
Oscillation-free video adaptation at
application layer on server side and

experiments using DCCP
Wassim Ramadan, Eugen Dedu and Julien Bourgeois

UFC/FEMTO-ST Institute, UMR CNRS 6174, 4 pl. Tharradin, 25200 Montbéliard, France

Email: Eugen.Dedu@pu-pm.univ-fcomte.fr

Nowadays, video data transfers account for much of the Internet bandwidth and
a huge number of users use it daily. However, despite its apparent interest,
video streaming is still done in a suboptimal manner. Indeed, more and more
high definition and high quality videos are nowadays stored on Internet but
they are not accessible for everybody because a high and stable bandwidth is
needed to stream them; also, during video conferencing, the highest possible
quality often exceeds the available bandwidth. Hence, a lower bitrate encoding
is usually chosen but it leads to lower quality and network under-utilisation
too. This paper presents VAAL, a simple and efficient method designed to
use optimally network resources and to ameliorate user video experience. It
involves only the application layer on the server. The main idea of VAAL is
that it checks TCP-friendly transport protocol buffer overflows and adapts the
video bitrate accordingly; as a result, the bitrate constantly matches the network
bandwidth. It can be used together with ZAAL, a novel algorithm aiming to avoid
quality oscillations. Experimental results show that the video adaptation using
VAAL+ZAAL performs much better compared to the currently widely-used static

encoding, making it a strong candidate for hard real-time video streaming.

Keywords: Video streaming, Content adaptation, DCCP, Rate control, TCP-friendliness

1. INTRODUCTION

In recent years, the number of videos encoded in several
bitrates has significantly increased to the point that
they become accessible to everybody. Also, the quality
of a video conference can greatly vary, depending on the
encoding quality chosen by the sender. These videos
are delivered to final users using streaming services.
Multimedia streaming services over Internet, as well
as the demand for higher quality from final clients
are in constant progression. New video standards
like HD and 3D are demanding for more bandwidth.
Available bandwidth variation has also to be taken
into account so that buffering time can be shortened.
Watching such videos on a network with unstable
bandwidth is not a comfortable experience, especially
if the bandwidth becomes smaller than the bitrate.
For example, wireless networks use various network
technologies with different characteristics, and they can
change over time (interferences, mobility etc.) Another
example is networks with shared bandwidth among
several users, which could make the available bandwidth
unstable.

Additionally, more and more network applications,
for example real-time media like audio and video

streaming, can accept a certain level of losses. If they
use TCP (Transmission Control Protocol), they have
to pay the price for full reliability, with great latency.
On the other hand, UDP (User Datagram Protocol)
lacks congestion avoidance support. RTP (Real-time
Transport Protocol) [1], while being a widely-used
protocol for multimedia streaming, is an application
protocol; as such, it is put on top of a transport
protocol, such as TCP or UDP, hence it does not cope
with transport protocol problems.

Another promising protocol for these applications
is DCCP (Datagram Congestion Control Protocol),
recently standardised as RFC4340 [2]. It can be
seen as TCP minus reliability and in-order delivery
of packets, two key points in video streaming, or as
UDP plus congestion control. For our purposes, two
interesting points of DCCP are that it allows choosing
the congestion control used during communication and
that it uses acknowledgements. Among the currently
three standardised congestion control protocols, TFRC
(TCP-Friendly Rate Control) is the most adapted to
video streaming [3]. Also, acknowledgement packets
give useful information to the sender, such as the lost
packets and ECN (Explicit Congestion Notification)
marks.

The Computer Journal, Vol. ??, No. ??, ????

2 W. Ramadan, E. Dedu, J. Bourgeois

For the above protocols, especially DCCP and TCP,
video transmission is controlled at the network layer
and the application is not involved at all. For video
streaming in a network with highly variable bandwidth
during a connection, an adaptation of the video to
the network characteristics is very important. A
cooperative approach between application layer and
network layer can improve the video quality perceptible
by the final user.

The adaptation method we propose (VAAL, Video
Adaptation at Application Layer) uses transport
protocol buffer overflow as a solution to find out the
available bandwidth and to adapt the video content
bitrate to the discovered bandwidth. Each n fixed
seconds, the server application computes the number
of packets which failed to be written to the socket
buffer. This number is used to control the video bitrate
afterwards. A high number means smaller bandwidth
and smaller bitrate. Zero error indicates either a stable
or a greater bandwidth, so the bitrate of sent video
could be increased. In this way, the bitrate of the
watched video is fixed during each period of n seconds,
and can change only between periods.

The above adaptation, known in the literature
as “rate adaptive video control”, can be done by
controlling some other video parameters, such as
number of frames per second (FPS) and image size.

The three parameters presented above allow to
optimise the application part of the video streaming.
For yet better results, these methods could be coupled
with other methods. For example, a well-known
problem with losses in wireless networks is that they
cannot be differentiated from congestion losses, hence
the sender reduces the throughput while it should
not [4]. Another optimisation on the network part
useful on lossy links is the FEC (Forward Error
Correction) ([5] for example). Also, video-specific
network techniques allow for example to prioritise [6]
or retransmit [7] only important packets (I packets
in an MPEG-encoded video) on the server side. A
commonly-used such technique is ALF (Application-
Level Framing), which cuts intelligently video data in
packets (avoiding for example to put one small video
frame in two packets, which would be more sensible to
packet loss); this is to be used in conjunction with the
MTU (Maximum Transmission Unit) of the network.

It is important to understand that our method
is only a small part in the optimisation chain for
video streaming, which can be used and is beneficial
independently of the other methods presented above.
As such, we consider in this article only network
parameters and network performance criteria.

The rate control is not a new idea to ameliorate video
transmission. In the literature, there are a multitude of
papers about this topic. Most of them were written
5–10 years ago, where solutions using new/modified
transport protocols were used (such as [8]), which are
not deployable in reality and risky from the congestion

control point of view. Moreover, only few of them use
experiments. The only papers we have found about
rate control over DCCP are [9, 10], and they use
simulations1. A new trend in adaptive video is also
to use HTTP over TCP, such as the recent ISO MPEG
DASH standard [11], which has advantages, but also
drawbacks, such as, in videoconferencing, mandatory
100% reliability given by TCP use.

In this context, this is the first time that the
buffer overflow method is analysed for video adaptation.
Moreover, our paper is, to our knowledge, the first
paper which uses DCCP in real experiments of video
streaming in wireless networks. Our solution is very
simple to deploy, as only the application on the sender
side needs to be modified (does not need to modify the
receiver, nor the transport protocol). As a corollary,
our method works with any transport protocol which
has a congestion control.

The scope of our method is unidirectional and
bidirectional communications, such as VoD (Video
on Demand) and videoconferencing. Our method
applies ideally to videoconferencing, because it is
delay-sensitive and it consists mainly in a few simple
additions/divisions per second and updating the value
of the quantisation parameter; also, there is no need of
support, such as caches, from CDN (Content Delivery
Networks).

This paper is organized as follows. The motivation
of this paper is given in section 2. Section 3
presents related work for video adaptation. Section 4
presents our VAAL method and its implementation
on GNU/Linux, and section 5 presents ZAAL, a
novel algorithm to avoid quality oscillations in a video
adaptation method. Performance of VAAL+ZAAL
is evaluated through real experiments in section 6.
Finally, section 7 concludes this article and presents
some perspectives.

2. MOTIVATIONS

2.1. Advantages of video adaptation over static
encoding

Video adaptation is useful when the available band-
width varies during transmission. This appears in two
cases: either the network bandwidth itself changes, or
the bandwidth available for the flow changes.

The first case appears in wireless networks, where
data rate changes according to radio link quality, and
the bandwidth varies often. Data rate decreasing has
multiple reasons:

1. interferences due to environment or to presence of
another equipment working on the same range of

1There are serious concerns about simulation results, such as
“around 50% of the papers appeared to be. . . bogus” and “who
has ever validated NS2 code?” (from September 2005 archives of
the e2e-interest mailing list). This is especially true for wireless
link simulation.

The Computer Journal, Vol. ??, No. ??, ????

Video adaptation and experiments using DCCP 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140 160 180

B
itr

at
e

(M
bi

t/s
)

Time (s)

available bandwidth
Q0

Q1
Q2

Q3

FIGURE 1. Example of available bandwidth vs available
bitrates.

frequencies, which decrease the signal to noise ratio
for a short period;

2. mobility which, depending on the distance between
the mobile and the access point, leads to signal
attenuation and might also cause dynamic rate
scaling.

This case also appears when an ISP (Internet Service
Provider) changes dynamically the bandwidth allocated
to a user. Indeed, with the increasing number of
streaming services on Internet, more and more traffic
is generated, which leads ISPs to limit user bandwidth
even during a transfer. We simulate this case by using
a traffic shaping model as described in experiments
section.

The second case is when a variable number of flows
share the same path. The bandwidth available for video
streaming is also variable for each flow. We illustrate
this case by using a different number of concurrent flows
as described in our experiments section.

For these cases, the adaptation helps to take
advantage of all the available bandwidth or to avoid
numerous lost packets.

2.2. Case study

Classical video transmission uses the same bitrate from
the beginning to the end of the transmission. For
comparison, we give some theoretical results based on a
bandwidth between sender and receiver which changes
according to figure 1. It simulates the limits imposed
by ISPs, but also (on a larger scale) the dynamics
of the available bandwidth between two hosts on a
network. As already known, many factors contribute
to this dynamics, for example when a user goes further
or nearer the access point in a wireless network, or
when more or less packets are injected into the network.
The bandwidth changing pose problems to the video
transmission because when bitrate is smaller than
bandwidth, the network is underutilised, and when
bitrate is higher than bandwidth, packets will be lost.

The figure presents the available bitrates of a

Quality Sent pkts Received pkts Lost pkts

Q3 69120 45312 34.4%
Q2 46080 35328 23.3%
Q1 23040 19986 13.3%
Q0 11520 11520 0%
Ideal 42240 42240 0%

TABLE 1. Number of sent and received packets for each
static bitrate and the ideal case.

hypothetical video: 512kb/s (Q0), 1Mb/s (Q1), 2Mb/s
(Q2) and 3Mb/s (Q3). Also, as shown in the figure,
during the 180 seconds of the video transmission the
bandwidth changes three times: 600kb/s for the first
minute, where 512kb/s video bitrate is the best choice;
2300kb/s for the second minute, where only quality
of 3Mb/s should not be used; and 3Mb/s for the last
minute, where any video quality could be used.

In this example it can be noticed that none of the four
available bitrates is suited for the whole transmission:

1. Q0 is good for the first minute but choosing it will
prevent the user from fully utilising the bandwidth
for the remaining time.

2. Q1 is not good for the first minute and has the same
drawback as 512kb/s bitrate for the remaining
time.

3. Q2 is not good for the first minute; it could be
chosen for the second minute, and has the same
drawback as 512kb/s bitrate for the remaining
time.

4. Finally, Q3 is not good for the first and second
minutes; it could be chosen for last minute.

In order to compare the qualities, we compute for
each of them the number of sent packets, the number of
received packets and the percentage of lost packets. The
results are given in table 1. For example, for a packet
size s=1024 bytes, quality Q1 information is obtained
like this:

• 1Mb/s / (s=1024*8b) * (t=180s) = 23040 sent
packets;

• 0.6Mb/s / (s=1024*8b) * (t=60) + 1Mb/s /
(s=1024*8b) * (t=120) = 19968 received packets
(Q1 is greater than available bandwidth for the first
60 seconds, so only 600kb/s are received from the
1Mb/s sent);

• 23040 – 19968 = 3072, i.e. 13.3% lost packets.

The ideal case appears when the bitrate is adapted to
available bandwidth, i.e. 512kb/s for the first minute,
2Mb/s for the second minute and 3Mb/s for the third
minute. It leads to no lost packets and maxb*time sent
and received packets, where maxb is at any moment the
maximum bitrate less than or equal to the bandwidth.

First, this table confirms what we said before: no
static bitrate is suitable for the whole transmission.
Second, the adaptation is clearly better than each of the
static bitrates. The only quality with no lost packets

The Computer Journal, Vol. ??, No. ??, ????

4 W. Ramadan, E. Dedu, J. Bourgeois

is Q0, but it is worse than ideal case, since it has only
11520 received packets compared to 42240 for the ideal
case. Note that the number of received packets for Q3 is
higher than the ideal case, since it leads to lost packets;
e.g. for the first 60 seconds, the ideal case sends at
512kb/s and receives the same, while Q3 sends at 3Mb/s
and receives 600kb/s.

Finally, it is difficult, or even impossible, for the
user or some program to decide at the beginning of a
video transmission which static bitrate is the best to
use during the whole transmission. On the contrary,
the adaptation is automatic, i.e. it does not involve any
action from the user.

3. RELATED WORK

3.1. Methods using only the application layer

In this approach only the application layer is modified.
The application uses information provided by lower
layers. The characteristics of video encoding determine
how to adapt the bitrate of the video to the available
bandwidth. For example, if the video changes the
quality, a flow commutation is done. Our method
belongs to this category.

RAAHS, Rate Adaptation Algorithm for HTTP Stream-
ing RAAHS proposes an adaptation algorithm for
adaptive video streaming over HTTP [12]. This algo-
rithm, applied on client site, is based on the loading
time of a video segment SFT (Segment Fetch Time) to
detect congestion and calculate the transmission rate
over HTTP. For that, this algorithm compares the SFT
with the segment duration MSD (Media Segment Du-
ration) which has a value of 5 to 10 seconds. Basically,
if the loading time of an SFT segment is greater than
its duration, then the throughput is lower than the bit-
rate of the video. Otherwise, the available bandwidth
is greater than the bitrate.

AHDVS, Akamai HD Video Streaming AHDVS [13]
employs HTTP connections to transmit videos between
server and client. Videos are encoded at five levels. The
client provides regular information to the server, such as
the bandwidth estimated by the receiver, the size of the
receive buffer, the number of frames received per second
and the current bitrate received. To decide the quality
to transmit, the algorithm uses the receiver buffer size
q and a predefined threshold qt as follows:

r = l
max((1 + qt−q

qt
)100, 10)

100
(1)

where r is the data rate at which the application should
supply the TCP buffer and l is the current bitrate. In
this equation, when q is equivalent to qt, r is equivalent
to l, and when qt − q increases the quality increases.

QAC, Quality Adaptation Controller QAC [14] uses
feedback control theory for video streaming. The

adaptation of the video is done on the server side. The
QAC sender chooses the highest bitrate which makes q
greater to a predefined threshold qt, while keeping at the
same time the data rate under the available bandwidth.
So, the buffer has always data to transmit.

CBVA, Content-Based Video Adaptation CBVA is
an adaptation method for streaming of stored video
files [15]. CBVA encodes each video in multiples
qualities (different bitrates and frame rates) and for
each one it creates a group of operating points
(combination of frame rate and frame quality). When
available bandwidth changes, CBVA changes the
streamed video to another operating point. There is a
deadline for each operating point. The video quality is
increased if this deadline is highly respected, otherwise
it is decreased.

Positioning The methods described in this category
are divided into two types: methods performing
adaptation at the sender side, and on the receiver side.
Although the latter can take into account the size of
the receive buffer, they require overloading the network
with additional traffic between client and server to make
the adaptation. In addition, they require a change on
the client applications, which is not practical.

For the first type, we note that either the above
methods are optimised for a particular type of transport
protocols such as TCP, or they operate under certain
conditions. This makes these solutions less general,
applicable only in certain cases.

3.2. Methods using several layers

Another approach is that both layers change: the lower
layers give feed-back on the network conditions to
application layer, which acts accordingly (for example,
it adapts the video bitrate).

VTP, Video Transport Protocol Video Transport
Protocol (VTP) [16] was specifically designed to
transmit videos encoded in MPEG-4. VTP controls the
transmission every k packets. The transmitter sends a
request for acknowledgements and receives replies. This
exchange allows it to calculate the RTT, the sending
rate, and subsequently the best bitrate to be used.
VTP has the drawbacks inherent to the implementation
of congestion control at this level. It also requires a
modification of the application on the receiver side, and
there is a risk that is not compatible with TCP (TCP-
friendly).

The method described in [8] acts the same way as
VTP, but it creates a new transport protocol.

Buffer-driven The Buffer-driven adaptation method,
described in [17], uses the occupancy of the receiver
buffer to infer which video quality should be chosen
and streamed. The occupancy of the receiver buffer is

The Computer Journal, Vol. ??, No. ??, ????

Video adaptation and experiments using DCCP 5

done at the sender by the following equation (presented
in [18]):

BE = BC +

(
pktnum ∗ s

i
−R

)
∗RTT (2)

where pktnum is the number of packets, s the packet
size, i RTCP interval, R the encoding rate and BC

the last buffer occupancy. The method simply tries to
maintain BE inside two thresholds.

Positioning The methods proposed in this category all
share the same idea: to transmit streaming video in
an adaptive manner, several layers are changed. These
methods require significant changes to the operating
system, which make them difficult to deploy.

3.3. Methods proposed by major companies

The three commercial products IIS Smooth Stream-
ing [19], Adobe HTTP Dynamic Streaming [20] and
HTTP Adaptive Live Streaming [21] are at high-level
similar. A manifest file containing detailed informa-
tion about how video is cut is available on the server.
Clients get it, parse it and regularly choose the part of
the video to demand: what quality, from which time to
which time, what resolution and so on. On the other
hand, the format of the manifest file and client avail-
ability is different for each of the three solutions.

MPEG DASH MPEG DASH (Dynamic Adaptive
Streaming over HTTP) [11] is a recent ISO standard
technically similar to the three HTTP-based methods
above, but vendor-neutral. It is not bound to any codec.
The adaptation is made solely by receiver.

Positioning These methods use HTTP over TCP.
They have several practical advantages, the most
proeminent being the use of already established
protocols which pass firewalls. Some drawbacks are:

• As they use TCP, they have the drawbacks inherent
to TCP for hard real-time video streaming, such
as videoconferencing: 100% reliability through
retransmission, which blocks the receiver until
the next packet has been received (this is more
exacerbated when the same packet is lost twice
by the network: its initial transmission and its
retransmission for example). Moreover, TFRC is a
better choice for video streaming [3], but it cannot
be used with HTTP.

• All the clients need to be modified (e.g. by
installing a plug-in).

• It cannot be used in conjunction with other optimi-
sation methods (packet prioritisation, selective re-
transmission etc.), since they are bound to HTTP
and TCP standards.

FIGURE 2. Video data flow on the sender.

4. VAAL, VIDEO ADAPTATION ALGO-
RITHM

To be able to know whether to increase, maintain
or decrease the video quality, the sender application
should have some information about the available
bandwidth. In our proposed method VAAL, the
bandwidth availability is measured through the number
of packets which failed to be written to the transport
protocol socket (buffer overflow). The higher the
number, the less the available bandwidth. Regularly,
VAAL computes this number of packets and changes
the video bitrate accordingly. VAAL requires a
transport protocol with a network congestion control,
no matter which one. It uses a simple algorithm
(see appendix Appendix A). Finally, it is made at
application layer and does not need any change to
system kernel.

Note that while doing adaptation, the sender should
try to minimise the quality fluctuation. It is not
preferable, in our opinion, to change quality at each sent
packet but on a longer scale (each 100ms, each 2sec or
each I image for MPEG video for example). However,
some codecs may have constraints on the time when the
quality changes.

4.1. VAAL explanation

As shown in figure 2, the server application writes
packets to the transport protocol socket buffer at a
rate equal to the current video bitrate. The transport
protocol has a congestion control which gives the rate
at which the packets leave the socket buffer (and
afterwards the machine, and enter the network). VAAL
goal is to adjust the video bitrate to the rate estimated
by the transport protocol. Thus, VAAL algorithm is
divided in two steps: discovery of the network conditions
(available bandwidth based on buffer overflow) and
quality selection (the action to be done). These two
steps are executed for each period of n fixed seconds.

The discovery of network conditions works as
following. When the application generates packets at
a higher rate than the transport protocol can send
to lower layers (network), packets are buffered. If
the buffer becomes full, the new packets generated by
application will fail to be written (buffer overflow).
Thus, VAAL monitors the available network bandwidth
through the transport protocol socket buffer overflows
when the application tries to write a packet in it.
During each period, VAAL computes the percentage
of these failed packets, which we will call write failure

The Computer Journal, Vol. ??, No. ??, ????

6 W. Ramadan, E. Dedu, J. Bourgeois

percentage (WFP). Consequently, WFP is an indication
of the network conditions: the bigger the WFP, the less
the available bandwidth.

The quality selection (adaptation) works as following.
At the end of each period, VAAL reads the WFP (given
by the first step) and acts like this:

• If WFP is null (no packets failed when written to
buffer) VAAL chooses the next higher quality level
(higher bitrate) unless the quality is already the
highest.

• Elsewhere, if WFP is tolerable (smaller than 5%),
the quality is maintained at the same level. ITU.T
G.1070 [22] recommends that the end-to-end IP
packet loss rate in video streaming should be less
than 10%. Hence, we chose a threshold of 5%
of packet loss rate at the sender buffer (WFP <
5%), the other 5% being left to handle the network
losses.

• Finally, when WFP is greater than 5% and unless
the lowest quality is already in use, VAAL searches
for the highest quality q′ which fulfils:

q′ ≤ q(1 − WFP)r (3)

where q is the current quality. In this formula,
q(1−WFP) represents the bandwidth available for
the period which has just ended, while r > 0 is
a parameter (aggressiveness) which allows us to
choose a quality with a bitrate different than the
available bandwidth.
Normally, the next quality q′ should be smaller
than q, but depending on the aggressiveness r, the
quality could remain the same or even increase.

As mentioned before, VAAL requires a transport
protocol with a network congestion control, no matter
which one. Also, VAAL is especially useful in video
conferencing (video on-the-fly) because there is no need
to re-encode the video, just changing the encoding rate.

4.2. Implementation

We have implemented VAAL video adaptation at the
application layer on a GNU/Linux machine with 2.6.35
kernel (without any change to system kernel). The
period of time n is 2 seconds. Packets which failed
to be written in the socket buffer are deleted (i.e. they
are not stored so that they can be retransmitted later),
in order to reduce delay. The program uses DCCP as
transport protocol together with TFRC as congestion
control (DCCP was implemented in the kernel a few
years ago).

This implementation represents an enhanced version
of our previous works [23] and [24]. In the version of
VAAL presented in this paper we put them together
and studied four enhancements through new deeper
experiments. The first three show better performance
while the last one gives similar results.

4.2.1. Initial bitrate
Starting the connection with a high bitrate will cause
transport protocol buffer to drop a high number of
generated packets, which has a negative impact on video
quality at the beginning of each video. “Slow-start”
solutions for the bitrate at the beginning of a video
streaming have already been proposed, but they are
not generally applicable, because the adaptation can
often be done only at coarse grain (e.g. each 2 sec.) So
in VAAL we took a simple and general solution: we
decided not to start the transfer with a high bitrate
but with a small one. Our choice was also not to use
the smallest bitrate because it will take a few seconds
to reach the highest bitrate if the bandwidth is high
enough to support it. In our current implementation of
VAAL, the initial video bitrate used is 1Mb/s.

4.2.2. WFP computation interval
WFP is the parameter used by VAAL to estimate the
available bandwidth. We have considered two ideas for
the interval of time on which WFP is calculated: use
either the last RTT (Rount Trip Time), or the interval
of time for the last p sent packets; p should not be
smaller than 20, in order to allow a percentage of failed
packets (WFP) less than or equal to 5% to appear, cf.
the quality selection above. However, because the RTT
may be very small (depending on network topology) and
the number of packets during this period could be very
small too, we choose instead a hybrid solution using
both ideas, where the interval of time is max (last RTT,
last 20 sent packets).

4.2.3. r aggressiveness value
r represents the aggressiveness of the transfer. As
previously shown (equation 3), the next quality chosen
q′ is the highest available quality which verifies q′ ≤ wr,
where w is the bandwidth. If r = 1, the next quality
will be at most w, while if r = 1.1 for example, the
next quality could be as great as 1.1w. However, in this
latter case it does not necessarily mean that the quality
will always be greater than w; if for example available
qualities of the transmitted video are increasing as
powers of 2 (512kb/s, 1Mb/s, 2Mb/s etc.), then the
highest available quality smaller than or equal to 1.1w
is somewhere between 1.1w/2 and 1.1w, with an average
of 1.1w∗3/4 = 0.825w, which is smaller than w. On the
other hand, if all qualities are available (i.e. supported
by a codec during an on-the-fly encoding), then the next
quality will always be near or equal to 1.1w, which is
greater than w, hence not a good solution.

As an numerical example on the influence of r to the
chosen quality, let’s suppose that the available bitrates
are the ones above (512kb/s, 1Mb/s, 2Mb/s etc.), r is
1.1, and that in some point of time the current bitrate
is 1Mb/s and the measured WFP is 7%. According
to equation 3 in previous section, q′ ≤ 1Mb/s ∗ (1 −
0.07)∗1.1, that is q′ ≤ 1.023Mb/s. This means that the

The Computer Journal, Vol. ??, No. ??, ????

Video adaptation and experiments using DCCP 7

quality of the flow remains at 1Mb/s in that point of
time. However, if WFP was 10%, then q′ ≤ 0.99Mb/s
and the quality would decrease to 512kb/s.

As a conclusion, r should be chosen carefully and
be based on the available qualities of the video: the
higher the bitrate ratio between consecutive qualities,
the higher the r value. In the current version several
values for r have been tested and r = 1.1 is used.

4.2.4. Real vs theoretic bitrate
It is known that sometimes encoders cannot encode a
video to a specific bitrate, i.e. the bitrate of the video
generated is not equal, but (more or less) near the
bitrate asked. We denote by qt the theoretic (or asked)
bitrate for a video and by qr the real (or generated)
bitrate.

As previously specified, when VAAL is in quality
selection step and after WFP calculation, next
quality q′ (for the following 2 seconds) is chosen so
that q′ ≤ q(1 − WFP)r (formula 3), where q is the
quality used in the past 2 seconds. q and q′ can have
two different meanings:

• For q′ (in the future): The bitrate for the
next 2 seconds can sometimes be predicted (for
example for video streaming using pre-stored files),
sometimes not (for example for interactive video
conference, when the codec is not very precise).
If prediction is possible, q′t or q′r can be chosen,
otherwise only q′t can be chosen.

• For q (in the past): At any moment, the real bitrate
qr used for past 2 seconds is available. However,
the theoretical bitrate qt used 2 seconds ago exists
only if in the previous step (q′, in the future) it was
chosen.

Since q′r is not available for any kind of video
transmission, we prefer to choose q′t for VAAL. There is
now a choice between qt or qr; in the current version
both values have been tested and they gave similar
results, and we decided to use qt for next quality
decision.

4.3. Amelioration of our implementation

We noticed that our VAAL method has two possible
kinds of drawbacks. The first one is the overestimate
of the bandwidth, which leads to a higher transmitted
video bitrate (over-bitrate) than available bandwidth.
This over-bitrate may happen in the following cases for
example: 1) In the middle of the two seconds (period
of time used by VAAL to check network conditions),
the bandwidth abruptly goes down, so many packets
will be lost until the end of this period of two seconds.
2) We over estimate the bitrate when we switch to a
higher bitrate, but the bandwidth is smaller than that
(VAAL cannot predict the exact bandwidth). In the
following section we propose an algorithm to minimise
the number of lost packets. It uses a history of bad

decisions, allowing to know which bitrate overestimated
the bandwidth, in order not to try it for a while.

The second one is the video under-bitrate (video
bitrate is smaller than the network bandwidth) due to a
underestimation of the bandwidth. In the same manner
as above, this can appear: 1) When in the middle of the
two seconds, the bandwidth abruptly goes up. 2) When
the bitrate is switched to the next higher one, but the
bandwidth is even higher than that.

A solution for these drawbacks is to adapt to network
conditions more often, but this is subject to codec
constraints.

5. ZAAL, ZIGZAG AVOIDANCE ALGO-
RITHM

A video adaptation method such as VAAL presented
previously can sometimes lead to a continuous switching
between two qualities: one smaller than available
bandwidth and the second greater. For example, if
a user is connected to Internet via a 2.5Mb/s link
and the video is available in 2 and 3Mb/s qualities,
then an adaptive streaming algorithm will constantly
switch between these two qualities. Obviously, the best
solution would be to stay with 2Mb/s much more time
before retrying 3Mb/s quality. Since the adaptation
algorithm does not know when the available bandwidth
could be larger than 3Mb/s, it should retry a superior
bitrate from time to time. This constant change induces
what we call ZQS zigzag quality switching problem (the
zigzags are also called oscillations). We noticed this
phenomenon in our first experiments (see figure 5(a)
for a clear example, where during the first minute the
video bitrate is continuously toggling between 0.5 and
1 Mb/s).

If this issue is already known (see [25] for instance),
only few papers treat it, and they do not solve it
completely. For example, in [26] the receiver uses a
back-off timer for each layer of the video. If a level led
to lost packets, the receiver goes back to previous level
and the timer for the level with losses is multiplicatively
increased. Authors of [27] present a way for smoothing
sent video bitrate and reducing the frequency of video
quality changes. The main idea is that the application
does not switch to a higher video quality until the sender
is certain that the video will continue playing even after
a reduction of the congestion window. A metric to
evaluate the jerkiness of a video, given by the number
of quality changes, is given in [15]. It uses a formula
to calculate an effective frame rate for each video. This
formula is used to limit the number of quality changes
for each defined window during the transmission.

In this section we introduce a simple, easy to
implement and scalable solution, called ZAAL (Zigzag
Avoidance Algorithm), to this problem (for detailed
information the reader is referred to [24]). We present
also the integration of ZAAL in the method of video
adaptation at application layer on the server (VAAL).

The Computer Journal, Vol. ??, No. ??, ????

8 W. Ramadan, E. Dedu, J. Bourgeois

VAAL behaves as explained in section 4 except that
when the quality is to be increased (in the quality
selection phase), VAAL consults ZAAL for whether a
superior bitrate is allowed or not. If ZAAL decides
that the increase does not lead to zigzag, then VAAL
increases the quality; otherwise, VAAL maintains the
current level.

Note that ZAAL is not an adaptation method. It
is used only to prevent an adaptation method from
frequently switching the video quality. The only
information ZAAL needs comes from the adaptation
method, whether some bitrate causes lost packets or
not.

5.1. Zigzag-avoiding algorithm overview

ZAAL algorithm works by avoiding constantly using
bitrates higher than the available bandwidth. For
that, it maintains an successfulness value for each
bitrate, called successfulness in the following. When the
adaptive algorithm considers to increase bitrate (and
only in this case), ZAAL checks if the successfulness of
the higher bitrate is lower than a threshold, called β;
if this is the case, a higher bitrate cannot be chosen.
Otherwise said, application uses a higher bitrate i only
if its successfulness Si > β. After this process, the
successfulness is updated.

More precisely, ZAAL algorithm uses the successful-
ness value each time an adaptation period ends (e.g.
each 2 sec. in case of VAAL). Successfulness value is
calculated separately for each bitrate (with different
weights), denoted by Si, which indicates if bitrate of
index i can be used for the next period or not. As
such, this value expresses application last attempts to
use the corresponding bitrate. In brief, when a bit-
rate generated failed packets to the transport protocol
buffer, corresponding successfulness value is greatly re-
duced; when a bitrate was successful, the successfulness
value is greatly increased; finally, when a bitrate has
been used for a long time, the successfulness value cor-
responding to the higher bitrate is slowly increased. As
a general rule, the smaller the successfulness value, the
more the corresponding bitrate caused failed packets
and application must avoid using it.

The successfulness Si (where i is bitrate index) of
each bitrate, which changes according to the history of
that bitrate, is calculated using an EWMA algorithm
(Exponential Weighted Moving Average). Using
EWMA allows to give greater weight to recent history
compared to older history, since obviously current
bandwidth is better expressed by recent bitrate usage
than by older ones. Additionally, different weights are
used, based on the bitrate involved.

At the beginning of a video transmission, all Si values
are set to 1. Then they are calculated each time
the application wants to adapt the video bitrate to
the available bandwidth, using the following general
formula:

Si = (1 − α/d)Si + s(α/d) (4)

where:

• s is the successfulness at the time of measurement
(the current “observation”) and can be either 0
or 1. 0 value is used when the bitrate did not
give good results (hence its successfulness value
will decrease). 1 value is used when the bitrate
gave good results, either because the bitrate did not
cause failed written packets, or because the bitrate
was not used recently (hence its successfulness
value will increase).

• α is the degree of weighting increase/decrease,
a constant smoothing factor between 0 and 1.
A higher α discounts older successfulness values
faster.

• d is a division factor allowing to speed up or slow
down the value increasing depending on the bitrate
involved. In our algorithm, d has three values:
1, 2 and 4. For s = 1, the greater the d, the
slower the increasing of the Si value. The value
of d depends whether the application increases,
maintains or reduces bitrate.

In our experiments we intuitively set α = 0.3 and
β = 1−α = 0.7. Other values were analysed but either
they lead to high number of adaptation iterations for
the algorithm to converge, or they minimise its effects.

6. EXPERIMENTAL RESULTS

Figure 3 shows the real network used to realise
experiments with the program presented in the previous
section. A video streaming connection is made between
a sender and a receiver with wired interface for both.
An intermediate machine (called shaping machine in
the following) is added between the sender and the
receiver2. This shaping machine has two interface cards:
a wired interface connected to the sender and a wireless
one (54Mb/s) connected to an access point (AP). The
receiver is connected to the same AP via its wired
interface. We chose a wireless network in order to be
nearer the reality, since wireless networks are commonly
used today to access Internet and such networks are
more challenging for the algorithms involved in video
adaptation. The video streaming uses a real video,
available in four qualities 3Mb/s, 2Mb/s, 1Mb/s and
512kb/s, as mentioned before. The video has 180s and
the real bitrate during each second for each of the four
asked bitrates is given in figure 4.

Three series of tests are done. For the first series
(traffic shaping series), just one flow is present at any

2We preferred to add an intermediate machine since making
the traffic shaping on DCCP sender is not working currently (see
thread “DCCP BUG called” on DCCP mailing list, available at
http://www.spinics.net/lists/dccp/msg04264.html), making
it on the access point is not interesting either, because it has
an older linux kernel, and making it on the receiver machine does
not give accurate results.

The Computer Journal, Vol. ??, No. ??, ????

Video adaptation and experiments using DCCP 9

FIGURE 3. Network topology used for experiments.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 b
itr

at
e

(k
bi

t/s
)

Time (s)

 Q0
Q1
Q2
Q3

FIGURE 4. Real bitrate of the four theoretical (asked)
bitrates 512kb/s, 1Mb/s, 2Mb/s and 3Mb/s.

moment during the video transmission, which can thus
use all the available bandwidth. On the other hand, the
output bandwidth of the shaping machine is changed
three times to simulate a variable bandwidth: 600kb/s
for the first minute, 2300kb/s for the second minute,
and traffic shaping was stopped for the last minute
(hence the output bandwidth is the original wireless
bandwidth) (see figure 1). For the second series, two
numbers of concurrent flows are present during the
whole transmission: five and ten flows (called in the
following flows without gap series). In fact, five flows
at maximum bitrate are comparable to the bandwidth
of the network (5*3Mb/s = 15Mb/s, which is about
the bandwidth provided by a classical 54Mb/s wireless
network), while 10 flows clearly exceed the bandwidth.
This allows to see what happens when multiples flows
sense the available bandwidth, especially to check if
this leads to a wide oscillation in performance. In fact,
more video adaptation frequencies will be seen as the
number of flows increases from five to ten. In the third
series, a various number up to twelve flows are present
at the same time. Each flow starts 10 seconds after
the beginning of the previous flow, except the first one
which starts at time 0 (called in the following up to
twelve flows with gap series); this is presented more in
detail in section 6.2.2.

For the second and the third series, each flow waits
before starting for a random number between 0 and
2 seconds, to prevent that each two seconds all flows
change the bitrate at the same time. During experiment
execution, all the flows use the same algorithm (i.e. all
of them use adaptation, or all of them use some fixed
quality).

The series above consist in executing the same

Method First minute Second minute Total

Without ZAAL 13 10 23
With ZAAL 3 1 4

TABLE 2. Number of zigzags with and without ZAAL.

experiments several times. First series has ten
repetitions, and second and third series have five
repetitions. Depending on the network conditions one
method can take advantage over the others just because
during its experiment the network conditions were good;
with five or ten repetitions, the chance for something
to happen again and again is very small. Only one
representative experiment is presented here, and the
overall average of all experiment repetitions. Note that
there is no retransmission for lost packets in all our tests
(as given by DCCP).

In the remaining of the section, we first confirm that
ZAAL is a useful addition to VAAL, and afterwards
evaluate VAAL+ZAAL.

6.1. ZAAL usefulness

6.1.1. Zigzag avoidance of ZAAL
The experiment we present uses one flow in case of
traffic shaping. Figure 5 presents the results. The x-
axis represents the time from 0 to 180s, the duration
of a video transmission, and the y-axis shows the video
bitrate (VAAL with or without ZAAL). As expected,
ZAAL minimises the zigzag effect: during the first
minute in figure 5(a) (where ZAAL is not used), the
video bitrate is continuously toggling between 0.5 and
1Mb/s, while when ZAAL is used, in figure 5(b),
application uses 0.5Mb/s bitrate most of the time. The
same conclusions can be drawn from the second minute.
During the last minute, bandwidth is wide enough to
support 3Mb/s, and ZAAL finally allows this bitrate.

More specifically, table 2 presents the number of
zigzags during the first and the second minute (there
is no difference during the third minute). It is clear
that ZAAL leads to much fewer zigzags (3 against 13
in first minute, 1 against 10 in second minute, so about
85% less in total). Naturally, this has a very big impact
on the video quality perceived.

6.1.2. Impact of ZAAL on transmission performance
Even if reducing packet loss rate is not the main goal of
ZAAL, we investigate how ZAAL affects it. We consider
the number of received packets and the number of lost
packets. Video quality over network transmission is
more affected by packet losses rather than video bitrate
value. Table 3 presents numerical results of the same
experiments. For one flow in case of traffic shaping,
it is clear that the number of received packets is lower
when ZAAL is used (e.g. only 39865 received packets
for ZAAL compared to 42043 without ZAAL), because
of ZAAL preventing higher bitrate for some period. On
the other hand, when ZAAL is used the flow has 30%

The Computer Journal, Vol. ??, No. ??, ????

10 W. Ramadan, E. Dedu, J. Bourgeois

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180

 0

 20

 40

 60

 80

 100

 120

B
itr

at
e

of
 tr

an
sm

itt
ed

 v
id

eo
 (

M
b/

s)

Time (s)

adapted video bitrate

(a) without ZAAL: many zigzags occur

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180

 0

 20

 40

 60

 80

 100

 120

B
itr

at
e

of
 tr

an
sm

itt
ed

 v
id

eo
 (

M
b/

s)

Time (s)

adapted video bitrate

(b) with ZAAL: few zigzags occur

FIGURE 5. Quality adaptation for one flow in case of
traffic shaping (using the same traffic shaping).

fewer lost packets (under the same network conditions).
The average of the ten concurrent flows gives yet better
results for ZAAL, i.e. number of received packets are
nearly equal but loss rate is about 50% smaller.

To summarise:

• in the first experiment, it cannot be easily decided
which is better in terms of number of sent and
received packets, but using ZAAL is more useful
because it avoids the zigzag and gives a more stable
video quality;

• in the second experiment, ZAAL is better in terms
of sent and received packets, avoiding the zigzag in
the same time.

We can conclude that using ZAAL is better and even
if sometimes the number of received packets is lower, it
reduces the rate of lost packets while maximising the
use of the bandwidth.

6.2. VAAL + ZAAL evaluation

This section presents three results: the bitrate adap-
tation takes well into account the DCCP buffer feed-
back (quality variation), our method outperforms the
widely-used static encoding (adaptation performance),
and several applications on the same server machine are
fair when they send packets. For simplicity, we will call
ZVAAL the combination of VAAL and ZAAL.

6.2.1. Quality variation

In this section we discuss the quality variation made
by ZVAAL. As seen before, every two seconds ZVAAL
looks at the write failure percentage (WFP) of DCCP
buffer to decide if it has to increase, maintain or
decrease its bitrate. We present here results for one
flow in traffic shaping, and five and ten flows without
gap. For better visualisation, we show write success
percentage, which is simply 1 – write failure percentage
(i.e. 1 –WFP).

In the following figures, the x-axis represents the time
from 0 to 180s, the duration of a video transmission.
The bitrate of transmitted video and the write success
percentage are put on the y-axis. Three curves are
plotted in each graphic: the current theoretical (asked)
video bitrate qt asked by ZVAAL during transmission
and used to calculate next quality during quality
selection step, the real video bitrate qr at which the sent
video is encoded, and the write success percentage.

One flow in case of traffic shaping We present first the
video adaptation in case of traffic shaping. The result
of this test is shown in figure 6.

As expected, during the first minute, where the
bandwidth is limited to 600kb/s, ZVAAL keeps the
bitrate at the lowest quality (512kb/s) while trying to
sense a higher bitrate (1Mb/s) from time to time, e.g.
at seconds 24 and 42. During the second minute, where
the bandwidth is limited to 2.3Mb/s, ZVAAL discovers
the new available bandwidth and uses most of the time
a video bitrate between 2 and 3Mb/s (higher quality).
In the last period the shaper is switched off, and
ZVAAL sends the highest bitrate (highest quality). The
last minute shows also that when bandwidth is higher
than the highest quality, switching among qualities
does not occur, hence ZVAAL is comparable to static
transmission of the highest quality.

Further analysis of this figure confirms the useful
properties of zigzag avoidance ZAAL algorithm. First,
application waits for at least 2 periods of time before
trying a bitrate which has recently caused losses (e.g.
at the beginning, 1Mb/s did not work between 0s and
2s, hence it was retried not at 4s, but at 6s). Second,
when a bitrate causes losses for many consecutive times,
application waits more and more time to retry it (e.g.
1Mb/s at 0s, then at 6s, afterwards at 24s, and finally
at 42s). Third, the maximum period during which the
video quality was prevented to increase is 16s. (e.g.
the first unsuccessful attempt finishes at 26s followed
by the next successful attempt at 42s); during that
time there were no losses (bandwidth much higher than
bitrate), however ZAAL correctly prevented the bitrate
increasing.

Five flows without gap In this test five flows are
running and using the available bandwidth. Figure 7
shows the results for one flow of this test. Quality

The Computer Journal, Vol. ??, No. ??, ????

Video adaptation and experiments using DCCP 11

Traffic shaping 10 concurrent flows
Method Sent pkts Rcv pkts Lost pkts Sent pkts Rcv pkts Lost pkts

Without ZAAL 47795 42043 5752 (12%) 41191 32307 8884 (21%)
With ZAAL 43548 39865 3683 (8%) 36713 32477 4236 (11%)

TABLE 3. Number of sent and received packets (average of all flows) with and without ZAAL.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180

 0

 20

 40

 60

 80

 100

B
itr

at
e

of
 tr

an
sm

itt
ed

 v
id

eo
 (

M
b/

s)

P
er

ce
nt

ag
e

of
 w

rit
e

bu
ffe

r
su

cc
es

s
(%

)

Time (s)

ZVAAL, asked bitrate
real bitrate

write buffer success

FIGURE 6. Quality adaptation for one flow in case of
traffic shaping.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180

 0

 20

 40

 60

 80

 100

B
itr

at
e

of
 tr

an
sm

itt
ed

 v
id

eo
 (

M
b/

s)

P
er

ce
nt

ag
e

of
 w

rit
e

bu
ffe

r
su

cc
es

s
(%

)

Time (s)

ZVAAL, asked bitrate
real bitrate

write buffer success

FIGURE 7. Quality variation for five flows without gap
(one representative flow).

selection starts the connexion with video bitrate of
1Mb/s, as explained before, and then increases slowly
to reach the highest bitrate quality. It can be noticed
that the quality is most of the time at 3Mb/s, because
available bandwidth is sufficient to let five flows send
at high quality. When the available bandwidth is not
sufficient anymore, for example at second 58 due to
some interference on the wireless link (write success
rate is very low), the quality is directly switched to the
smallest. On the contrary, when the write success rate
is again 100%, the quality is increased slowly (switched
to the available higher bitrate every two seconds, for
example at seconds 62, 64 and then 68.

Figure 8 presents the bandwidth used by each flow,
together with the total bandwidth for all the 5 flows,
for one repetition. The bandwidth is given by the
real bitrate, not the asked bitrate, hence the changes
in bitrate appearing in the figure are generally not
quality switching done by the video adaptation, but
the varying real bitrate generated by the video encoder
itself. Each flow in this figure gives similar conclusions
as the representative flow. It can also be seen that

 0

 1

 2

 3

Flow 1

 0

 1

 2

 3

Flow 2

 0

 1

 2

 3

B
it

ra
te

 o
f

tr
a
n

sm
it

te
d

 v
id

e
o

 (
M

b
/s

)

Flow 3

 0

 1

 2

 3

Flow 4

 0

 1

 2

 3

Flow 5

 10
 11
 12
 13
 14
 15
 16
 17

 0 20 40 60 80 100 120 140 160 180

Time (s)

Total

FIGURE 8. Quality variation for five flows without gap
(each of the five flows and their total).

the average total bandwidth is between 12 and 13
Mb/s, i.e. about 2.5Mb/s per flow, which confirms that
flows generally use the highest available bitrate, which
cf. figure 4 is around 2.7Mb/s.

Ten flows without gap This test is similar to the
previous one but for ten flows. Figure 9 presents the
results for one flow of this test. Like for five flows, it can
be noticed that when the buffer success rate is very low
the quality chosen by ZVAAL is very low, e.g. at 46s.
Also, given that there are ten flows which compete for
the bandwidth, quality switching can be noticed too; in
this way, ZVAAL insures that the quality is a function
of the bandwidth. The average available bandwidth is
somewhere between 1Mb/s and 2Mb/s, so ZVAAL is
most of the time choosing these bitrates.

Figure 10 presents the bandwidth (corresponding to
the real bitrate, not the asked bitrate) used by each
flow, together with the total bandwidth for all the
10 flows, for one repetition. The same conclusions as
the representative flow can be drawn for each flow. It
can also be seen that the average total bandwidth is
about 16 Mb/s, i.e. around 1.6Mb/s per flow, and that
all flows choose most of the time the qualities near the
1.6Mb/s average, i.e. 1 and 2 Mb/s.

The Computer Journal, Vol. ??, No. ??, ????

12 W. Ramadan, E. Dedu, J. Bourgeois

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100 120 140 160 180

 0

 20

 40

 60

 80

 100

B
itr

at
e

of
 tr

an
sm

itt
ed

 v
id

eo
 (

M
b/

s)

P
er

ce
nt

ag
e

of
 w

rit
e

bu
ffe

r
su

cc
es

s
(%

)

Time (s)

ZVAAL, asked bitrate
real bitrate

write buffer success

FIGURE 9. Quality variation for ten flows without gap
(one representative flow).

 0

 1

 2

 3

 0

 1

 2

 3

 0

 1

 2

 3

 0

 1

 2

 3

 0

 1

 2

 3

B
it

ra
te

 o
f

tr
a
n

sm
it

te
d

 v
id

e
o

 (
M

b
/s

)

 0

 1

 2

 3

 0

 1

 2

 3

 0

 1

 2

 3

 0

 1

 2

 3

 0

 1

 2

 3

 10

 13

 16

 19

 22

 25

 0 20 40 60 80 100 120 140 160 180

Time (s)

Total

FIGURE 10. Quality variation for ten flows without gap
(each of the ten flows and their total).

6.2.2. Adaptation performance
In order to find out if adaptation is useful, we compare
ZVAAL with the same application (using DCCP)
but without adaptation. We recall that our method
optimises the network part of a video transmission,
and can be used in combination with other video
optimisation methods. As a consequence, the metrics
used are the number of received packets and the number
of lost packets. We assume that if a new method is
able to maximise the number of received packets while
minimising the number of lost packets, it will ameliorate
the received video quality.

The results for ZVAAL are taken from the tests done
before. For DCCP without video adaptation, the same
three series of experiments have been done, separately
for each of the four qualities (Q3=3Mb/s, Q2=2Mb/s,
Q1=1Mb/s and Q0=512kb/s).

In each graphic below there are ten curves, which

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 3 4 5 6 7 8 9 10 Avg

N
um

be
r

of
 s

en
t a

nd
 r

ec
ei

ve
d

pa
ck

et
s

Repetition number

ZVAAL sent packets
DCCP Q3 sent packets
DCCP Q2 sent packets
DCCP Q1 sent packets
DCCP Q0 sent packets

ZVAAL recv packets
DCCP Q3 recv packets
DCCP Q2 recv packets
DCCP Q1 recv packets
DCCP Q0 recv packets

FIGURE 11. Comparison of number of sent and received
packets for one flow with traffic shaping.

give the number of sent and received packets for each
streaming quality: Q0, Q1, Q2, Q3 and ZVAAL (in
order to distinguish them more easily, the curves for
sent and received packets for each type use the same
point style). Note that, even if all the curves are put on
the same graph, the execution is done at different times.
Also, even if the curves use lines for better visualisation,
the flows and repetitions (on x-axis) are independent.

One flow in case of traffic shaping The results are
shown in figure 11 for the 10 repetitions of the test. As
a first note, it shows that the results for the repetitions
are very close to each other (similar number of sent
and received packets), which was expected since there
is only one flow involved in each test. The comparison
between the methods gives:

• ZVAAL number of received packets is smaller than
DCCP Q3, but there is a huge difference between
them regarding the loss rate (about 35% of lost
packets for DCCP Q3 versus only 8% for ZVAAL).
So ZVAAL is better than DCCP Q3.

• ZVAAL number of received packets is 11% greater
than DCCP Q2, while at the same time its number
of sent packets is 7% smaller. Loss rate for DCCP
Q2 is very high, about 25%. So ZVAAL is clearly
better than DCCP Q2.

• It is clear that ZVAAL is better than DCCP Q1
and DCCP Q0.

As a conclusion, ZVAAL outperforms any static
method in case of important variable bandwidth.

Five flows without gap Figure 12 presents the results
of one representative repetition for the series of
experiments with five flows without gap. As expected,
the available bandwidth lets pass the five flows
with the highest bitrate. The number of sent and
received packets for ZVAAL is comparable to classical
transmission with Q3 quality. It can also be noticed
that the average number of received packets for ZVAAL
and DCCP Q3 is much higher than for Q2, Q1 and Q0,

The Computer Journal, Vol. ??, No. ??, ????

Video adaptation and experiments using DCCP 13

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 3 4 5 Avg

N
um

be
r

of
 s

en
t a

nd
 r

ec
ei

ve
d

pa
ck

et
s

Flow number

ZVAAL sent packets
DCCP Q3 sent packets
DCCP Q2 sent packets
DCCP Q1 sent packets
DCCP Q0 sent packets

ZVAAL recv packets
DCCP Q3 recv packets
DCCP Q2 recv packets
DCCP Q1 recv packets
DCCP Q0 recv packets

FIGURE 12. Comparison of number of sent and received
packets for five flows without gap (one representative
repetition).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 3 4 5 Avg

N
um

be
r

of
 s

en
t a

nd
 r

ec
ei

ve
d

pa
ck

et
s

Repetition number

ZVAAL sent packets
DCCP Q3 sent packets
DCCP Q2 sent packets
DCCP Q1 sent packets
DCCP Q0 sent packets

ZVAAL recv packets
DCCP Q3 recv packets
DCCP Q2 recv packets
DCCP Q1 recv packets
DCCP Q0 recv packets

FIGURE 13. Comparison of number of sent and received
packets for five concurrent flows without gap (average of five
repetitions).

as expected when the bandwidth is sufficiently high.
Figure 13 (average of the five repetitions) gives the

same results. In average ZVAAL is better than the
classical transmission because it has a nearly identical
number of received packets but with smaller number
of sent packets, i.e. loss rate is smaller (about 17%
less) when using ZVAAL. Unlike ZVAAL, when classical
transmission meets some difficult network conditions,
e.g. repetition 5, it does not decrease the number of
sent packets. So it is not able to adapt to the network
conditions.

As a conclusion, even if available bandwidth is high
enough for all concurrent flows at maximum quality,
using ZVAAL provide always better performance by
keeping loss rate very low.

Ten flows without gap This series is similar to the
previous one but for ten flows. Figure 14 presents one
representative repetition. It can be seen that all flows
using ZVAAL adapt their sending rate to the available
bandwidth, i.e. the difference between sent and received
packets is similar for all the flows. Moreover, Q2, Q3
and ZVAAL flows have 4 to 5 percent of received packets

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 3 4 5 6 7 8 9 10 Avg

N
um

be
r

of
 s

en
t a

nd
 r

ec
ei

ve
d

pa
ck

et
s

Flow number

ZVAAL sent packets
DCCP Q3 sent packets
DCCP Q2 sent packets
DCCP Q1 sent packets
DCCP Q0 sent packets

ZVAAL recv packets
DCCP Q3 recv packets
DCCP Q2 recv packets
DCCP Q1 recv packets
DCCP Q0 recv packets

FIGURE 14. Comparison of number of sent and received
packets for ten flows without gap (one representative
repetition).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 3 4 5 Avg

N
um

be
r

of
 s

en
t a

nd
 r

ec
ei

ve
d

pa
ck

et
s

Repetition number

ZVAAL sent packets
DCCP Q3 sent packets
DCCP Q2 sent packets
DCCP Q1 sent packets
DCCP Q0 sent packets

ZVAAL recv packets
DCCP Q3 recv packets
DCCP Q2 recv packets
DCCP Q1 recv packets
DCCP Q0 recv packets

FIGURE 15. Comparison of number of sent and received
packets for ten concurrent flows without gap (average of five
repetitions).

more than ZVAAL for this representation test. On the
other hand, unlike classical transmission, all ZVAAL
flows loss 46 to 85 percent less than Q2 and Q3 flows
by reducing their number of sent packets to adapt to
the network conditions.

Figure 15 (average of all the five repetitions) shows
that the number of received packets for all flows is much
lower compared to the previous test (so do DCCP with
Q3 and Q2), which was expected given the increased
number of flows (5 to 10) sharing the same link. The
five repetitions shows again similar number of received
packets for Q3, Q2 and ZVAAL, but much fewer packet
losses for ZVAAL (thanks to its adaptation algorithm).
For example, DCCP Q3 has a huge number of dropped
packets for all its flows, about 49% of its sent packets,
indicating that Q3 is indeed too aggressive for this
network. This high rate of dropped packets in DCCP
buffer affects considerably the video quality at the
receiver side. Compared to DCCP Q2, ZVAAL sends
22% fewer packets for a similar number of received
packets.

Finally, we can notice that with classical static
transmission the application wrongly continues to send

The Computer Journal, Vol. ??, No. ??, ????

14 W. Ramadan, E. Dedu, J. Bourgeois

 0

 2

 4

 6

 8

 10

 12

0 10 20 30 40 50 60 70 80 90 100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

N
um

be
r

of
 c

on
cu

rr
en

t f
lo

w
s

Time (s)

FIGURE 16. Number of concurrent flows at any moment
for twelve flows with gap of 10 sec.

at the same rate regardless the network conditions.

Up to twelve flows with gap In this series of tests, up to
12 concurrent flows compete for the network bandwidth.
This allows to compare the performance in a dynamic
and more realistic situation where the number of flows
varies over time. As a consequence, the best static
bitrate cannot be known in advance, at the beginning
of the transmission. This series of tests also mimics
some characteristics of short lived requests/answers of
the current Web, for example in these tests flows appear
one after the other at the beginning, and disappear one
after the other at the end of each test.

As already specified, there are about 10 seconds of
gap between the beginning of each two consecutive
flows. Figure 16 presents the starting time of the
12 competing flows and the number of concurrent flows
at any time; for example flow number 7 starts at second
60, and there are 6 concurrent flows between seconds
50 and 60. Adding 180s to the start time gives the
end transmission time for each flow, e.g. end time of
flow 7 is 60+180=240s. There is also a blurred zone
to indicate theoretically how many concurrent flows at
highest quality (3Mb/s) the bandwidth can accept (4.5–
6 flows). It can be noticed that the flows with the
highest degree of concurrency are 6 and 7: during their
lifespan the number of concurrent flows is between 6
and 12. The degree of concurrency experienced by a
flow decreases as the flow number is further from 6
or 7 (flows 5 and 8 experience at least 5 concurrent
flows, flows 4 and 9 at least 4 concurrent flows etc.) To
conclude, as a simple rule, the less the distance between
flow number and the middle (6.5), the higher the degree
of concurrency.

Figure 17 presents one representative repetition. As
expected, flows in the middle, e.g. flows 5 to 8,
have the fewest received packets. Additionally, for
ZVAAL the curve for the number of received and
sent packets generally decreases from 1 to the middle
(6.5) and increases afterwards, i.e. the flows generally
send/receive packets based on the degree of concurrency
they experience. This is contrary to static transmission
(Q3 and Q2, without adaptation), where the flows in
the middle experience a much higher dropped packets
rate than others.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 3 4 5 6 7 8 9 10 11 12 Avg

N
um

be
r

of
 s

en
t a

nd
 r

ec
ei

ve
d

pa
ck

et
s

Flow number

ZVAAL sent packets
DCCP Q3 sent packets
DCCP Q2 sent packets
DCCP Q1 sent packets
DCCP Q0 sent packets

ZVAAL recv packets
DCCP Q3 recv packets
DCCP Q2 recv packets
DCCP Q1 recv packets
DCCP Q0 recv packets

FIGURE 17. Comparison of number of sent and received
packets for twelve flows with gap of 10 seconds (one
representative repetition).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 3 4 5 Avg

N
um

be
r

of
 s

en
t a

nd
 r

ec
ei

ve
d

pa
ck

et
s

Repetition number

ZVAAL sent packets
DCCP Q3 sent packets
DCCP Q2 sent packets
DCCP Q1 sent packets
DCCP Q0 sent packets

ZVAAL recv packets
DCCP Q3 recv packets
DCCP Q2 recv packets
DCCP Q1 recv packets
DCCP Q0 recv packets

Average column in detail:
ZVAAL Q3 Q2 Q1 Q0

Sent 41418 68623 46818 24858 12938
Received 37683 40698 35531 24232 12828
Lost 3735 27925 11287 626 110

FIGURE 18. Comparison of number of sent and received
packets for twelve concurrent flows with gap of 10 seconds
(average of five repetitions).

Overall average for all repetitions, shown in Fig. 18,
confirms that ZVAAL gives similar results for all
repetitions. The last column, Avg, is detailed in the
table of the same figure. It shows the superiority of
ZVAAL on all classical static transmissions:

• compared to DCCP Q3, ZVAAL has 7% fewer
received packets (40698/37683− 1), but 40% fewer
sent packets (1 − 41418/68623), leading to 87%
fewer packet losses (1 − 3735/27925);

• compared to DCCP Q2, ZVAAL receives 6% more
packets (1 − 35531/37683) and sends 12% fewer
packets (1−41418/46818), hence 33% fewer packet
losses (3735/11287);

• compared to DCCP Q1 or Q0 it is much better, in
terms of sent, received and lost packets.

As a conclusion, once again, with video adaptation
(ZVAAL) the bandwidth is more efficiently used,
especially when it changes dynamically or when the

The Computer Journal, Vol. ??, No. ??, ????

Video adaptation and experiments using DCCP 15

Page 1

Flow1
Flow2
Flow3
Flow4
Flow5
Flow6
Flow7
Flow8
Flow9
Flow10

FIGURE 19. Percentage of sent packets by each flow
at the application layer using ZVAAL: the percentages are
nearly equal.

network experiences some bad conditions.

6.2.3. ZVAAL fairness
We are interested to check if several applications on the
same machine are fair with respect to the number of
sent packets. The test with 10 flows is used as example,
more precisely the test shown in figure 14. Figure 19
shows graphically the percentage of sent packets by
each flow at application layer when using ZVAAL. More
quantitatively, Jain’s fairness index [28], defined as:(∑

i

xi

)2

/

(
n
∑
i

x2i

)
where n is the number of flows and xi the number of
sent packets of flow i, is equal to 0.9975, very close
to the ideal value of 1. This result shows that ZVAAL
maintains the fairness among concurrent flows on server
(i.e. all flows have nearly equal percentage of sent
packets).

The fairness presented here measures the fairness
induced by our video adaptation algorithm, which we
could call adaptation fairness. The absolute fairness
depends on this adaptation fairness, and also on the
fairness on the network level. The latter one is
guaranteed in our method by using a TCP-friendly
congestion control. This section has shown that, given
a fair (TCP-friendly) protocol in the network, the video
adaptation fairness does not by itself unbalance this
fairness.

7. CONCLUSIONS

This paper has presented a simple but powerful method
(VAAL) to adapt the content of video during streaming,
using the buffer overflow method on the server at the
application layer. ZAAL, a companion algorithm to
reduce the number of oscillations in video quality, was
presented too.

Intuitively, this method should lead to much
better video streaming performance. Numerous real
experiments confirm this hypothesis, i.e. the bitrate
used during the adaptation is shaped by the available
network bandwidth, and it generally either leads to

much fewer packet losses, or avoids a under-utilisation
of the network bandwidth. Moreover, the use of a
transport protocol (DCCP in our implementation) with
a congestion control (TFRC) guarantees the TCP-
friendliness of our method, and TFRC makes it video
streaming friendly.

Future works will include to implement and test
other methods similar to VAAL, and to use also video
quality metrics. Our final goal is to show that content
adaptation on server application is the most appropriate
video streaming method, not only in performance terms
but also in implementation and practical terms, to cope
with dynamic network bandwidth in cases such as video
conferencing and small size video servers.

ACKNOWLEDGEMENTS

The authors thank Lotfi Amirouche, who wrote the
first version of the DCCP client and server used for
the experiments.

FUNDING

This work was supported by Ministry of High Education
of Syria to WR.

REFERENCES

[1] Schulzrinne, H., Casner, S., Frederick, R., and
Jacobson, V. (2003). RTP: A Transport Protocol for
Real-Time Applications. RFC 3550, IETF.

[2] Kohler, E., Handley, M., and Floyd, S. (2006).
Datagram Congestion Control Protocol (DCCP). RFC
4340, IETF.

[3] Floyd, S., Handley, M., Padhye, J., and Widmer, J.
(2008). TCP Friendly Rate Control (TFRC): Protocol
Specification. RFC 5348 (Proposed Standard), IETF.

[4] Ramadan, W., Dedu, E., Dhoutaut, D., and Bourgeois,
J. (2011) RELD, RTT ECN Loss Differentiation
to optimize the performance of transport protocols
on wireless networks. Telecommunications Systems,
special issue on Mobile Computing and Networking
Technologies, june. Available online only.

[5] Su, Y.-C., Yang, C.-S., and Lee, C.-W. (2003) Optimal
FEC assignment for scalable video transmission over
burst error channel with loss rate feedback. Signal
Processing: Image Communication, 18, 537–547.

[6] Gürses, E., Akar, G. B., and Akar, N. (2005) A simple
and effective mechanism for stored video streaming
with TCP transport and server-side adaptive frame
discard. Computer Networks, 48, 489–501.

[7] Huszák, A. and Imre, S. (2006) Selective retransmis-
sion of MPEG video streams over IP networks. Inter-
national Symposium on Communication System Net-
works and Digital Signal Processing (CSNDSP), Patras,
Greece, July 5, pp. 125–128.

[8] Kazantzidis, M. I. (2002) Adaptive Multimedia in
Wireless IP Networks. PhD thesis University of
California Los Angeles, USA.

[9] Haukaas, T. (2007) Rate adaptive video streaming
over wireless networks. Master’s thesis. Norwegian

The Computer Journal, Vol. ??, No. ??, ????

16 W. Ramadan, E. Dedu, J. Bourgeois

University of Science and Technology Trondheim,
Norway.

[10] Lie, A. and Klaue, J. (2008) Evalvid-RA: trace driven
simulation of rate adaptive MPEG-4 VBR video.
Multimedia Systems, 14, 33–50.

[11] (2011). Information technology – dynamic adaptive
streaming over HTTP (DASH) – part 1: Media
presentation description and segment formats. ISO
standard, Geneva, Switzerland. ISO/IEC 23009-
1:2012.

[12] Liu, C., Bouazizi, I., and Gabbouj, M. (2011) Rate
adaptation for adaptive HTTP streaming. Second
annual ACM conference on Multimedia systems, New
York, NY, USA MMSys, pp. 169–174. ACM.

[13] De Cicco, L. and Mascolo, S. (2010) An experimental
investigation of the akamai adaptive video streaming.
6th international conference on HCI in work and
learning, life and leisure: workgroup human-computer
interaction and usability engineering, Berlin USAB’10,
pp. 447–464. Springer-Verlag.

[14] De Cicco, L., Mascolo, S., and Palmisano, V. (2011)
Feedback control for adaptive live video streaming.
Second annual ACM conference on Multimedia systems,
New York, NY, USA MMSys, pp. 145–156. ACM.

[15] Feng, W. (2002) On the efficacy of quality, frame rate,
and buffer management for video streaming across best-
effort networks. Journal of High Speed Networks, 11,
199–214.

[16] Balk, A., Maggiorini, D., Gerla, M., and Sanadidi,
M. Y. (2003) Adaptive MPEG-4 video streaming with
bandwidth estimation. International Workshop on
Quality of Service in Multiservice IP Networks, London,
UK, February 2, pp. 525–538. Springer-Verlag.

[17] Lee, S. and Chung, K. (2008) Buffer-driven adaptive
video streaming with TCP-friendliness. Computer
Communications, 31, 2621–2630.

[18] Lee, S. and Chung, K. (2006) Mavis: Media-aware
video streaming mechanism. IFIP/IEEE International
Conference on Management of Multimedia and Mobile
Networks and Services (MMNS), Dublin, Ireland,
October, pp. 74–84.

[19] Zambelli, A. (2009). IIS Smooth Streaming technical
overview. Microsoft Corporation, Redmond, WA, US.

[20] (2010). Dynamic streaming in Flash Media Server
3.5. Available at http://www.adobe.com/devnet/

flashmediaserver/. Adobe Systems Inc., California,
US.

[21] Pantos, R. and May, W. (2011). HTTP live stream-
ing. IETF Draft, available at http://tools.ietf.

org/html/draft-pantos-http-live-streaming-10.
IETF.

[22] ITU-T (2007). Opinion model for video-telephony
applications. International Telecommunications Union,
Geneva, Switzerland.

[23] Ramadan, W., Dedu, E., and Bourgeois, J. (2010)
VAAL, video adaptation at application layer and
experiments using DCCP. WPMC 2010, 13th
Int. Symposium on Wireless Personal Multimedia
Communications, Recife, Brazil, October, pp. 1–5.
Springer. Proceedings on CD-ROM.

[24] Ramadan, W., Dedu, E., and Bourgeois, J. (2011)
Avoiding zigzag quality switching in real content

adaptive video streaming. International Conference
on Digital Information and Communication Technology
and Its Applications (DICTAP), Dijon, France, June 1,
pp. 421–435.

[25] Akhshabi, S., Begen, A. C., and Dovrolis, C. (2011) An
experimental evaluation of rate-adaptation algorithms
in adaptive streaming over HTTP. Multimedia
Systems, San Jose, CA, US, February 2, pp. 157–168.

[26] McCanne, S., Jacobson, V., and Vetterli, M.
(1996) Receiver-driven layered multicast. SIGCOMM
Computer Communication Review, 26, 117–130.

[27] Feamster, N., Bansal, D., and Balakrishnan, H. (2001)
On the interactions between layered quality adaptation
and congestion control for streaming video. 11th
International Packet Video Workshop, Kyongiu, Korea,
April.

[28] Jain, R. K., Chiu, D.-M. W., and Have, W. R. (1984)
A quantitative measure of fairness and discrimination
for resource allocation in shared computer systems.
Research report TR-301. DEC, Littletown, MA, USA.

APPENDIX A. VAAL ALGORITHM

The classical code source for transmitting a statically-
encoded video is the following:

while (not end of file)

write video packet

sleep

When doing adaptation with VAAL, this code is
changed as follows:

for each period of time

err = 0

pkts = 0

while (period not ended)

pkts++

write video packet

if (write error)

err++

sleep

errorRate = err/pkts

if (errorRate == 0)

increase bitrate

else if (errorRate < 5%)

maintain bitrate

else

decrease bitrate

The Computer Journal, Vol. ??, No. ??, ????

