and one of the tested target cases are presented. The weights are also reported in this table. The 
S85A computed for source case 85A was equal to 0.765, meaning that the target case and 85A 
corresponded up to 76.5% considering the available descriptor values. In the other column of Table 3, 
S120F=0.573 for that same target case. For that target case, C=0.8. In addition, when all the weights 
were set at 1, S85A=0.510, S120F=0.545 and C=0.622. This example emphasizes the importance of the 
confidence index and also the weights associated to the descriptors: different configurations must be 
carefully studied by the experts before launching the EquiVox retrieval phase. 

5.4. EquiVox graph comparison module 

In addition to the classification, the EquiVox GUI allows the experts to graphically compare each 
source case to the target case. For example, Figure 2 shows the graphical representations of the 
comparisons of the Table 3 target case (dark areas of both graphs) to source cases 85A and 120F (light 
areas of both of the graphs). On each axis the values of one descriptor are plotted (that of the target 
case and that of the source case) taking into account the associated weight. Actually, for each 
descriptor, the weighted distance between the values is normalised according to the weights. For 
example, considering notations of Equations (1) and (2), the reported values on the axis corresponding 

to dk would be assuming Dk is the maximum possible value for this descriptor. Moreover, the 

axes on which the victim values are known are dynamically brought together in the same area of the 
graph. Nevertheless, it is also possible for the expert to visualise the graph without normalisation 
and/or bringing them together. 

The merged areas represent the similarities between the two cases. Considering 85A, the known 
characteristics of the victim match reasonably well, and thus most of the points on the different axes 
are merged, whereas they are very different on the graph comparing the same target case to 120F. 
With this GUI, the similarity of cases can be straightforwardly observed and the observation is 
confirmed by the numerical values obtained (S85A and S120F). It is also very simple to see what the 
critical characteristics are and to form an idea of the differences between the two cases. In our case, 
some descriptors, such as sex or origin, which may be considered as the most important criteria, are of 
limited influence for the Si calculation. Indeed, all the source cases and the tested target cases are of 
the same sex and origin (European female). 

5.5. Performance of the 3D lung contour adaptation 

The method was validated in three steps. First, different interpolation methods were tested over a 
sample of 10 points on each set of 3D lung contours. Then, a second round of tests was performed on 
all the sets of lung contour coordinates in order to determine the best ANN configuration and 
topology. Finally, we evaluated the performance of the EquiVox adaptation strategy using 3 new 3D 
lung contours. 

5.5.1. Interpolation method choice 



The best ANN configuration has been compared to a polynomial (Newton, of degree 2) and a Spline 
interpolation method. The Newton and Spline interpolators were implemented with Scilab 5.3.2 [30]. 
The Newton interpolation function proposed by J. Ponce and R. Brette in [31] and the Spline method 
proposed by Scilab were implemented and adapted. The coordinates of 10 points were randomly 
extracted from all the lung contours. For each method, a cross-validation for the same 10 points was 
undertaken using the same 9 lung contours of Table 2. Figure 3 presents the mean distances between 
interpolated and expected coordinates. This figure shows that the polynomial interpolation produced 
the greatest errors among the three tested interpolations. A factor nearly equal to 10 can be observed 
between the polynomial interpolation and that of the Spline or the ANN. The Spline and the ANN 
interpolations gave closer errors. Nevertheless, for all the tested cases, the ANN interpolation errors 
were inferior to the Spline ones 6 times and equal only once. These results prove the superiority of the 
ANN interpolations over the other methods since the ANN interpolation gave a more accurate result in 
all the tested cases.  

5.5.2. ANN configuration choice 

At this step of the choice, a cross-validation was performed since the learning set contained only 9 
different sets of coordinates (3D lung contours LC): LS={LCi}, i ∈ {1, … , 9}. Seven different subsets 

of LS were considered and tested. The subset  LSj was built to satisfy LSj = {LC i}, i ∈ {1, … , 9} and i≠ 

j ∀ j ∈ {2,…,8}. Indeed j was never fixed at 1 or 9 since a smaller and higher phantom are always 
required for the interpolation (cf. Subsection 4.3.1). When the ANN was trained with LSj, it was 
evaluated with the interpolation of LCj. The configurations with 9 and 5 inputs were evaluated (cf 
Subsection 4.3.1). Since the number of learning sets is not important, we also explored the possibility 
of using the median value instead of the mean-square error to stop the ANN learning. Indeed, the 
median value converges more rapidly than that of the mean-square to the “average” value of a small 
set of items. We assumed this property of the median could influence the accuracy of the ANN 
interpolations. 

Table 4 presents mean errors obtained when the different trained ANN (cf. subsection 4.3.1) 

interpolated each LCi, I ∈ {2,…,8}. For the configuration with xyz interpolated together, and mean 
square error as criterion to stop the training ([xyz grouped, mean square error]), the mean distances 
between the interpolated and expected points vary from 0.51 mm to 3.94 mm. For the configuration 
with one ANN for each coordinate and the same criterion to control the ANN training ([x/y/z 
separated, mean square error]), the mean distances between the interpolated and expected points vary 
from 0.70 mm to 7.90 mm. This configuration gives a better result for only one case: ht = 1680.3 mm; 
for all the others, the results are worse. The last configuration with 3 ANN and the median as criterion 
to stop the training ([x/y/z separated, median]), the mean distances are the highest of the 3 
configurations for ht ∈ {1675.4 ; 1680.3}, and lower than the second one, but higher than the first in 
all the other cases. Thus 6 times out of 7, the mean error obtained with the [xyz grouped, mean square 
error] configuration is inferior to the others. Indeed, the first configuration interpolates the coordinates 
with the lowest error, which is almost always inferior to 1.93 mm and at most equal to 3.94 mm. We 
assume that considering the 3 coordinates together is better than considering them separately since 
there is interaction among them. When they are considered separately, these interactions are not taken 
into account.  

In addition, even if the results obtained with the use of the median are better than those found with the 
mean-square for the 5 ANN inputs, it is still less accurate than the mean-square with 9 inputs. This is 
probably due to the great number of coordinates to learn (26723). 



5.5.3. Performance of the adaptation strategy for 3D lung contours 

The final tests were performed with the entire learning set and 3 new sets of 3D lung contours. For 
these 3 new sets, a height has been carefully chosen to test all the possible cases: the first height is just 
above the smaller stored one, the second is just bellow than the higher stored one, and the last is in the 
middle of the stored panel of stored heights. Only the 3D lung contours have been manually created by 
the experts, no other organ contours. Since the 3D lung contours alone were designed, these phantoms 
were used only for these last tests and not stored in the EquiVox case, nor where they used during the 
ANN learning. In addition, the same manual creation process has been followed for all of LS.  

Table 5 shows the mean distances observed between the interpolated and expected points for each ht 
and ANN configuration. For the [xyz grouped, mean square error] configuration, the mean distances 
vary from 0.55 mm to 1.65 mm. These distances are all inferior to the mean distances obtained with 
the third configuration ([x/y/z separated, median]) which vary between 2.17 mm and 5.84 mm. This 
third configuration almost gives almost better results than the second ([x/y/z separated, mean square 
error]) for which the mean distances vary from 2.54 mm to 7.22 mm. Therefore, the results presented 
in Table 5 show the superiority of the configuration using the mean-square error while the coordinates 
are learned together: the errors, which are equal or below 1.65 mm, are the lowest. For the other 
configurations, the difference is slightly higher but still reasonable. 

The calculations of dosimetric reports are usually computed using a voxelised phantom. The 
commonly used dimensions of the voxels are 1.8 mm by 1.8 mm by 4.8 mm [19, 28]. For the first 
configuration (a single ANN), the largest mean error is equal to 1.65 mm (inferior to the spatial 
resolution of commonly used phantoms). Thus, such 3D lung contours, generated by this ANN, can be 
used to establish dosimetric reports. The other configuration with identically trained ANNs, delivers 
coordinates that are insufficiently accurate. 

The results presented in this paper are encouraging and lead to the creation of 3D lung contours 
matching those of a target case. Nevertheless, this adaptation strategy is based on phantoms that may 
contain errors in comparison with the expected lung contours of a real victim: these contours are 
already representations of reality with uncertainties. Thus, biases may have been introduced by one or 
more LCi incorrectly designed. The ANN implemented in the EquiVox adaptation phase for 3D lung 
contours may reduce the impact of these errors since an ANN is an interpolation tool, but further 
research is needed to verify the necessary accuracy of LS. Another point is the generalisation of this 
adaptation strategy to the contours of the other organs. In fact, for other organ volumes and contours, 
one or more other parameters and measurements must be taken into account in the adaptation process, 
such as weight, fat-muscle proportion, and/or wrist diameter. 

6. CONCLUSION 

The EquiVox platform was developed to be used in emergency situations where a rapid and reliable 
decision is required in order to choose the best 3D phantom to perform dosimetry calculation and 
establish a dosimetric report. The choice is made using the CBR approach based on the feedback from 
previous similar experiences. EquiVox helps the experts in choosing the most adapted 3D phantom by 
means of the computation of indices for similarity and confidence. The similarity index defines the 
equivalence between the target case and the source case, whereas the confidence index highlights the 
uncertainty in the similarity calculation. The tests performed on an average set of target cases gave an 
efficiency of 85% in the application case of in vivo female counting for pulmonary 
anthroporadiametry. This version also presents an efficient and customisable graphic interface 
allowing comparison of the target to the source cases.  



In this version, different adaptation strategies for the interpolation of 3D lung contours were evaluated. 
The configuration based on a perceptron with one hidden layer, 9 inputs, 3 outputs, and a quasi-
Newton BFGS backpropagation-based method as an ANN training algorithm gave the best results. 
The different neural networks that were implemented produced convenient preliminary results 
showing that such an ANN can efficiently and quickly reproduce the exact positioning of different 
points once the learning step is achieved. 

Further work will focus on two major axes. The first will be the evaluation of the biases inferred by 
each source case solution. Indeed, these solutions are phantoms designed manually by the experts and 
do not represent exact reality. Our ambition with this first axis is to propose a tool capable of 
determining the best learning subset for the ANN. The second is to enlarge this adaptation tool to 
include all other 3D organ contours of the phantoms. Hence, if the lung volumes and contours depend 
on a person’s entire height, then other organ volumes and contours depend on one or more other 
measurements. 
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