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ABSTRACT

In case of a radiological emergency situation imvg accidental human exposure, a dosimetry
evaluation must be established as soon as possiblelost cases, this evaluation is based on
numerical representations and models of victimsfoldanately, personalised and realistic human
representations are often unavailable for the eghbasubjects. However, accuracy of treatment
depends on the similarity of the phantom to th&émicThe EquiVox platform (Research of Equivalent
Voxel phantom) developed in this study uses Casm@#&Reasoning (CBR) principles to retrieve and
adapt, from among set of existing phantoms, the one to representittim. This paper introduces
the EquiVox platform and the Artificial Neural Nedvk (ANN) developed to interpolate the victim’s
3D lung contours. The results obtained for the eh@nd construction of the contours are presented
and discussed
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1. INTRODUCTION

In case of accidental exposure to radiation, andelsy evaluation must be established for eachmicti
as soon as possible. In most cases, this evaluatlmased on available 3D voxel Phantoms, numerical
models created from medical images to representirtteged subject with maximum realism.
Examples of voxel phantoms for dosimetric assessfoiowing internal contamination or external
exposure can be found [1, 2, 3, 4, 5]. Howevernavken medical images are available, the victim’'s
specific phantom is not always accessible sinceditstruction is delicate and time consuming, and i
emergency cases such time and effort are unaffedsloreover, medical images are avoided stwas
prevent any additional exposure to radiation. Thasisting models are used even if their
characteristics differ from the victim's biometricdata. Dosimetry assessment accuracy and the
resulting decontaminating medical action is nevde$s highly dependent on the similarity between
phantom and victim. Hence, the actual work aimass#isting the physician in choosing the fittest
phantom from the existing and available ones.

Case-Based Reasoning (CBR) is a problem solvindnadethat uses similar solutions from similar
past problems in order to solve new problems [@sd&l on the ReEPh (Research of Equivalent
Phantom) project [7,8], the EquiVox project strilkkesew path in the field of problem solving methods



for the retrieval and the adaptation of 3D phantdingses the CBR-approach to find the most similar
phantom(s) within any set of phantoms and thenmgite to adapt them to the characteristics of the
target case (the victim). Actually, ReEPh was rigie a0 automatically create new phantoms: it only
allowed the retrieval and the classification of th®red phantoms through the Graphical User
Interface (GUI) and the implementation of a K-neameighbour (K-nn) algorithm. Whereas the
ReEPh project’s main purposes were only to retribeemost accurate stored phantom(s), considering
a set of known characteristics, and to help theeggpn their choice, EquiVox introduces an orifjina
tool allowing the stored phantoms to be adaptethéovictim. This automatic adaptation uses an
Artifical Neural Network (ANN) tool [9, 10, 11] anekquires implementation of a learning step before
the CBR-adaptation process.

A large number of phantoms can be found in theditee [12, 13, 14, 15, 16, 17, 18], and radiation
protection is also divided into numerous sub-domaindeed, some phantoms are commonly used by
experts for external radiotherapy, and others aral by other physicians for evaluation of internal
doses received. In fact, each expert has his owonfsk0 to 20 phantoms. When physician’s usual
phantoms are all too distant from the victim, tkpest must create a new one. Indeed, using iterativ
3D dilatations and contractions, physicians modlify contours of the 3D organs of their phantoms
until they correspond to those of the victim. Thiegn put them together and obtain the final phantom
on which the computations will be based [19]. Thtis&e adaptation rules are guided by their
experience and knowledge. The main challenge of\EExuis to reproduce the same transformation
process automatically, without human intervention.

Another requirement of ReEPh and EquiVox is to ble & use any set of phantoms and to help the
physician to capitalise on them. We also hopeghah a platform will be used to automatically ceeat
a well-fitting phantom for each victim in order itacrease the accuracy of dose calculations. At this
step of the implementation of EquiVox, we reliedmrantoms usually used by a team of experts for
pulmonary anthroporadiametry which consists of @atithg the internal dose inhaled.

2. CASE MODELISATION

When radiation overexposure occurs, a dosimetgortanust be established for all victims. For each
victim, the experts’ first task is to choose thesinaccurate 3D phantom considering the information
known about the victim. Each phantom has its owaratteristics and is chosen by comparing the
victim's available measurements and informationhts/her characteristics. The phantom is thus
chosen by analogy.

As explained, the experts choose the phantom aicgptd the characteristics of the victim. We have
exhausted the list of useful characteristics fimads by the physicians of the French Institute of
Radiation and Protection (IRSN).

Thus, in EquiVox, a problem is described as a setdescriptorddy, ... , d}.
Each expert has his own setgphantomsSP = {P,, , ..., RB}.
EachP; is the solution part of a case and representsah®urs of m organs.

Each orgarO is a set ofj points joined by a Delaunay mesh [2BE{P, ... , F™} andP°={C", ...,
qu'o} whereCji'0 denotes the 3D coordinates of pgirgf organO of phantomP;. O /7 {lung, heart,
liver, sternum, ribs, scapulae, spine, breasts),s¢sophagus and thorax}

Finally, a caséis:i={{d{, ..., d}, P}. We will notet as target case.



3. RETRIEVAL PHASE

The purpose of this phase is to sort the phantdiiseoEquiVox case-base according to information
concerning the victim, even if incomplete. Hendee tumber of known descriptors influences the
level of confidence in the proposed EquiVox rankifigus, along with the similarity indexXg), a
confidence indexQ) is assessed to associate an error with thevettisolution.

In addition, some descriptors may be very imporfansome types of calculations while others may
be totally neglected. Since the purpose of Equii$oto retrieve and adapt phantoms, whatever their
use, our platform must take into account the ingraré of each descriptor. Thus, the descriptors were
weighted, taking into account their importance aitlience. As presented in Equations (1) and (2),
these weight$l, , ... ,A;} are quantitative values associated to each deésGramplifying or reducing

the differences betwedrandi. They thus stress on the relative influence tinat measure represents
in comparison to the others.

In fact, when a new problem occurs, some of theémis characteristics may be unavailable. Thus, a
Boolean valuej, is associated to eaah. Ji is equal to O if the value adi is unknown, and to 1
otherwise.

Hence, a classical algorithm for similarity caltida was used, namely the K-nn Algorithm that
enables a weight to be applied to the descriptluega

The S value is equivalent to the sum of the distancéwdsen the descriptors ofandt, each weighted
accordingly. It is given by the following equation:

1) s5: =

Ay is the difference between the maximum and themuini known values that the descriptircan
take. TheS value is always between 0 and 1. The greaterithiéasgty of i tot, the closer th& value
isto 1.

Since S only takes into account the known valuest,afhe confidence inde€ must be taken into
account to define the calculation uncertainty. Tingre values we know, the higher the confidence
index. Indeed, if the victim’'s age is the only knowriteria, the similarity value calculated is tbta
insignificant. SAC takes into account the number of known values aaegrto the following formula:
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In addition, the EquiVox GUI (Graphical User Inteé) allows users to graphically comptte each
source caseof the case-base. The plotted graph representdtaute of axes, each equivalent to one
descriptor of the case. On each axis, the valubeofarget case descriptor and the one of thetselec
source case are reported. When no descriptor valgesen fort, the axis value is put atull; the
descriptor value dofis still reported on the graph. If the character$sofi andt are the same, the areas
will be merged. Thus, the larger the overlappirgpar the more similaris tot.

4. ADAPTATION OF 3D LUNG CONTOURS

Once a matching case is retrieved, the expert eaitle either to use the phantom of the most similar
source cases, or require the EquiVox platform tegate a new phantom, adapting the source cases to



the target one. Indeed, if some available phant@asurements are too different from those of the
victim, the expert may decide to adapt one of tlieneven to create a new phantom which may be
reused for other problems later. Thus, when thesxequires the generation of a new phantom, the
contours of then organs are expected.

Actually, the first organs experts create in sug®eesonalised process are the lungs. The posiiods
volumes of the other organs are deduced from thgsluThus, we first considered the adaptation of
3D lung contours.

4.1. Solution space modelisation for 3D lung corgou

As presented in Section 2, the lung contours oihpdm P, are defined in 3D by a set gfpoints
joined by a Delaunay mesR;"" = {C,""", ..., G"""} whereC""" denotes the 3D coordinates of
point k: Ckl,lung — {Xkl,lung , yi<|,Iung , Zkl,lung}.

For all the phantoms, the same number of pointaelethe 3D contours of the lungs. The points have
been plotted in the same order and in the samegant coordinate system. Thus, the task of the lung
contour-adaptation phase of EquiVox consists darjrdlating the 3D coordinates of the pointg of

the same order and in the same Cartesian coordigstiem. A Delaunay mesh can then be applied so
as create the contours of the lungs. of

4.2. Adaptation rules

Actually, lung contours and volumes depend mostiyhe size of the victim. Indeed, for the lungs, I.
Clairandet al.[21] proved that the height of a person prevaitedheir geometry and volume.

Thus, when experts decide to create the lung contafia victim, they choose the lung contours ef th

stored phantom whose height is the closest withakihg into account any other characteristic. The
adaptations are usually done manually, applying hemattical transformations (2D and 3D

contractions and dilations [19]). These transforomest are carried out through 3D modelling tools
(such as Rhinoceros [22] or CATIA [23]).

In addition, these transformations are only dribbgrexperience, trials and errors, and may take many
hours or more. The delay also increases with thmbeu of victims whereas the problem resolution
delay may be limited. Indeed, in the case of massradiation for example, when a disaster such as
nuclear explosion occurs, dosimetric reports ageired for hundreds of people of different sizes.

In fact, the creation of new lung contours requizefast data-driven method, and since there is no
physical law to governing its design, the expemas able to explicit a rule for the transformatioin
the lung contours.

4.3. Method

Since the mesh and the number of points are nahblar the adaptation must be carried out on the
point coordinates of the lung contours, point bynpoSince no formal equation exists, we must
discover through a learning method the rules tlatsform the coordinates of the points on one lung
contour into other coordinates.

Consequently, data-driven methods using inductasoning are the most suitable approaches; ANN
and Fuzzy-ANN respond to these requirements. Weee AN as the tool for this step, assuming this
could serve as the basis for further work with &N if the first results were not convincing.



We explored the possibility of using a multi-layserceptron trained with a backpropagation-based
method. Other interpolation methods were testelynpmial and Spline ones (cf Subsection 4.3.2).

4.3.1. ANN inputs, outputs and topology

To interpolate the 3D lung contours, the heighteguired. Actually, this is one of the descriptofs
the EquiVox target and source cases. Let us indtee descriptor corresponding to the height of the
case andh, the height of the target calse

Actually, two different configurations were testdidstly one ANN with 9 inputs and 3 outputs, and a
second one with 5 inputs and 1 output. For boththeflse configurations, two phantoms were
considered:

* The source cagaf for whichhyy is inferior and the closest kg
* The source cassupfor whichhg,,is superior and the closestHo

For the first configuration, the trained ANN intetates the 3 coordinates of each point of the lung
contours separately. Thus, the 9 inputs permititeypolation of the coordinaté®™™ of the pointk
of t are:

« The 3 coordinates of poiftof the lung contours afif: G/ = {x,/"lng  yinflung - influngy

* The height ofnf: hyy;

« The 3 coordinates of poirk of the lung contours ofup CSUPN9 ={xSuPlng =~y suplung
stup,lung};

» The height obup hg

* The height of the target cade:

For the second configuration, 3 trained ANN areuneggl: the first ANN learns how to interpolate firs
coordinatex, the second deals withand the third is dedicated to the interpolatiore.oh fact, the
same ANN is duplicated 3 times. The coordinatesleamed separately, thus the inputs of the first
ANN allowing the interpolation of coordinaxgfromt are:

. innf,lung;
* D

. stup,lung,
° hsup;

e h.

inf,lung

For the second ANN™"" andxS""""" are respectively replaced """ andy, """ andz
andzS"*""Yor the third ANN.

The designed ANN are perceptrons having one hitldesr. There are 10 neurons on the hidden layer
with a sigmoid activation function. The activatifunction of the neurons belonging to the output
layer is linear.

Such topologies were also chosen and tested wittesa on the NEMOSIS platform [10] for a similar
issue: considering a point inside the lungs of &epg its initial position (when inspiration is

maximum) and its final one (when inspiration is mmam), a similar ANN interpolated the positions
of the point during an entire breathing cycle with error inferior to the spatial resolution of the
medical images on which the point had been plofi@d. NEMOSIS, the number of neurons on the
hidden layer was optimized using a validation setddition to the learning set used for the leaynin



step. Due to the small number of phantoms (12 pmas), we decided, for this first step of the
implementation of the adaptation, not to considealalation set. Thus, the learning set was compose
of 9 phantoms, while the 3 remaining phantoms lgddnto the test set. We assumed that such a
topology would deliver sufficiently accurate resullNevertheless, such a strategy to optimise the
number of neurons on the hidden layer would haveetonplemented in later work.

4.3.2. ANN learning set and training step

Training ends when the difference between the d@gpeand the obtained values is minimised. W.
Hsieh [24] distinguished four algorithms based lmhackpropagation method:

*» The BFGS method (Broyden-Fletcher-Goldfarb-Sharneog quasi-Newton method, which
approximates the value of the Hessian matrix ofséneond derivatives of the function to be
minimised,;

* The L-BFGS method (Limited memory — BFGS) is anpaathon of the BFGS method which
optimises the computational resources to use. Bbthese methods must be coupled with a
Wolfe linear search in order to determine an optistep size between two iterations;

* The Rprop (Resistant backpropagation) method pexpas first order algorithm but its
complexity increases linearly with network topology

» The iRpropPlus method is one of the fastest arml@ig of the most accurate algorithms [25].
This evolution of the Rprop method allows cancgllsome synaptic weight updates in the
neural network if a negative effect is observed.

All of these methods were implemented and testatldrEquiVox adaptation phase of lung contours.
Different required precisions were also tested.|dab shows the algorithm that gives the best
interpolations. 12 interpolations were tested af@B gave the best results 11 times. Thus, BFGS
algorithm with 10-6 as required precision was chasetrain an ANN.

5. IMPLEMENTATION, TESTS AND RESULTS

5.1. EquiVox architecture

The Equivox platform has been implemented and desteaPersonal Computerequipped with an
Intel Core 2 Duo CPU, 2.26 GHz, and 2 GiB RAM. Témurce case descriptors are stored in a
mySQL database management system (DBMS). Two progilag languages were used: Java and C.
The retrieval phase, the GUIs, and the storageepheslules developed by our team in Java call C
programs also developped by our team for the atlaptphase. The phantoms were drawn using
Rhino3D.

Figure 1 presents the technologies that were usddbe data flows over the EquiVox architecture.
All the phantoms are stored in Rhino3D files. Thekiaracteristics are stored in a database (data flo
#0 in Figure 1), the lung contours are extractemtadlow #1) and then transmitted to the ANN
training module (data flow #2) which creates the M\data flow #3). When a new phantom is
required, the target case description is transditte the retrieval module (data flow #4) which
determines the similitude and confidence indic&mtainto account the source case (data flow #5). |
required by the experts, the lung adaptation modetels the characteristics of the source cases (dat
flow #6) to the ANN interpolation module (data flg#¥) which loads the trained ANN (data flow #8)
and the coordinates of the contour of the lungsyurestion (data flow #9) in order to create
interpolated contours suited to the target case (tav #10).

5.2. EquiVox test case-base



The particular domain of pulmonary anthroporadiaynapplied to female subjects was considered for
the performance evaluation of the EquiVox retrieasad adaptation phase.

The EquiVox case-base used for the tests contddedhole 3D phantoms with 3D organ contours
and characteristics. These phantoms were manusgdigmied from the ICRP standard female phantom
[12] for pulmonary anthroporadiametry computatibgsthe team of internal dose evaluation of IRSN
[19]. These 3D phantoms were developed to covewnelk as possible the diversity in the female
population: thoracic phantoms of cup sizes randgmogn A to F and chest girth from 85 to 120
(European Standard Clothing Units) [26]. These pivas were developed fam vivo lung counting
optimisation where volume and weight precisions available for the following structures: lungs,
heart, liver, sternum, ribs, scapulae, spine, bseaskin, and thorax. The following external
measurements are also available: age, sex, heighght, cup size, and chest girth (chest and under-
bust circumferences). Thus, all these female plmasitand characteristics formed the 24 source cases
of the tested EquiVox case-base.

The experts determined a list of 14 descriptordarizavarying degrees of influence in the choice of
phantom for this type of calculation. These desorgpare age, height, weight, sex, wether thendicti
smokes or not, thorax volume, lung volume, extrathiz thickness, fat-muscle proportion, under-bust
circumference, wrist diameter, chest circumfereheayt volume, and the victim’s origin (target gase
/ phantom (source case).

For the adaptation phase tests, the 3D lung costoluthese 24 phantoms had been considered and
extracted. In fact, there are 9 distinct 3D lungtoarsLC;, i//{1,...,9} For example, a phantom with

a 90B thorax and one with a 90C have the same B dontours since breast and lung volumes and
contours are not correlated at all. Thus, 9 distfim@antom heights are reported in Table 2. Eaclobne
these 9 3D lung contours is composed of 26723 p@ftdtted in the same order and in the same
Cartesian reference system as required by EquiMadetisation.

5.3. Retrieval phase performances

In order to evaluate the performance of the Equix&reval phase, the measurements of 80 different
female subjects randomly selected from the CAESARshse [27] (Civilian American and European
Surface Anthropometry Resource database) weredsmesi as target cases descriptions. The latter is
a database of over 2000 optical scans of ItaliahB@anish male and female subjects. Some of their
measurements (age, sex, origin, and weight) acesatsed with these scans and the spatial resolutio
enabling calculation of chest girth, cup size, Hreheight of each subject.

Farahet al. [19, 28] determined 5 sets of victim charactesgstivhich influence the pulmonary
anthroporadiametry dose computations. The weightsf the associated descriptors from the set
influencing the phantom choice the most were sdt athereas the weights of those with no influence
on that type of computation were set at 0. In thgecofin vivo counting, it is known that the chest
circumference and lung volumes are the most imporparameters [29]. Hence, their associated
weights were given the highest value: 4. Moreoirrthis example, the weights associated to the
internal volumes were set at O.

For each target case, we compared the sourceleasxpert would have chosen to the classification
proposed by the EquiVox retrieval phase. For T§etacases, the experts and the EquiVox retrieval
phase chose the same source case first. Thuse$§, tie EquiVox retrieval phase put the source case
chosen by the experts in second place. Consequend.75% of the cases, EquiVox chose the most
accurate source case regarding the target caseptiesc The 5 target cases, for which the EquiVox



retrieval phase missed the most accurate solutian, be explained by the influence of all other
informed descriptors (age, height, weight, eta)fdct, the difference between the values of these
descriptors in these 5 target cases adds up add teaa low similarity index. In addition, when no
descriptor weighting was assigneg=(l // k=1, ... , 14, the EquiVox retrieval phase put the most
accurate source case in first place only 54 times.

Table 3 presents an example of the similitude andidence indexes obtained when comparing the
same target case to two very different source cddes descriptor values of source ca864 and
120F, and one of the tested target cases are presédiftedveights are also reported in this table. The
Ssa computed for source cassbA was equal to 0.765, meaning that the target case88A
corresponded up to 76.5% considering the availdéseriptor values. In the other column of Table 3,
Si20=0.573 for that same target case. For that target ¢as6,8. In addition, when all the weights
were set at 135,=0.510, S,0=0.545 andC=0.622 This example emphasizes the importance of the
confidence index and also the weights associatedetalescriptors: different configurations must be
carefully studied by the experts before launchivgEquiVox retrieval phase.

5.4. EquiVox graph comparison module

In addition to the classification, the EquiVox Gullows the experts to graphically compare each
source case to the target case. For example, FRwkows the graphical representations of the
comparisons of the Table 3 target case (dark afelasth graphs) to source cas#s\ and120F (light
areas of both of the graphs). On each axis theegatfi one descriptor are plotted (that of the targe
case and that of the source case) taking into atcte associated weight. Actually, for each
descriptor, the weighted distance between the salsienormalised according to the weights. For
example, considering notations of Equations (1) @)dthe reported values on the axis corresponding

to dyx would be%assuminng is the maximum possible value for this descripMareover, the

axes on which the victim values are known are dyoalhy brought together in the same area of the
graph. Nevertheless, it is also possible for thpeexto visualise the graph without normalisation
and/or bringing them together.

The merged areas represent the similarities betweenwo cases. Considerir@8pA the known
characteristics of the victim match reasonably waatid thus most of the points on the different axes
are merged, whereas they are very different ongtaph comparing the same target casé20F.
With this GUI, the similarity of cases can be ghaforwardly observed and the observation is
confirmed by the numerical values obtain&{ and S;,0f). It is also very simple to see what the
critical characteristics are and to form an idedhef differences between the two cases. In our, case
some descriptors, such as sex or origin, which lbeagonsidered as the most important criteria, fire o
limited influence for the§ calculation. Indeed, all the source cases andet$ted target cases are of
the same sex and origin (European female).

5.5. Performance of the 3D lung contour adaptation

The method was validated in three steps. Firsfemift interpolation methods were tested over a
sample of 10 points on each set of 3D lung contdiien, a second round of tests was performed on
all the sets of lung contour coordinates in orderdetermine the best ANN configuration and
topology. Finally, we evaluated the performancéhef EquiVox adaptation strategy using 3 new 3D
lung contours.

5.5.1. Interpolation method choice



The best ANN configuration has been compared tolgnpmial (Newton, of degree 2) and a Spline
interpolation method. The Newton and Spline int&afmrs were implemented with Scilab 5.3.2 [30].
The Newton interpolation function proposed by Ja¢gand R. Brette in [31] and the Spline method
proposed by Scilab were implemented and adapted. cbordinates of 10 points were randomly
extracted from all the lung contours. For each watfa cross-validation for the same 10 points was
undertaken using the same 9 lung contours of TZbkgure 3 presents the mean distances between
interpolated and expected coordinates. This figinaws that the polynomial interpolation produced
the greatest errors among the three tested intdipie$. A factor nearly equal to 10 can be observed
between the polynomial interpolation and that & 8pline or the ANN. The Spline and the ANN
interpolations gave closer errors. Neverthelessaliothe tested cases, the ANN interpolation arror
were inferior to the Spline ones 6 times and equt once. These results prove the superiorithef t
ANN interpolations over the other methods sinceANSN interpolation gave a more accurate result in
all the tested cases.

5.5.2. ANN configuration choice

At this step of the choice, a cross-validation ywasformed since the learning set contained only 9
different sets of coordinates (3D lung contou@®: LS={LC}, i /{1, ... , 9} Seven different subsets
of LSwere considered and tested. The sulhisgtvas built to satisfy.§ = {LCi}, i /{1, ... , 9} and ¥

j 7] [7{2,...,8} Indeed] was never fixed at 1 or 9 since a smaller anddrigihantom are always
required for the interpolation (cf. Subsection #)3When the ANN was trained withS, it was
evaluated with the interpolation &fC;. The configurations with 9 and 5 inputs were eatdd (cf
Subsection 4.3.1). Since the number of learning isetot important, we also explored the possybilit
of using the median value instead of the mean-ggaamr to stop the ANN learning. Indeed, the
median value converges more rapidly than that efntiean-square to the “average” value of a small
set of items. We assumed this property of the nmediauld influence the accuracy of the ANN
interpolations.

Table 4 presents mean errors obtained when thereliff trained ANN (cf. subsection 4.3.1)
interpolated eachC;, |1 /7{2,...,8} For the configuration with xyz interpolated tdgett, and mean
square error as criterion to stop the training Z[gyouped, mean square error]), the mean distances
between the interpolated and expected points vam D.51 mm to 3.94 mm. For the configuration
with one ANN for each coordinate and the same rimiteto control the ANN training ([x/y/z
separated, mean square error]), the mean distéetesen the interpolated and expected points vary
from 0.70 mm to 7.90 mm. This configuration givelsedter result for only one cadg:= 1680.3 mm;

for all the others, the results are worse. Thedagfiguration with 3 ANN and the median as criberi

to stop the training ([x/y/z separated, mediane tmean distances are the highest of the 3
configurations forh, /7{1675.4 ; 1680.3}and lower than the second one, but higher tharfitst in

all the other cases. Thus 6 times out of 7, thenneegor obtained with the [xyz grouped, mean square
error] configuration is inferior to the others. &®tl, the first configuration interpolates the cawates
with the lowest error, which is almost always iiderto 1.93 mm and at most equal to 3.94 mm. We
assume that considering the 3 coordinates togéthieetter than considering them separately since
there is interaction among them. When they areidered separately, these interactions are not taken
into account.

In addition, even if the results obtained with tise of the median are better than those foundtiwgh
mean-square for the 5 ANN inputs, it is still leggurate than the mean-square with 9 inputs. Ehis i
probably due to the great number of coordinatésam (26723).



5.5.3. Performance of the adaptation strategy EbluBig contours

The final tests were performed with the entire ngag set and 3 new sets of 3D lung contours. For
these 3 new sets, a height has been carefully shiodest all the possible cases: the first heigust
above the smaller stored one, the second is jlissbthan the higher stored one, and the last ihén
middle of the stored panel of stored heights. @iméy3D lung contours have been manually created by
the experts, no other organ contours. Since theiB contours alone were designed, these phantoms
were used only for these last tests and not siaréte EquiVox case, nor where they used during the
ANN learning. In addition, the same manual creapipycess has been followed for allL8.

Table 5 shows the mean distances observed betlwednterpolated and expected points for dach
and ANN configuration. For the [xyz grouped, megnase error] configuration, the mean distances
vary from 0.55 mm to 1.65 mm. These distances kiiafarior to the mean distances obtained with
the third configuration ([x/y/z separated, medianpich vary between 2.17 mm and 5.84 mm. This
third configuration almost gives almost better tssthan the second ([x/y/z separated, mean square
error]) for which the mean distances vary from 2n&#h to 7.22 mm. Therefore, the results presented
in Table 5 show the superiority of the configuratissing the mean-square error while the coordinates
are learned together: the errors, which are equdletow 1.65 mm, are the lowest. For the other
configurations, the difference is slightly higheit istill reasonable.

The calculations of dosimetric reports are usuaimputed using a voxelised phantom. The
commonly used dimensions of the voxels are 1.8 gm.B mm by 4.8 mm [19, 28]. For the first
configuration (a single ANN), the largest mean eigequal to 1.65 mm (inferior to the spatial
resolution of commonly used phantoms). Thus, siztuBg contours, generated by this ANN, can be
used to establish dosimetric reports. The othefigration with identically trained ANNs, delivers
coordinates that are insufficiently accurate.

The results presented in this paper are encouraginiglead to the creation of 3D lung contours
matching those of a target case. Neverthelessatld@ptation strategy is based on phantoms that may
contain errors in comparison with the expected longtours of a real victim: these contours are
already representations of reality with uncertamtiThus, biases may have been introduced by one or
moreLC; incorrectly designed. The ANN implemented in thgui¥ox adaptation phase for 3D lung
contours may reduce the impact of these erroreesamc ANN is an interpolation tool, but further
research is needed to verify the necessary accufdcg. Another point is the generalisation of this
adaptation strategy to the contours of the othgams. In fact, for other organ volumes and contours
one or more other parameters and measurementsmtesten into account in the adaptation process,
such as weight, fat-muscle proportion, and/or wiiateter.

6. CONCLUSION

The EquiVox platform was developed to be used iergency situations where a rapid and reliable
decision is required in order to choose the bestpBBntom to perform dosimetry calculation and
establish a dosimetric report. The choice is maiieguthe CBR approach based on the feedback from
previous similar experiences. EquiVox helps theeetspin choosing the most adapted 3D phantom by
means of the computation of indices for similaatyd confidence. The similarity index defines the
equivalence between the target case and the soasee whereas the confidence index highlights the
uncertainty in the similarity calculation. The &gerformed on an average set of target casesagave
efficiency of 85% in the application case aoh vivo female counting for pulmonary
anthroporadiametry. This version also presents fiiciemt and customisable graphic interface
allowing comparison of the target to the sourcesas



In this version, different adaptation strategiastf@ interpolation of 3D lung contours were evidda
The configuration based on a perceptron with omldmn layer, 9 inputs, 3 outputs, and a quasi-
Newton BFGS backpropagation-based method as an &&iNing algorithm gave the best results.
The different neural networks that were implemengdduced convenient preliminary results
showing that such an ANN can efficiently and quycképroduce the exact positioning of different
points once the learning step is achieved.

Further work will focus on two major axes. The ffivgll be the evaluation of the biases inferred by
each source case solution. Indeed, these soluienghantoms designed manually by the experts and
do not represent exact reality. Our ambition witlis tfirst axis is to propose a tool capable of
determining the best learning subset for the ANNe Becond is to enlarge this adaptation tool to
include all other 3D organ contours of the phantarence, if the lung volumes and contours depend
on a person’s entire height, then other organ vekiand contours depend on one or more other
measurements.
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