
Fine-tuned high-speed

implementation

of a GPU-based median filter.

Gilles Perrot Stéphane Domas
Raphaël Couturier

FEMTO-ST institute
Rue Engel Gros, 90000 Belfort, France.

April 9, 2014

Abstract

Median filtering is a well-known method used in a
wide range of application frameworks as well as a
standalone filter, especially for salt-and-pepper de-
noising. It is able to highly reduce the power of
noise while minimizing edge blurring. Currently, ex-
isting algorithms and implementations are quite effi-
cient but may be improved as far as processing speed
is concerned, which has led us to further investigate
the specificities of modern GPUs. In this paper, we
propose the GPU implementation of fixed-size ker-
nel median filters, able to output up to 1.85 billion
pixels per second on C2070 Tesla cards. Based on
a Branchless Vectorized Median class algorithm and
implemented through memory fine tuning and the
use of GPU registers, our median drastically outper-
forms existing implementations, resulting, as far as
we know, in the fastest median filter to date.

1 Introduction

First introduced by Tukey in [6], the median filter
is a simple process which consists, for each pixel of
an image, in replacing its gray-level value by the me-
dian value of its neighbors, taken in a n = k × k
window centered on this very pixel. Median filtering

has been widely studied since then, and many re-
searchers have proposed efficient implementations of
it, adapted to various hypothesis, architectures and
processors. Originally, its main drawbacks were its
compute complexity, its non linearity and its data-
dependent runtime. Several researchers have ad-
dressed these issues and designed, for example, ef-
ficient histogram-based median filters featuring pre-
dictable runtimes [3, 7]. More recently, authors have
managed to take advantage of the newly opened
perspectives offered by modern GPUs, to develop
CUDA-based filters such as the Branchless Vector-
ized Median filter (BVM) [2, 4] which allows very in-
teresting runtimes and the histogram-based, PCMF
median filter [5] which was the fastest median filter
implementation to our knowledge.

The use of a GPU as a general-purpose computing
processor raises the issue of data transfers, especially
when kernel runtime is fast and/or when large data
sets are processed. In certain cases, data transfers
between GPU and CPU are slower than the actual
computation on GPU, even though global GPU pro-
cesses can prove faster than similar ones run on CPU.
So as to obtain high throughput values, it is therefore
critical to address both sides of the problem: data
transfers and GPU kernel intrinsic performance.

In the following section, we detail our implemen-
tation of the median filter, called PRMF for Parallel
Register-only Median Filter. For more concision and
readability, our coding will be restricted to 8 or 16 bit
gray-level input images whose height (H) and width
(W) are both multiples of 512 pixels. Let us also
point out that the following implementation, targeted
on Nvidia Tesla GPU (Fermi architecture, compute
capability 2.x), may easily be adapted to other mod-
els e.g. those of compute capability 1.3.

2 Implementing a fast median
filter

2.1 Basic principles

Designing a 2-D median filter basically consists in
defining a square window H(i, j) for each pixel I(i, j)
of the input image, containing n = k × k pixels and

1

Figure 1: Illustration of 5×5 median filtering, applied
on pixel of coordiantes (5,6). Bottom right: window
overlapping.

centered on I(i, j). The output value I ′(i, j) is the
median value of the gray level values of the k × k
pixels of H(i, j). Figure 1 illustrates this principle
with an example of a 5x5 median filter applied on
pixel I(5, 6).

Obviously, one key issue is the selection method
that identifies the median value, which can be done
using either histogram-based or sorting methods.
But, as shown in figure 1, since two neighboring pix-
els share part of the values to be sorted, a second key
issue is how to rule redundancy between consecutive
positions of the running window H(i, j).

2.2 Data transfers

CUDA-enabled devices offer several memory types,
each with its own levels of latency and speed. The
most versatile is the generic global memory, but it is
also the one with the highest latency value (around
400 clock cycles) and its transfer rate is subject to
access pattern constraints. Among other memory
types, only constant memory and texture memory
are usable to store data from CPU memory. On
CPU side, CUDA langage extension features a mem-
ory allocation function able to allocate non-pageable
memory called pinned-memory, which is an efficent
alternative to classical allocation as it allows more
direct access to stored data. The drawback is that
it has to be use sparingly in order to avoid an early
memory overflow. Benchmarking all possible combi-
nations led us to adopt the memory management de-

scribed in Algorithm 1. Input image data is stored in
the GPU’s texture memory so as to benefit from the
2-D caching mechanism which transparently preloads
neighbor pixel values when fetching one particular
pixel. It reduces memory access latency. After kernel
execution, copying output image back to CPU mem-
ory is done by use of pinned memory, which drasti-
cally accelerates data transfer (see Tables 1 and 2
for precise timings).

Algorithm 1: Global memory management on
CPU and GPU sides.

1 allocate and populate CPU memory h img in;
2 allocate CPU pinned-memory h img out;
3 allocate GPU global memory d img out;
4 allocate GPU texture memory tex img in;
5 copy data from h img in to tex img in;
6 kernel gridDim,blockDim /* to d img out */;
7 copy data from d img out to h img out ;

2.3 Using registers

As register access is at least 20 times faster than all
the other memory types available on the GPU, it is
natural to try to use them as a mean to store tem-
porary data inside our kernels, keeping in mind that
on the fermi architecture, each individual thread can
use a maximum of 63 registers within the limit of
32K per thread block. However, it must be noticed
that a high register usage, though below the above-
cited limits, may result in a loss of performance due
to a lower parallelism level inside each block, i.e. less
threads actually run in parallel. Consequently, it re-
mains important to use registers sparingly in order
to preserve high pixel throughput values: to do so,
we use the forgetful selection algorithm. Its princi-
ple is to construct a list of Rn pixels values, taken
among the n = k × k ones of the window. Then we
identify and eliminate (forget) both elements show-
ing the maximum and the minimum values in the list.
Finally, we include one of the values left apart of the
original list. This process is repeated until no more
value can be included in the list. The remaining el-
ement in the list is the global median value. Two
important points should be notice:

2

• this algorithm has a fixed number of steps, equals
to

(
n− dn2 e

)
, which implies that all threads have

almost the same workload, despite the data de-
pendency of the extrema identification step.

• for small windows, the whole original list can be
put in registers.

The number Rn of elements in the initial list is cho-
sen as the minimum element count which allows to
identify the global median value through the above
process. It is obtained by considering the constraint
of keeping the global median in the list at each elim-
ination step. This lead to:

Rn = dn
2
e+ 1

Which represents the minimum register count needed
to perform the forgetful selection (one register per el-
ement). It is also noticeable that the second and fol-
lowing elimination steps use less registers than Rn as
two elements are eliminated and one element added
at each step.

Figure 2 illustrates the forgetful selection process
applied to a 3 × 3 pixel median filter. For clarity
reasons, the nine values have been represented in a
row. The process begins with R9 = 6 elements and
ends after 4 iterations, when there is no more can-
didate element. This also corresponds to the state
where there is only one element in the list: the me-
dian value. The selection of both extrema is imple-
mented through a basic 2-element swapping function,
which will be detailed in the following. This ensures
that the GPU kernel code is free of divergent branches
liable to severely impact performances.

2.4 Hiding Latencies

Optimizing a GPU kernel also means hiding latencies
potentially generated by memory accesses and data
dependent instruction calls. Indeed, modern GPUs
are able to pipeline instruction processes so as to re-
duce the average latency of an instruction sequence:
this capability is called ILP (Instruction Level Paral-
lelism). As for global memory accesses, when two
or more consecutive arithmetic operators manipu-
late (read or write) independant variables, only the

Figure 2: Determination of the Median value by the
forgetful selection process, applied to a 3 × 3 neigh-
borhood window.

first access generates latency. The massive thread
parallelism of CUDA-enabled devices helps in hid-
ing those latencies transparently but, analysing the
actual computation performed by each thread, opti-
mization may be taken a few steps further:
First, we maximize the Instruction Level Parallelism
inside the forgetful selection method by re-arranging
the instruction sequence of an incomplete sorting net-
work [1] so as to reduce the data dependency of con-
secutive instructions and thus preventing frequent
empty pipelines Figure 3 shows the scheduling of the
first extrema identification step of a 5 × 5 median
filter, carried out with R25 = 14 elements. Each ar-
row represents one call to the 2-element swapping
function: after the call, the starting point symbol-
izes the lowest value element and the ending arrow
points out the highest one. In addition, horizontal
dashed lines separate packs of independants instruc-
tions.This clearly maximizes the ILP.
Second, in order to reduce the effect of global memory
access latency, each thread performs the computation
of two neighbor input pixels instead of just one. Ad-
ditionally, window overlapping is exploited in order
to minimize the increase of register count per thread

3

Figure 3: First extrema identification step of the for-
getful selection, applied to a 5 × 5 median filter. It
begins with R25 = 14 unsorted elements and ends
with the minimum value at the first position (left)
and the maximum at the last position (right).

brought by this 2 pixels per thread rule. The regis-
ter count per thread block is easily kept unchanged
by dividing the block size by 2, while preserving the
grid size. Trying to benefit from overlapping cannot
be achieved by additional computation after identi-
fication of the first median values, as it can be done
with histogram-based solutions. Instead, both selec-
tions have to be carried out in parallel.
Considering that the Rn elements of the first selection
step can be taken anywhere in the window, we begin
the selection with Rn elements, choosen among those
shared by both windows. This only makes sense if
two consecutive windows share at least Rn elements,
which obviously is the case as they actually share
Sn = n− k = n−

√
n pixels, which is always greater

than Rn (or equal for the 3× 3 median filter (n = 9).
The (Sn − Rn + 1) first selection steps can then be
considered common to both windows, leaving only
the k non-shared pixels of each window to be pro-
cessed separately. This technique saves k + 1 regis-
ters for each pair of input pixels, which means that
each thread block now uses fewer registers while pro-
cessing the same pixel count, thus allowing a higher
level of parallelism. Figure 4 illustrates this by rep-
resenting the different classes of pixels in the 5 × 5
median example: the first R25 = 14 common pixels
are used to generate the vector to be sorted at the
first step, 6 more steps are carried out with the re-

Figure 4: Reducing register count in a 5×5 register-
only median kernel processing 2 input pixels. The
first 7 forgetful selection steps are common to both
processed center pixels: the first one needs 14 pix-
els, leaving 6 more pixels to be processedone after
another.

maining common pixels before entering into separate
sorting processes.

3 Results

Runtimes have been obtained by averaging 1000
executions on a C2070 GPU card hosted by a system
with one Xeon E56202.40GHz processor running a
linux kernel 2.6.18x86 64 and CUDA v4.0. Each
kernel has been run on 8 bit and 16 bit images of sizes
512×512, 1024×1024, 2048×2048 and 4096×4096.
As mentioned in section 2.2, our implementation op-
timizes data transfers: Tables 1, 2 and 3 detail times
and relative costs of data transfers between CPU
and GPU. Transfers into texture memory are a bit
slower than those done through pinned-memory but,
as said above, the associated 2D-caching mechanism
allow a great performance improvement of the later
data fetching. The rightmost columns of Tables 1
and 2 allow to compare our way of transferring data
against standard global memory transfers. It reveals
that our choices make transfers 15% to 75% faster
than naive ones.
In addition, Table 3 shows the relative costs of data
transfers against total process times. Analysing
these values confirms the relevance of our approach:
data transfers between CPU and GPU represents at

4

least 13% of the total runtime, for 8 bit large image
and window sizes, but up to 82% for 16 bit small
image and window size. Consequently, it had to be
minimized as much as possible.

Like many authors, we have used the pixel through-
put value as our main performance indicator. It in-
cludes kernel runtime as well as transfer times to
and from the GPU. To evaluate the absolute per-
formance of our implementations, we have also mea-
sured the maximum effective pixel throughput that
our GPU/host couple is able to achieve. Knowing
such a peak value helps in deciding on further investi-
gation. We performed this measurement by running a
dummy kernel that fetches the gray-level of each pixel
in texture memory and outputs it into global mem-
ory exclusive of any other instruction. Running the
dummy kernel on all image sizes and depths brought
the peak values gathered in Table 4, which shows
that the larger the image is, the higher the expected
throughput is. Kernel runtimes and throughtput val-
ues are presented in Table 5, with separate global
throughput values for 8 and 16 bit depths (T8 and
T16) as transfer time costs vary, while kernel runtime
is not influenced by the gray-level depth. Though
our implementation does not show a constant run-
time, but follows a classical n.log(n) law, it proves
from 5.3 to 10 times faster than the one in second
position and can achieves up to 1850 Mpix/s. It is
confirmed by Figure 5 which compares the through-
put values of several implementations against ours for
common small window sizes. Moreover, focusing on
the 3 × 3 median filter, the actual pixel throughput
achieved by our implementation reaches more than
75% of the absolute peak throughput value.
It is also noticeable that our kernel algorithm is quite
similar to the one implemented in ArrayFire (at least
for 3 median filter). That led us to try and find out
what had brought such high speedup in our imple-
mentation. For this purpose, we inserted the 3 Ar-
rayFire median filter in our own coding structure in
order to benefit from the optimal data transfers. Lit-
tle kernel modifications had also been done to allow
the fetching of data from texture memory. This setup
allows ArrayFire kernel to achieve 670 Mpix/sec, i.e.
3.7 times higher than the original. The remaining

(a) 512×512 pixel input image.

(b) 4096×4096 pixel input image

Figure 5: Pixel throughput value comparison, in
million pixels per second, of several implementation
against our PRMF. From left to right: PCMF, BVM,
PRMF, ArrayFire (impossible with 4096×4096)

x2.7 speedup is then brought by our kernel imple-
mentation itself.

time costs→
image size↓

to GPU
(ms)

from GPU
(ms)

Total
(ms)

Gmem
(ms)

512×512 0.08 0.06 0.14 0.23

1024×1024 0.24 0.19 0.43 0.81

2048×2048 0.85 0.68 1.53 2.15

4096×4096 3.27 2.61 5.88 7.10

Table 1: Time cost of data transfer for each image
size in 8 bit gray-level format on C2070 GPU. In
column Gmem, simple global-memory-only transfers
times are shown for comparison.

4 Conclusion

We proposed a very high speed, small window me-
dian filter which makes it possible to process, for ex-
ample, almost 900 high definition (1080p) images per
second. Due to the lack of available source code, our

5

time costs→
image size↓

to GPU
(ms)

from GPU
(ms)

Total
(ms)

Gmem
(ms)

512×512 0.14 0.10 0.24 0.42

1024×1024 0.45 0.35 0.80 1.23

2048×2048 1.59 1.32 2.91 3.83

4096×4096 6.21 5.21 11.42 13.16

Table 2: Time cost of data transfer for each image
size in 16 bit gray-level format on C2070 GPU. In
column Gmem, simple global-memory-only transfers
times are shown for comparison.

Window size→
Image size - depth.↓ 3×3 5×5 7×7

5
1
2
2 8 bits 73% 44% 20%

16 bits 82% 57% 29%

1
0
2
4
2

8 bits 68% 37% 15%

16 bits 80% 53% 25%

2
0
4
8
2

8 bits 66% 34% 14%

16 bits 79% 59% 23%

4
0
9
6
2

8 bits 65% 33% 13%

16 bits 78% 50% 23%

Table 3: Relative cost of data transfers, in percent
of total runtime, for 8 and 16 bit-coded gray-level
images and run by C2070 GPU.

comparison is based on the most recent results pub-
lished in [5], obtained with the same GPU as ours
and with 8 bit-coded gray-level images. While the
algorithm implemented here is similar to the one in
ArrayFire, the main difference resides in our fine tun-
ing of the implementation, on both data transfers and
kernel side, that leads to the fastest GPU median fil-
ter known to date with 1854 MPix/s. Let us also note
that such considerable throughput values come very
close to the peak effective pixel throughput value of
2444 Mpix/s allowed by our developpement platform.
Consequently further investigation would likely bring
little performance improvement. Other types of al-
gorithms can benefit from all or at least part of these
optimizations, mainly the memory management. As
we did with convolution filters, which is the subject
of a next publication, all linear or non-linear neigh-
borhhod filters can be successfully treated that way.

Gray-level format→
image size↓ T8 T16

512×512 1598 975

1024×1024 2101 1200

2048×2048 2359 1308

4096×4096 2444 1335

Table 4: Maximum effective pixel throughput val-
ues for T8 and T16 (in MPixel per second) on C2070,
achieved when processing 8 and 16 bit-coded gray-
level images.

Window size→
Image size - perf.↓ 3×3 5×5 7×7

5
1
2
2

t (ms) 0.05 0.19 0.60

T8 (Mpix/s) 1291 773 348

T16 (Mpix/s) 865 607 307

1
0
2
4
2 t (ms) 0.20 0.74 2.39

T8 (Mpix/s) 1644 889 371

T16 (Mpix/s) 1045 692 329
2
0
4
8
2 t (ms) 0.79 2.95 9.53

T8 (Mpix/s) 1805 936 379

T16 (Mpix/s) 1130 729 338

4
0
9
6
2 t (ms) 3.17 11.77 38.06

T8 (Mpix/s) 1854 951 382

T16 (Mpix/s) 1151 738 340

Table 5: Kernel runtimes and global pixel throughput
of fast median kernels processing 8 and 16 bit-coded
gray-level images and run by C2070 GPU.

References

[1] Batcher KE (1968) Sorting networks and their
applications. In: Proceedings of the April 30–
May 2, 1968, spring joint computer conference,
ACM, New York, NY, USA, AFIPS ’68 (Spring),
pp 307–314, DOI 10.1145/1468075.1468121, URL
http://doi.acm.org/10.1145/1468075.1468121

[2] Chen W, Beister M, Kyriakou Y, Kachelries
M (2009) High performance median filtering
using commodity graphics hardware. In: Nu-
clear Science Symposium Conference Record
(NSS/MIC), 2009 IEEE, pp 4142–4147, DOI
10.1109/NSSMIC.2009.5402323

6

[3] Huang TS (1981) Two-Dimensional Digital Sig-
nal Processing II: Transforms and Median Fil-
ters. Springer-Verlag New York, Inc., Secaucus,
NJ, USA

[4] Kachelriess M (2009) Branchless vectorized me-
dian filtering. In: Nuclear Science Symposium
Conference Record (NSS/MIC), 2009 IEEE, pp
4099 –4105, DOI 10.1109/NSSMIC.2009.5402362

[5] Snchez R, Rodrguez P (2012) Highly parallelable
bidimensional median filter for modern parallel
programming models. Journal of Signal Process-
ing Systems pp 1–15, DOI 10.1007/s11265-012-
0715-1, URL http://dx.doi.org/10.1007/s11265-
012-0715-1

[6] Tukey JW (1977) Exploratory Data Analysis.
Addison-Wesley

[7] Weiss B (2006) Fast median and bilateral fil-
tering. In: ACM SIGGRAPH 2006 Papers,
ACM, New York, NY, USA, SIGGRAPH ’06,
pp 519–526, DOI 10.1145/1179352.1141918, URL
http://doi.acm.org/10.1145/1179352.1141918

7

