Transformation of SysML Structure Diagrams to VHDL-AMS

Fabrice Bouquet, Jean-Marie Gauthier, Ahmed Hammad and Fabien Peureux
University of Franche-Comté - Femto-ST
Department of Computer Sciences
Besangon, France
Email: {fbouquet, jmgauthier, ahammad, fpeureux} @femto-st.fr

Abstract—In this paper, we propose an approach to translate
the SysML language to VHDL-AMS code. This approach is
the first step to the generation of the VHDL-AMS code from
the structural diagrams SysML. In this step, we address the
Block Definition Diagram and the Internal Block Diagram. The
translation uses Model Driven Engineer (MDE) methods as the
transformation of model to another model (M2M) with ATL
Atlas Transformation Language and the code generation from
models (M2T) using Xpand. We provide the translation rules
between the two elements. Implementation and methodology
are illustrated on a micro-system case study: the Smart
surface system.

Keywords-SysML; VHDL-AMS; transformation; metamodel;
model;

I. PROBLEMATIC

Micro-systems design is complex because such systems
are often composed of mechanic, electronic or software
components. This complexity makes difficult to validate the
system in regards of his requirements. So, it is essential to
set up a process for verification and simulation before or
during the realization of the system.

Specification modeling is the main step to ensure the
success or the failure of the design. This step has three roles:

« to clarify the specification (extract the requirements)

o to analyse the specification and to understand the goal
of the system (classify the requirements)

o to communicate between the partners involved in the
project as users, analysts and domain experts.

The SysML language is an UML profile which is one of
the most popular graphical modeling language. SysML is
a semi-formal language which provides the documentation
and the graphical specification of all aspects of a system
(hardware and software components). SysML enjoys un-
precedented popularity both in industry and academia be-
cause it has been recently adopted by the OMG as a standard
in Systems Engineering. It is used to gather the different
contributions of the partners for the achievement of system,
and to ensure coherence and quality of design. SysML is a
language well suited for micro-systems design thanks to the
hierarchical description of hardware and software blocks. It
can graphically model the mathematical equations defining
the physical system behaviors. In this context, SysML allows
formulating the requirements (functional or non-functional)

with the requirements diagram. Nevertheless, despite the
various advantages of SysML, it remains a semi-formal lan-
guage. As a consequence, the simulation of SysML model
is not possible without defining interpretative semantics or
transforming it into a formal language.

Our goal is to transfer SysML models into simulation
environments. It would be interesting to map SysML models
to simulation languages in order to do formal verification.
In the context of micro-systems, VHDL-AMS is one of the
most used hardware description language which provides
several simulation environments.

Therefore, our objective is to define a methodological
approach based on the following formalism for SysML:

o the hierarchical description in the Block Definition
Diagram and in the Internal Block Diagram (hardware
and/or software),

« modeling the behavior for each block and the descrip-
tion of physical constraints in parametric diagrams,

o generate the corresponding VHDL-AMS code using
techniques of MDE' as model transformations.

In this paper, we present the first part of our work. This
part is the transformation of the SysML structural view
composed by Block Definition Diagram (BDD) and Internal
Block Diagram (IBD) into VHDL-AMS code. The paper is
composed as follows: first, we give a reminder about lan-
guages SysML and VHDL-AMS, and the technical elements
about TopCased, Xpand and ATL languages.

In section III, we illustrate our approach with micro-
system case study called Smart Surface. We present, in
particular the SysML structural diagrams modelling this case
study.

In section IV, we give some translation rules between
SysML structural diagrams and VHDL-AMS. We apply
these rules to the model described previously and we use
ATL and Xpand to generate the VHDL-AMS code. Finally,
we present some related works in this area and we conclude
by presenting perspectives of our work.

Model Driven Engineering

II. PRELIMINARIES
A. SysML

The Systems Modeling Language (SysML) has been stan-
dardized by the Object Management Group (OMG) [1] with
the participation of the International Council on Systems
Engineering (INCOSE) [2] and the Application Protocol 233
(AP233 consortium) [3]. SysML is a profile of UML 2.0
[4] which is the actual standard for software engineering.
SysML consists of several diagrams which are requirement,
use case, sequence, activity, block, internal block, constraint
blocks, parametric, state machine and allocation. SysML is a
graphical modelling language for Systems Engineering (SE).
It supports the specification, analysis, design, verification
and the validation of a broad range of systems.

In section III, we clarify block and internal block diagrams
by applying them to the case study.

B. VHDL-AMS

VHDL-AMS is the IEEE standard modeling language
(standard 1076.1) created to provide compatibility and ca-
pability in an open language for modern analog, mixed-
signal and multi-domain designs. VHDL-AMS provides both
continuous-time and event-driven modeling semantics, and
is suitable for analog, digital, and mixed analog/digital
circuits. VHDL-AMS also facilitates modeling of multi-
domain systems that can include (among others) a com-
bination of electrical, mechanical, thermal, hydraulics, and
magnetic models. This allows the entire system now to
be modeled, simulated, analyzed, verified and optimized.
Not only does VHDL-AMS provide powerful modeling
capabilities, but also provides compatibility where models
can be exchanged between different simulation tools that
implements the VHDL-AMS standard [5].

VHDL-AMS supports the description of a system of
differential and algebraic equations where the solution varies
continuously with time. In addition, VHDL-AMS supports
both structural composition and behavioural descriptions
of analog systems. Solutions of the equations describing
the behaviour of the system may include discontinuities.
Interactions between the discrete part of a model and its
continuous part are supported in an adaptable and efficient
way [6].

C. The TopCased Project

TopCased is the acronym for Toolkit In OPen source for
Critical Applications & SystEms Development. This project
started in 2005 from the French ”Aerospace Valley” cluster.
TopCased is dedicated to aeronautics, automotive and space
embedded systems. It contains an Integrated Development
Environment (IDE) based on the Eclipse framework which
adds features that provides methods and tools to develop
a safety software systems or mixed software and hardware
systems [7].

Relying primarily on standardized languages for modeling
software (such as SysML/UML, AADL, EAST-ADL, SDL,
etc.) and associated tools (graphical and text editors, doc-
umentation and code generators, validation through model
animation, verification through model checking, version
management, traceability, etc), TopCased modeler is one of
the most complete free solutions which respects the current
standards.

D. The ATL Language

ATL is a model transformation language and toolkit
initiated by the AtlanMod team (previously called ATLAS
Group) [8]. In the field of Model-Driven Engineering
(MDE), ATL provides ways to produce a set of target models
from a set of source models. Released under the terms of the
Eclipse Public License, ATL is a M2M (Eclipse) component,
inside of the Eclipse Modeling Project (EMP). An ATL
transformation program is composed of rules that define
how source model elements are matched and navigated
to create and initialize the elements of the target models
[8]. An ATL transformation can be decomposed into three
parts: a header, helpers and rules. The header is used to
declare general informations such as the module name (it is
the transformation name: it must match the file name), the
input and output meta-model and potential import of needed
libraries. Helpers are subroutines that are used to avoid
code redundancy. Rules are the heart of ATL transformations
because they describe how output elements (based on the
output meta-model) are produced from input elements (based
on the input meta-model). They are made up of bindings,
each one expressing a mapping between an input element
and an output element.

E. Xpand

Xpand is a language specialized on code generation based
on EMF (Eclipse Modeling Framework) models. The Xpand
language defines templates to control the output generation.
Xpand allows to create text output from EMF model. The
text output can be a programming language or something
else. Xpand requires the definition of EMF meta-model and
one or more templates which will translate the model into
text. Once this definition is done, the generator requires the
definition of an EMF source model to be translated.

III. SYSML CASE STUDY: SMART SURFACE

In this section, we present the Smart Surface case
study proposed in [9]. We use only the elements associated
to the structural view. These elements are defined in the
Block Definition Diagram (BDD) and in the internal Block
Diagram (IBD).

The Smart Surface consists of a rectangular grid of
rectangular cells. Each cell is made of a microActuator,
a microSensor and a microController. The purpose of the
Smart Surface is to sort microscopic objects according

to parameters such as their shape or colour. The follow-
ing Smart Surface characteristics are extracted from the
specification document conjointly written during the "Smart
Surface” project.

1) The grid
o The grid is divided in 24 lines of 24 cells each, a
cell having a size of about 2 mm.
e There is no centralized control. Cells communi-
cate step by step through their direct neighbours.

2) Objects to sort

o We assume that an object should be found from
a small number of options (2, 3 or 4).

e Objects to convey are typically included in a
square of less than 4 um a side.

3) Microactuator

e A microActuator can communicate with its 4
neighbours via its cells controllers.
e A microActuator acts on the objects through an
air-flow (should not be specified at this level).
4) Sorting
« At a given moment, at most one object have to be
present on the smart surface.

e The sorting will be done according to the shape
of the object.

After this informal description, we present the model
associated to SysML structural diagrams.

A. Modeling structure

The major structural extension in SysML is the block
which extends the UML structured Class. The block is the
main element for model the system’s structure in SysML.

In general purpose, the hierarchical structuring mecha-
nism allows a better design because each level defines itself
details. Blocks can represent any level of the system hierar-
chy, including the top level system and logical or physical
components of the system or environment. A SysML block
describes a system as a collection of parts and connections
between them. Connections is used to communicate and
to interact with blocks. SysML provides standard ports
which support client-server communication (e.g., required
and provided interfaces) and Flow Ports that define flows in
or out of a block. Ports are discussed in more detail below.
In the following, we shall present the BDD and IBD :

e The Block Definition Diagram (BDD) defines the
characteristics and relationships between blocks such
as composition/aggregation, association, generalization
and connector.

o The Internal Block Diagram (IBD) allows to refine the
structural aspect of the model. The IBD is the equiv-
alent in SysML of the composite structure diagram in
UML.

B. Block Definition Diagram (BDD)

The first level modeling of the Smart Surface is a
BDD. Fig. 1 shows this BDD with eight blocks. The block
named Smart Surface represents the micro-system. It is
decomposed into three sub blocks (Surface, Interface and
Object) and is linked to them by the following relationships:

« composition to the Surface and Interface blocks,
« aggregation to the Object block.

bdd [package] Bdd [8dd.)

<<block>>
Smart_Surface
constraints. 1

+smart_Surface

operations koo
1 oS +smart_Surface
references.
lues
ertes
1 @ +smart_Surface
1| +object
1| +surface 1, +interface i
<<block>> <<block>> <<block>>
Surface Interface Obiject
constraints constraints constraints
operations operations operations
parts parts parts
references ferenc references
lues jues values.
propertes ropeies propertes
1
+surface s
Cell
constraints 1
+cell 1. —
parts
+
1 +cell references cell
values.
properties
+Identifier
1] +cell
1| +micro actuator 1 | +microControlier 1 | +microSensor

<<block>>
Micro actuator

<<block>>
MicroController

<<block>>

Figure 1. Smart surface BDD

The block named Object represents a microscopic object
to sort by the Smart Surface environment. The block
named [Interface represents all the interactions between
Surface and Object. The block named Surface represents
the distributed MEMS under design. This block Surface is
linked by composition to a new block named Cell. The
composition relation with the block Cell is labeled with
the multiplicity I..* and expresses that the block Surface is
composed of many cells. The block Cell is itself composed
of three parts, namely a microActuator, a microSensor and
a microController. Each of them is represented by a block.

The two blocks Surface and Cell represent physical com-
ponents and together constitute a physical model of the
Smart Surface. The details of this components must be
describe in Internal Block Diagram.

C. Internal Block Diagram (IBD)

In the IBD, parts are basic elements assembled to define
how they collaborate to realize the block structure and/or
behavior. In the IBD, the designer can refine the definition
of interactions between blocks by defining flow ports. Two
types of ports are available in SysML:

o standard ports handling requests and invocations of
services with other blocks
o flow ports which let blocks exchange flows of infor-
mation.
Fig. 2 shows two flow ports: the flow port Direction enable
continuously passes the direction of the object. Through
the flow port Object detection, the microSensor sends to
the microController a signal to indicate the detection of an
object.

ibd [block] Cell [Cell J
microSensor : MicroSensor
= <<itemFlow>> Object Detection
’I]ZI microController : MicroController ‘

Figure 2. Cell IBD

IV. IMPLEMENTATION: TRANSFORMATION OF MODEL
AND CODE GENERATION

A. Model-Driven Engineering (MDE)

The MDE is an approach of design which aims to keep the
models as reference point throughout the process of software
development. The MDE provides two main approaches for
transforming models: the first one is called M2M (Model To
Model) and the second is called M2T (Model To Text). The
M2M transformation offers the possibility of transforming
models or a part of a model into another one. Whereas
the M2T transformation provides a way for transforming
a model mostly into source code. The model transformation
takes an input model that is conform to the source meta-
model and produces an output model, which is conform to
the target meta-model. The meta-model is the model of the
model, so we use “meta” to indicate this concept.

Figure 3 shows a generic transformation framework. A
model transformation manipulates concepts that are spec-
ified in the source and target meta-models (which can be
different). These meta-models describe the static structure
of models manipulated by the transformation. We have
developed these meta-models which are conform to the
MOF (Meta Object Facility). In the following, we consider
transformations that take a single input model and produce
a single output model. The source model is specified using a
specific format based on XML-based Metadata Interchange
(XMI) that supports the interchange of any kind of metadata
and that can be expressed using the MOF specification,
including both model and meta-model informations.

In our work, we use the SysML meta-model as a source
meta-model and the VHDL-AMS meta-model as a target
meta-model. The goal is the transformation of the input
model (conforms to input meta-model) and to produce as

Source metamodel Target metamodel

yd

Transformation
Langage

N

Input model Transformation Output model

Figure 3. generic model transformation

result an output model of VHDL-AMS (conforms to the
target meta-model). We choose to use the ATL language for
this transformation. Moreover, we choose to use the Xpand
language to produce VHDL-AMS code.

B. Rules of transformation
1) Block Definition Diagram:

1) The block SysML constitutes the basic brick to model
a system. It represents a support for various elements
which characterized the system, as the operations,
constraints, and parts. The ENTITY in VHDL-AMS
represents the external view of a component with
its connections. This semantic mapping allows to
translate a block SysML into VHDL-AMS ENTITY,
which takes the name of the block.

{SysML : Block} - {VHDL — AMS : ENTITY }
{Block : name} — {ENTITY : name}

2) Flow port represents the input and output items
that may flow between a block and its environment.
A Flow port is an interaction point through which
data, material or energy can enter or leave a block.
VHDL-AMS Port got relatively the same semantic, so
this semantic mapping allows us to translate SysML
Flow port into VHDL-AMS Port. Moreover, we
consider the name, the direction of the Port (IN/OUT)
and the type of the Port.

{Block : FlowPort} — {ENTITY : Port} :
{FlowPort : name} — {Port : name}
{FlowPort : direction} — {Port : direction}

3) Operations defined in a block can be translated
into functions which represent the behavioral aspect
of the system. Parameters of the operation will
be translated into parameters of the VHDL-AMS
function. Implementation of functions is made in the
body of the ENTITY’s ARCHITECTURE.

{Block operation} — {ARCHITECTURE
operation}

4) Parts or References properties represent components
which constitute the system. They serve to describe
the composition and the internal structure of a
block. Components in VHDL-AMS also constitute a
structural description of the circuit. So we can have

a semantic link between parts and components. The
declaration of components is made in the body of the
ARCHITECTURE of the VHDL-AMS ENTITY .
{Block Property Part/Reference} —
{VHDL — AMS : Component}

5) The property of type Value defines a quantifiable
value with its unit, its dimension and a particular
type. It provides a way to specifie an Irem Flow.
An Item Flow represents the thing that flow through
Flow Port. Moreover, VHDL-AMS provides the
definition of six objects which allow to transport the
information in models: CONSTANT, VARIABLE,
SIGNAL, TERMINAL, QUANTITY, FILE. We shall
use one of these types according to the use and the
nature of the circuit.

{Property : value} — {VHDL — AMS : variable}

6) A constraint can specify mathematical formulas or
relationships between datas that flow through the
system. These constraints can be specified in a block
to be translated in the ARCHITECTURE of the
ENTITY as VHDL-AMS instructions.

{Block constraints} — {VHDL — AMS
instructions}

2) Internal Block Diagram: The Internal Block Diagram
describes the internal view of a block. It is based on
BDD to assemble parts that make up the main block. This
diagram consists of two units: parts and ports. In a hardware
modeling, we will use only flow port, and therefore there
will be two mapping rules between IBD and VHDL-AMS.
The first links parts and components as in the BDD and the
second links SysML ports with VHDL-AMS ports.

{IBD : Part} - {ARCHITECTURE : Component}
{IBD : Reference} - {ARCHITECTURE : Component}
{IBD : FlowPort} - {ARCHITECTURE : Port}

Figures 4 and 5 show the relationship between the two
kinds of block (BDD and IBD) with the corresponding
VHDL-AMS code.

C. Steps of the implementation

The transformation process takes place in several steps,
starting from a SysML BDD diagram to VHDL-AMS code
generation. The first is using ATL to transform a SysML
model to a VHDL-AMS model (meta-model to meta-model).
The second uses Xpand for generating code from the
VHDL-AMS model. The Figure 6 depicts the several steps
of our approach.

D. ATL transformation

First, we built meta-model for BDD and IBD diagrams
as meta-model source and the second for VHDL-AMS as

ENTITY blockName

Port(

Portl : out std_logic;
— <hodor Port2: in std_logic;

)

blockName

constraits END ENTITY
[o——
Port :stdlogie}* Operationt x: std logic) ARCHITECTURE IBD OF
R =

blockName IS

+part! _b\ggkr:::"e @ GENERIC (valeur: INTEGER: =3);
+pan2 : blockName @
reteerces X: INTEGER;
+reference : blockName @
: ol > x=x+1
+in x :integer =
+valeur :integer =3 f | =

<<constraint>>+x=x+1

Figure 4. Rules of BDD transformation

FlowPort2 : std_legic pariZ :blockName #|

COMPONENT part1
Port (

FlowPort2: out std_logic);
END COMPONENT

COMPONENT part2

Port ('
FlowPort2: in std_logic; #
FlowPort3: in std_legic:); i

END COMPONENT _

COMPONENT reference

Port (
FlowPort3: out std_logic);
END COMPONENT

BEGIN

A: part] port map (FlowPort2);

B: part2 port map (FlowPort2, FlowPort3);
C: reference port map (FlowPort3)

Figure 5. Rules of IBD transformation

meta-model target. For this, we will base on the framework
EMF and the Ecore meta-model. We take the BDD and IBD
from the Section III and we model them with Topcased. We
extract the information from TopCased with the exported
XMI. We parse this XMI file with JDOM (API for process-
ing XML documents with Java) to extract informations about
the BDD and IBD diagram to populate our own SysML
meta-model. Finally, we use ATL to translate it into VHDL-
AMS model.

E. Code generation

Xpand is a template engine which allows to create
text output from EMF models. The text output can be a
programming language or something else. Xpand requires
to define an EMF meta-model and one or more templates
which will translate the model into text. Once this definition
is done, the code generator can be run [10].

In our example, we have the VHDL-AMS meta-model and
an instance of it. To generate code, we must create a Xpand
project and configure the workflow for the code generation.
Finally, we create the code of the template. On the first

VHDL ams
Metamodels

BBD/IBD
Metamodels

TopCased Model

A
3 IDomfiltre R — BDD/IBD ATL
Model "] Rules

model|

VHDL ams
Code

Figure 6. Transformation process

module m2m;
create OUT : VHDLamsMetamodel from IN : BDDMetamodel;

rule BDD2DEntity{

from 3 :BDDMetamodel!BlockDefinitionDiagram
to t : VHDLamsMetamodel!DesignEntity (
name <- s.name,

entite<-s.block)

1
i

rule Block2VHDLentity {
from
s:BDDMetamodel 'Block
to t:VHDLamsMetamodel'Entity(
name<-s,name,
port<-s.port,
archi<-s.blockElement)

rule Block-port2VHDL-port{
from
3:BDDMetamodel ! Port
to t:VHDLamsMetamodel!Port (
name<-s.name,
Type<-3.Type,
direction<-s.direction)

Figure 7. ATL Rules

line in Figure 8, we import the meta-model (IMPORT vhdl)
so that the generator (and the editor as well) knows about
the structure of our model. The main concept of Xpand is
the DEFINE keyword, also called a template. This is the
smallest identifiable treatment unit. It is used to identify the

model elements in order to generate the VHDL-AMS code.
Fig 9 shows the result of the generation.

«IMPORT vhdls

«DEFINE main FOR vhdl::Models

«EXPAND definition FOREACH entite»
«ENDDEFINE»

«DEFINE definition FOR vhdl::Entity »
«FILE "fileName.vhd"»

ENTITE «names i3

PORT (
«FOREACH this.port AS p»
«p.names : «p.Types
«ENDFOREACH»)
«EXPAND architecture FOREACH this.archi»
«ENDFILE»
«ENDDEFINE»

«DEFINE architecture FOR vhdl::Architectures
BRCHITECTURE «this.name» OF «entitel» IS
BEGIN
«FOREACH this.contraints AS c»
«C.name»
«ENDFOREACH»
«FOREACH this.composants AS composants
COMPONENT «composant.name» IS

PORT (

«FOREACH composant.portInterne AS portls

«portl.names: «portl.type»

«ENDFOREACH»

)

END COMPONENT «composant.names;
«ENDFOREACH»
«FOREACH this.composants AS composants
S«composant.namex»: «composant.name» PORT MAP(
«FOREACH composant.portInterne AS portI» P«portI.names,«ENDFOREACH»)
«ENDFOREACH»
«ENDDEFINE»

Figure 8. Xpand code generation

V. RELATED WORK

There are some works on the transformation of SysML
model. We can cite MetaSyn [11] product that synthesizes
SystemC models from SysML, establishing a link from
software and system models to the hardware Electronic
Design Automation (EDA) flow.

In [12], the authors present the Fiacre language which is
designed both as the target language of model transformation
engines from various models such as SDL, UML, AADL,
and as the source language of compilers into the targeted
verification toolboxes, namely CADP and Tina.

Several studies on UML transformations [6], [13], [14],
[15] into VHDL-AMS have been made. In [6], the authors
presented an algorithm for mapping the class diagram to
VHDL-AMS. The work described in [13], presents a trans-
lation of class diagrams, objects diagram and UML state
transitions into VHDL. Works described in [14] [15], present

ENTITE cell is
PORT |

)
ARCHITECTURE AR OF cell IS
COMPONENT microActuator I

PORT (portl: in bit);
END COMPONENT microActuator;

o

COMPONENT microSensor IS
PORT (port2: in bit) ;
END COMPONENT microSensor;
COMPONENT microController IS
PORT (portd: in bit ; portd: out bit) ;
END COMPONENT microController;
BEGIN
ARmicroActuator: microActuator PORT MAP (ARportl);
ARmicroSensor: microSensor PORT MAP (ARport2);

ARmicroController: microController PORT MAP (ARport3, ARporté):

END AR ;

Figure 9. code generated

the translation of state machines to VHDL. These last two
years, we find works on the passage of SysML to VHDL-
AMS [16], [17], for purposes of simulation, particularly the
transformation of the Block Definition Diagram (BDD) to
VHDL-AMS.

These transformations usually generate a skeleton of
VHDL-AMS code. The designer is forced to complete the
model with VHDL-AMS code to exploit it. In this case,
the designer can choose to directly describe its architecture
with VHDL-AMS without using SysML. Our project is
to generate the complete VHDL-AMS code corresponding
to a SysML model. In addition to this generation, we
have extracted PSL [18] properties (Properties Specification
Language) from requirements diagram. These properties will
be incorporated in the VHDL-AMS code for static formal
verification, dynamic temporal verification, reliability, per-
formance and energy saving verification.

VI. CONCLUSION AND FUTURE WORK

SysML enjoys unprecedented popularity both in industry
and academic usages. In this paper, we have presented an
approach for modeling a Smart Surface micro-system at a
high level of abstraction using SysML TopCased. Models
are then transformed into a VHDL-AMS code thanks to ATL
(for the M2M transformation) and to Xpand (for the M2T
transformation).

Previous researches have demonstrated that a mapping
from UML to VHDL in the digital domain is feasible.
Moreover, because SysML is an UML profile, it allows
us to set up a process for mapping SysML to VHDL-
AMS. SysML is chosen because it allows to model mixed
software and hardware at a high level of abstraction and it
helps the developer of different discipline to share the same
specification and to reduce the gaps between software and
hardware. This first step allows the generation of a VHDL-
AMS code skeleton based on structural modeling, outcome
from BDD and IBD diagrams.

In order to have a complete VHDL-AMS code, we propose
as future work the transformation of other SysML diagrams
such as the SysML activity diagram. Activity diagram
allows to model the behavioral aspect of the micro-system
with concurrences or simultaneous instructions. Moreover,
the parametric diagram specifies equations of the micro-
system. We think to verify the full algorithm of transfor-
mation of the different diagrams with a technique of model
checking to guarantee a correct code generation without
ambiguities. The identification and formalization of require-
ments could be done by using PSL (Properties Specification
Language) to describe invariant/functional/non functionnal
properties. Because SysML is a high level language, we
can’t validate all properties of the system directly. For that,
we think that PSL language could be used to express these
properties as assertions in VHDL-AMS. Finally, we hope to
verify these properties in this lower level.

VII. ACKNOWLEDGEMENT
REFERENCES
[1] http://www.omg.org.

[2] http://www.incose.org.

3

[

http://ap233.eurostep.com.

[4] http://www.uml.org.

[5] http://www.ansoft.com/products/em/simplorer/vhdl-ams.cfm.

[6] C.T. Carr, T.M. McGinnity, and L.J. McDaid. Integration of
UML and VHDL-AMS for analogue system modelling. Formal
Aspects of Computing, 16:80,94, 2004.

[7] http://www.topcased.org.

[8] ATL Documentation.
ATLASTransformationLanguage.

http://en.wikipedia.org/wiki/

(91

(10]
(11]

[12]

(13]

[14]

(15]

(16]

(17]

(18]

Alain Giorgetti, Ahmed Hammad, and Bruno Tatibouet. Us-
ing SysML for smart surface modeling. In "dMEMS’10, Ist
workshop on design, control and software implementation for
distributed MEMS(2010) 100-107".

http://wiki.eclipse.org/Xpand.
ExperMeta. http://www.expermeta.com.

B. Berthomieu, S. Dal Zilio J.-P. Bodeveix and, P. Dissaux,
M. Filali, S. Heim, P. Gaufillet, and F. Vernadat. Formal
verification of aadl models with fiacre and tina. In ERTSS
2010, 5th International Congress and Exhibition on Embed-
ded Real-Time Software and Systems, 2010.

Medard Rieder, Rico Steiner, Cathy Berthouzoz, Francois
Corthay, and Thomas Sterren. Synthesized UML, a practical
approach to map UML to VHDL. In springer verlag, editor,
RISE 2005 - Rapid Integration of Software Engineering
techniques, LNCS, volume LNCS 3943, pages 203,217, 2005.

Dag Bjorklund and Johan Lilius. From UML behavioral
descriptions to efficient synthesizable VHDL. 2002.

D. H. Akehurst, O. Uzenkov, W. G. Howells, K. D. Mcdonald-
Maier, and B. Bordbar. Compiling UML state diagrams into
VHDL: An experiment in using model driven development.
In Using Model Driven Development. Forum on Specification
and Design Languages (FDL’07), 2007.

David Guihal. Modélisation en langage VHDL-AMS des
systemes pluridisciplinaires. PhD thesis, Université Toulouse
111, 2007.

Jean Verries. Approche pour la conception de systémes
aéronautiques innovants en vue d’optimiser [’architecture
: Application au systeme portes passagers. PhD thesis,
Université Toulouse III, 2010.

http://www.eda.org/viv/docs/PSL-v1.1.pdf.

