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During the last 4 years, chaotic waveforms for random number generators are named pseudorandom number generators, or
generation found a deep interest within the community of ana  PRNGs in short); Another one counts on high entropy signals,

logue broadband chaotic optical systems. Earlier investations on
chaos-based RNG were proposed in the 90s and early 2000, how
ever mainly based on piecewise linear (PL) 1D map, with bit ree
determined by analog electronic processing capabilitieotprovide
the PL nonlinear function of concern. Optical chaos came wh
promises for much higher bit rate, and entropy sources basedn
high complexity (high dimensional) continuous time (diffeential)
dynamics. More specifically in 2009, Reidleret al. published a
paper entitled “An optical ultrafast random bit generator” , in
which they presented a physical system for a random number
generator based on a chaotic semiconductor laser. This geragor
is claimed to reach potentially the extremely high rate of 30 Gh/s.
We report on analysis and experiments of their method, which
leads to the discussion about the actual origin of the obtaied
randomness. Through standard signal theory arguments, weh®w
that the actual binary randomness quality obtained from this
method, can be interpreted as a complex mixing operated on
the initial analogue entropy source. Our analysis suggestsn
explaination about the already reported issue that this metod
does not necessarily require any specific deterministic ppoerty
(i.e. chaos) from the physical signal used as the physical wze
of entropy. The bit stream randomness quality is found to resit
from “aliasing” phenomena performed by the post-processig
method, both for the sampling and the quantization operatims.
As an illustration, such random bit sequences extracted frm
different entropy sources are investigated. Optoelectroic noise
is used as a non deterministic entropy source. Electro-opti
phase chaotic signal, as well as simulations of its determistic
model, are used as deterministic entropy sources. In all cas, the
extracted bit sequence reveals excellent randomness.

Index Terms—Random number generation, chaos, optoelec-
tronics, noise, entropy sources, statistical tests

I. INTRODUCTION

Random Number Generators (RNGs) are widely used
science and technology. They are a critical component

whether from mainly nondeterministic and stochastic ptalsi

phenomena (see [4]-[7]), or from deterministic but chaotic
dynamical systems [7]-[11]. A potential advantage of thieta
physical high entropy signal, arises in its deterministiattires
that might be used to achieve chaos synchronization as it has
been already demonstrated [12] and widely used for secure
optical chaos communications [13]. However, synchroiorat
possibility of the random binary sequence extracted from
the chaotic physical signal is still an open problem, which
resolution could lead to the efficient and practical use ef th
one-time pad (a symmetric encryption algorithm derivedrfro
the Vernam cipher, which is proven to be impossible to crack
if used under appropriate conditions).

The PRNGs based on deterministic algorithms can be imple-
mented in any computational platform, some can even beyeasil
adapted with discrete chaotic iterations to improve output
quality of randomness [14]. They however suffer from the
vulnerability that the future sequence can be determaaibyi
computed if the seed or internal state of the algorithm is
discovered. The main advantage of PRNGs is that no hardware
cost is added, and the speed is only counted on digital pro-
cessing hardware. Their algorithms are developed to pteven
guessing of the initial conditions, and the rate might beveld
down while increasing the complexity of such algorithms.

Physical RNGs rely on chaotic or stochastic physical pro-
cesses. Such random number generators are building the
random bits from inherently random or chaotic physical
process [15], for example, radioactive decay [16], chaotic
electrical and optical circuits [17], and so on. Up to rebgnt
the implementations of physical random generators have bee
limited to much slower rates than PRNGs because of lim-
iiation of the mechanisms for extracting bits from physical
iandomness without degrading statistical propertiesicCjiy

modern cryptographic systems, communication systentss-stal0 Mb/s could be achieved by using electronic oscillator
tical simulation systems, and any scientific area incorjiaga jitter [18] and 4 Mb/s using quantum optical noise [19].
Monte Carlo methods and many others [1]-[3]. The unpr&ne should notice however, that such physical implememntati

dictability of the bit stream and the speed at which the ramdowvas recently directly developed at the chip level in persona
bits can be produced are usually reported as very importaomputer processors, finally achieving more than reasenabl
aspects in the quality of the generated bit sequence. Otkpeed performances-(3 Gb/s), and actually also very good
factors like system complexity, cost, reliability and sq are randomness quality [20].

also important for establishing successful RNGs. There areConsiderable improvements for the rate of chaotic random
usually two methods for RNGs: One relates to deterministits generation have been however reached by using a semi-
algorithms implemented in hardware and software, the psaonductor laser in the presence of external feedback [21], a
dorandom numbers being generated from a single “seed” (swebll known setup in chaotic optical systems. The dynamical



processes involved in optical systems can indeed be vety f&ection IV via the results of four statistical testing papés
Moreover, high complexity chaotic dynamics can be pralijica The paper ends with a discussion of the obtained results, and
obtained, whether due to intrinsic complex nonlinear cmgpl concludes with possible future work.

between light and matter interactions in lasers, or due ¢o th

presence of a large delay feedback cavity enabling dynamiqﬁ M ETHOD FORRANDOM BIT SEQUENCE GENERATION
with large number of degrees of freedom. FROM AN OPTOELECTRONICSIGNAL
Chaotic optical signal might consist of pulses with a width

of few 10ps and with random amplitude and time positions, In this section we describe the physical setup from which we
which provide attractive potentials to easily generatedoan €xpect to obtain a fast random bit sequence. We also describe
bits at fast rates. In [9], a first attempt already reached 1tle binary sequence extraction method from the continuous
Gb/s RNG, the physical randomness originating from twidme signal generated by the physical setup, as it was fdymer
independent chaotic semiconduct lasers. Each laser itgengroposed in [22], [23]. Additionally, theoretical integiations
signal is practically sampled at an incommensurate rate wand discussions of this extraction method are proposed in
respect to the individual optical feedback delay times.niThe terms of basic signal processing and sampling theory. These
threshold value is set for comparison with each signal levigiterpretation and discussion are intended to give insigtthe
and to obtain a Boolean sequence. Lastly the random pRssible mechanisms at the origin of the bit stream randemne
sequence is produced by executing a XOR function betweguality.
the two Boolean sequences. More recently, Reidler and col-
leagues [22], [23_’] claim th_at they successfully demonsttat A. Setup delivering a broadband optoelectronic signal
another method in generating random bit sequence from ultra
fast optical chaos, at much faster rate. In such method, thdn order to additionally support our work with experiments
output of a single chaotic laser, with the optical feedbadk) the generation of optical broadband signals, data redord
delay time incommensurate with the sampling clock frequendrom physical chaos generator as well as from optoeleatroni
was digitized by an 8-bit analog-to-digital converter (ADCnhoise sources, have been studied. These experiments are dif
practically provided by an ultra-fast digital scope). Thiwe ferent from the ones described in [22] and [23], althougly the
difference between adjacent, but not nearest, points fhent are also originating from broadband optoelectronic device
bit digitized time series is performed (it is defined as a gseu A twofold physical source of entropy has been used (see
“derivative” operation). At last, a few LSBs only of the vaki Fig.1), both having been tested for their randomness gualit
resulting from the subtracted samples are retained to ganefOne source (referred as “Optoelectronic noise” in Fig.1) is
the binary sequence. Following this combination of broadbaoriginating from physical noise sources in the semiconatuct
photonic chaos and digital post-processing, generatittnas laser light generation process (known as RIN: relativenisity
high as 300 Gb/s are claimed. Many additional papers haveise), in combination with the electronic noise of the pho-
then appeared [24]-[30], utilizing similar bit stream extion todetector and its integrated electronic amplifier (themagse
method, but on different alternative photonic setups. &hegnd semiconductor photodiode junction noise, amplifiechley t
reported works have claimed to have achieved comparalite hitpise figure of the electronic amplifier). A comparable (and
speed and high randomness quality bit stream. None of th€yen cheaper) optoelectronic noise source was also prdpose
papers has however discussed the actual and respectige riidS], [31].
played by the photonic chaotic waveform on one side, and Bn the contrary, the other physical source of entropy is
the post-processing method on the other side. originating from a strongly deterministic process, whichsw

In this paper, the study of using broadband optical signased for a field experiment demonstrating (analogue) chaoti
to generate random binary sequence according to the metloptical masking of 10 Gb/s data signals, transmitted over
proposed by Reidler, is going to be deepen. We proposeao installed fiber optic link [32]. The strong determinism
apply the same method on the chaotic waveform generatgfdthis entropy source indeed enabled to implement accurate
by another class of broadband photonic oscillations, and heoadband chaos synchronization at the receiver, in omler t
analyze the different post-processing steps involved ia thtemove the chaotic masking signal and thus to retrieve the
method. We will analyze three key factors in the schenwiginal binary data stream. The dynamics of the electro-
of [22] and [23]: the sampling, the difference of distanoptical phase chaos generator is ruled by a nonlinear dual
samples, and LSBs retaining. delay differential equation implemented in an optoelattto

The paper is organized in the following way. In Sectioand electro-optic feedback loop.
II, the original architecture that we propose as the physica Each of these two signals obtained from noise or chaotic op-
system to generate fast random bit sequences, is descritzeectronic systems, has been processed by using the dnetho
in details. Analysis of the conversion of the physical timproposed in [22]. By doing so, the aim is to support our
series into a binary random sequence as proposed in [8R]nal processing analysis on the extraction method of ihe b
is recalled, but also analyzed in terms of signal processisgquence, which is inferring that in both cases, the ranéssin
arguments. Then an entropy evaluation for the binary sespieguality must be very similar. As we shall illustrate and dise
is processed in Section Ill, thus providing insight for théater, and as it has been pointed only in the literature [ddos
entropy rate capability for the generated binary sequenég.not a necessary condition for a good randomness quality
Finally, the randomness quality of the obtained bit seqeésc of the extracted bit stream. Global spectral and statistica
compared, depending on the used physical signal: whethefeatures in the original analogue source of entropy appeae t
chaotic laser intensity, or a noisy signal covering a simila&nough, such as a broadband Fourier spectrum, and a sufficien
Fourier spectrum. The randomness quality is evaluated spreading of the amplitude probability distribution.
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Fig. 1: Experimental setup of the optical system used t%

generate signal as physical random sources for the denivat? oFod|ode_ noise, also complemented here by _the RF elec-
of random bit sequences. tronic amplifier noise). Equation (1) can be confidently used

solely without the noise contribution, when the large atoplée
chaotic motion only is of interest. To support this asumptio
one might notice that such numerically obtained waveforms

wbre found to exhibit very good qualitative agreement whitd t

'S always the case in expenments-, one can also generfie ohserved in the experiment [33]. The proposed model has
time ”.ac.es pumencally, thus resulting in an even s.trongséen also successfully used to derive analytically [34]trobs
det‘?”“_'ﬂ'sm in the entropy source. In that case, the noies l_ethe bifurcation features indeed observed in the experintiens

is significantly reduced to numerical rounding and numé”CFﬁdicating that the large amplitude solutions can be configle
integration errors. One however needs a suitable detestiuini ., 12404 numerically from the noise-free model.

model in order to generate such numerical time traces. Our

deterministic chaotic signal is modeled by the physicaltsoh

. . . B. Extraction method for the random binar uence
of a nonlinear dual delay dynamics ruled by the following o ] y s
differential equation: A schematic view of the algorithm used to extract a random

binary sequence from a broadband physical signal, as pedpos

) in [23], is depicted in Fig.2. On the basis of a physical setup
(t) +z(t) = Bsin®[zr — 21467 + o],  delivering a broadband signal, as the one described in the
(1) previous section, a real time oscilloscope is first involved

wherez stands for the delayed signaft — T'), § andr are 10 perform an analogue to digital conversion of the output
the characteristic times of the low and high cut—off frequyen Signal of the setup. This conversion is typically achieveal v
respectively, which are involved in the bandpass feedba@R 8-bit digitizer at a sampling rate of 40 GHz. In the next
filtering of the RF filter. From a signal processing viewpginsubsection, we will discuss from the signal theory viewpoin
such a dynamical system can be interpreted as a nonlingé@fme particular processing issues that are found to signifi-
delayed feedback oscillator. This oscillator is ruled by thcantly contribute to the actual randomness of the final lyinar
dynamics of a linear bandpass filtéfw), which is driven sequence. More precisely, sampling issues will be discisse
by a nonlinear transformation of two delayed “echos” (dslayjuantization issues, and also post-processing opergsoich

T and T + 6T) of the filter output,z(t). Chaotic solutions as distant sample difference, and LSB-only retaining).sThi
are obtained when the feedback loop gdiris high enough, signal processing is performed before getting the actual fin
of the order of 5. This gain is adjusted via the tuning dRndom binary sequence, to be tested for their randomness
the laser light intensity. A typically observed chaoticitin quality via standard statistical test suites.

is a white noise like signal which is covering the spectral 1) Sampling issues: aliasing for enhanced entropy

range of the broadband bandpass feedback RF filer,ca  In the following, we assume that samples are originally
[30 kHz—13 GHZ. This results in a fast noise-like largeacquired by a real time digital scope measuring a broadband
amplitude signalz(¢), which is expected to be suitable forcomplex time trace. Such equipment is designed to follow
high speed RNG based on physical device. It is worth noticifige classical Shannon sampling theorem: the sampling rate
that this chaotic signal generation process can be viewed af iS matching the instrument analogue input bandwidth,
balanced equilibrium between the RF feedback filter (lingjti Which defines the maximum Fourier frequengy that can be

the spectral span of the signa(t)), and the spectral broaden-captured by the instrument. The Shannon sampling theorem
ing performed by the nonlinear transformati@[‘n@ —function indeed states that a limited bandwidth signal can be dégitiz

of the difference delayed signals; — z7,s7). The offset Wwithout loss of information, when the sampling frequency is
phased, is typically adjusted through the static interferencat least twice the maximum signal frequency. The sequence
condition, which interference phenomena is physicallyhat t of the samples(s,, = x(nT), n € Z} can be defined as a

t
9-1/0 x(§)d§+7%

origin of the sin? nonlinear transformation. function of the continuous time as follows:

A more accgrate description of. the gen_erated S|gm(a.b s(t) = 2(t) - LU (8), )
should also include (small amplitude) noise sources in the P

equation. The latter noise is actually of the same kind than whereLLl 1(t) = Z 5(t — kT).

the one involved in the noisy optoelectronic signal (laset a

k=—o0



2) Further post-processing: difference sequence between

(a) distant samples
In [22] and [23], computing the difference sequence between
7 two neighbor samples are named as “derivative”. However,
’ mathematically speaking, the term “derivative” () is used
(b) for the asymptotic valuéx(t+ At) —x(t))/At whenAt — 0.

In the physical case of a finite sampling rate, the neighbor
; samples are obviously not infinitely close in time, hence we

“ha-, £ prefer not to use “derivative” here. More precisely, we are
Fig. 3: lllustration of the properly fulfilled sampling theson  dealt here with significantly separated samples in timegesin
conditions (a), and the incorrect sampling condition legdb strong aliasing is first operated (see Section 1I-B1), with a
aliasing (b). undersampling number up ta = 16. The initial 40 GHz

sampling rate is respecting the oscilloscope analoguetinpu

bandwidth of 12 GHz, but the final series obtained after
A typical illustration of the proof for the sampling theorésn retaining 1 sample over 16, is corresponding to a 2.5 GHz
presented in Fig.3, as one describes the spectrum of suchindersampling rate. The samples obtained after this distan
sampled signak(t), sample difference (which will be called from here DSD)
operation can be described as follows:

1
S(v) = FT[s(t)] = X()xFTILWz(t)] = ZX (@)xL 2 (v),
() {d}Yken = {2[k T] — 2[(k — n)T], k € N}. 4)
where we have used the well known result that the Fourigr . . . . .
Transform (FT) of a comb is also a comb. The convolutioﬁ we iry again to analyze in the Fourier domain the meaning

product in the Fourier domain reveals that the spectrumef t ft?r'ls T:ecopd proc?ssmg% onedobtam tf:e;zl];wmg exppessl.
sampled signal is the result of the superposition of an ifini orthe Fournier spectrum ot—undersampled difierence signal.

number of regularly spaced replica of the original signa&csp D(v) = [2,L-67i7'runTX(V) Sm(ﬁmT)] w2 (v). (5)
trum X (v) =FT[z(¢)], two neighboring replica being separated T

by the sampling frequencys = 1/T. Thus, if the maximum This expression reveals a so-called channeled spectrien filt
frequency fm of the bounded support oK (v) is less than which applies a periodic sinusoidal modulation of the avédi
fs/2, the replicated spectra do not overlap (see Fig.3(a)). ltspectrumX (v). One could notice that the maximum trans-
then obvious that a suitable window filtering of the samplemtission of this filter is centered at half the undersampling
signals(t) allows to recover in the Fourier domain exactly theate (n7')~!/2) where aliasing is maximally symmetric (thus
same spectrum as the one of the original sigr@). Such a somehow selecting the frequency components that are most
filter typically transmits perfectly all the Fourier companis affected by aliasing), and the frequencies of null transmis
in a frequency band such &s fs/2, +fs/2], and rejects all sion are centered at zero ardnT)~! (where the aliasing

the other Fourier components for the other frequency rangphenomenon is the less pronounced in the Fourier spectrum,
When undersampling is used, thkasing phenomenon occursas long asn is not too large). When focusing on the low
in the Fourier domain. It consists then of overlaps betwéen tfrequency domain only, another comment about the action of
replicated spectra due to the comb convolution. The actubls DSD processing could be made: the very low frequencies
spectrum of the sampled signal(t), can be viewed as a are filtered out, which consequence is to asymptoticallytcet
complex mixing of the frequency components of the originalero the mean value of the corresponding sample set, and thus
signalz(t), due to the overlapped replica &f(v) =FT[z(¢)]. also improving the symmetry around zero of the amplitude
The procedure of selecting only one sample evefyom the probability distribution.

original sampled sequence, is thus equivalent to an afjasifhe Fourier analysis of the DSD processing is however not
operation with an undersampling of order The original as obvious as for the aliasing issue in terms of randomness
goal of cementification of the extracted sample sequenemhancement, or entropy amplification. A more meaningful
can thus be viewed as an aliasing technique resulting indescussion can however be made through the analysis of the
complex mixing of the original frequency components. Thstatistical sample distribution of the DSD compared to the
consequence is an increased entropy of the output sequencginal one. More precisely, Fig.4a shows the evolution of
When viewed in the time domain, this procedure results the amplitude statistics when the DSD processing is itdrate
the vanishing of the short time correlations, since a lonteti several times. One clearly sees that the statistics is mude a
intervalle is then separating two successive samples, atgdp more symmetric, resembling closer and closer to a Gaussian
to the width of the autocorrelation function of the originatlistribution. We have checked that introducing noise in the
signal. On the contrary, the short time scales correlatiosgnulation does not change this result.

are necessarily present when the conditions of the samplifigis convergence towards a Gaussian statistics through DSD
theorem are fulfilled (two successive samples would thug keean be qualitatively explained through the analysis of tisDD

the information of short time scale correlations). Anothgsrinciple. Since the difference is performed between theesa
consequence is that such an operation is unidirectionsiheén sample sequence but shifted in time over a quantity large
sense that original information is actually lost after aasihg enough compared to the correlation time, one can interprete
process. Because of the complex mixing of the Fourier frehe DSD as the superposition of nearly independent pseudo-
guency components, the original spectrum cannot be reedverandom processes. The central limit theorem can then be used
with a “simple” unmixing procedure. to explain qualitatively the amplitude distribution conyence
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Fig. 4: Statistics of recorded chaotic time series (expenital). (a)lst4th times DSD for2.5GHz undersampling; (b) Zooming
of the centering area of (a); (c) 1st-10th times DSD, loggtm between weight and height, showing the hyperbolidiataship
between the two as DSD is repetitively processed.

towards a Gaussian one (limit of the amplitude distribution 3) LSB retaining, and quantization noise effect
for the superposition of an asymptotically large number of

independent random processes). . . I ) o
P P ) éla|s last post-processing step, is involving very similae-t

At the same time, as more and more DSD are operat . O .
P étical insight compared to the ones related to the abiasin

the amplitude range is increased along the horizontal ax?%4| ! . . o
whereas the maximum of the statistics along the vertica Lprenomenon underlined in section 11-B1. The main idea fer th

is inversely decreased. Figure 4c shows the numerical m@ezgﬂyz's glfeth:n tla;; dStegW(;frfIL Slir:zltgmmlgét\?v(:zr?”t%grg? oral
of a hyperbolic relation between width and height for tha'scret' at'o?n oce rr'np during sam gl'yn and the ampkb:p
successive iterated processings. ! 1zl urring auring piing, !

This asymptotically Gaussian distribution obtained after dlscret_lzatlon occurring as qua_mt_lzat|0n IS concerngd].[35
' : : ... JFollowing the results of this statistical theory of quaatian,

few DSD steps, finally prepares a kind of optimal Statls'“C%Ine finds that the actual consequence of the LSBs retainin

conditions for the last post-processing operation progdse q 9

: . . ) .. _method is practically to provide a nearly constant (flat) am-
[22], leading to the final random bit sequence: LSBs rem‘i’nmplitude probability distribution for the quantization sej for

guantization levels as high as the root mean square of thalsig
to be quantized. In terms of LSBs retaining, this means that

Surprisingly, the qualitative signal processing analysis
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Fig. 5: Statistics of recorded noise time series (expertaipr(a) 1st4th times DSD for &.5GHz undersampling; (b) Zooming
of the centering area of (a); (dst-10th times DSD, the log-log plot between weight and heightwshg the hyperbolic
relationship between the two as DSD is repetitively proegss

flat noise distribution is obtained for the correspondinddkS amplitude probability distribution, according to the &tacal
amplitude, even if the LSB maximum amplitude reaches thieeory of quantization. The Gaussian profile is implicitely
root mean square of the quantized signal. As illustrateddgr®F provided through Reidler's method when a sufficiently high
of Ref. [35], the flat amplitude distribution results in a &in number of DSD processing is performed.

of aliasing from the original symmetric (Gaussian) ampléu
distribution, which is segmented and superimposed over th
central small amplitude interval limited by the resolutioh
the quantized amplitude (i.e. the amplitude range encoged
the retained LSBs).

4) Discussion of the randomness origin

eA straightforward issue can then be raised about the actual
gpurce of randomness leading to the final bit sequence, as
proposed in [22]. The randomness origin has been many times
attributed to the chaotic character of the solution geeérat
Thus, after a complex mixing in the Fourier frequenchy the original physical system: A SC laser diode subject
domain due to a sampling theory aliasing effect, the LS® proper optical feedback, which is well known to exhibit
retaining process results in a strong flattening of the aogidi  chaotic motion. However, from the previously analyzed post
probability distribution for the retained LSBs. This flatbeg processing steps, no single argument related to any chaotic
of the amplitude probability distribution can be also retht property of the original signal was involved. The only neces
to a kind of aliasing, but performed on the initial Gaussiasary requirement was to have a certain broadband character



in the original signal, such that first standard aliasingldou A. Introducing noise in the smulated chaotic dynamics

occur in the Fourier domain. Second the DSD processinggor the entropy calculation, we first consider a transient-
leads to a symmetrization of the amplitude statistics, With free chaotic solution of Eq.(1)3( = 5). To achieve such
convergence towards a Gaussian dl_strlbutlon. And Iast,'_sLSQ solution, Eq.(1) is integrated under the proper parameter
retaining performs naturally a flattening of the final amplé ¢ gitions known to lead to a high complexity chaotic salati
probability distribution corresponding to the selectets bi This preliminary numerical integration is performed over a
To investigate this issue, we performed a similar analysigyration long enough compared to the slowest characteris-
as the one done in the previous subsections on the chagtiCtime scale of the dynamicg)), so that the asymptotic
motion of a nonlinear electro-optic delay dynamics, butwet trajectory is free of any transient. Once this correspogdin
physical signal a priori originating from physical noiseistes chaotic attractor is supposed to be reached via the nunherica
only, without any deterministic chaotic compound. Thisnsily integration, this asymptotic solution can be associatec to
is chosen to be the output of the amplified photodiode of thgngle temporal waveform covering only the longest timegel
same setup, but without the nonlinear delayed feedbackdbopf the dynamics, i.eZ” + 67T this is defining the initial
the origin of the chaotic time series: The amplified photdéio condition of the corresponding delay based, and noise-free
signal is issued from the laser intensity noise, it comgrisghaotic dynamics, from which noise influence will be exptbre
also the photodiode junction noise and the electronic dm@pli \We then introduce in the right hand side of Eq.(1) an arbjtrar
noise (see “Optoelectronic Noise” output in Fig.1). Altgbu small additive noise term (small perturbation along theotica
the electrical signal level is significantly lower, we usée t trajectory). The noise amplitude is arbitrarily set so tte
scope magnification to get a time trace of a comparabdggnal-to-Noise Ratio (SNR) is 40 dB. After further integgra
amplitude with respect to the scope vertical amplitude €angng Eq.(1) with the noise term and starting from the initial
thus resulting in an effective digital scope quantizatioerce condition corresponding to the calculated noise free d¢baot
comparable number of bits with respect to the chaotic signghjectory, one is able to obtain a continuously noisetpbed
We have reported in Fig.4 and 5 the statistics evolutiathaotic trajectory. When repeating this calculation wikiesal
of the digitally acquired optoelectronic noise signal atgl idifferent noise realizations, one then expects to obsdree t
width / height evolution. The figures clearly show very simil effect of SIC when comparing the different noise perturbed
features. From this rough analysis of the influence of thghaotic trajectories. This property manifests itself thgb a
two physical signals (the optoelectronic noise and thetelec progressive amplification (as time is running) of the small
optic chaos), we realize that the post-processing leads plerturbations materialized by the added noise. Compariag t
qualitatively equivalent final bit sequence. This obseorat different calculated waveforms, they consequently looks a
and the previous analysis of the post-processing stepppsipthe same right after the noise addition, but they split apart
the assumption, at least qualitatively, that the randomiioés (differently for each pair of such time series) after a tgbic
the final bit sequence might be mainly issued from the posime scale related to the inverse of the largest Lyapunov
processing steps. The chaotic feature of a time series eppe&xponent of the chaotic dynamics (see Ref. [36] for details)
as an actually sufficient but not required condition, for th&wo such simulated waveforms are represented in Fig.6;, afte
generation of a random bit sequence when the discussed pgsé- undersampling procedure, and before the DSD and bit
processing is used (undersampling, DSD, and LSBs retgining:taining processes for the final extracted binary sequére
A simple noisy signal with similar spectral extend is foungvaveforms thus do not appear anymore as continuous in time
to lead to similar final output bit stream, as already rembrtejue to undersampling. For these two realizations and with th
previously [4], but not yet analyzed and interpreted as wehachosen SNR for the noise amplitude, one clearly sees that the
proposed. two time series separate one from each other after a typical
time scale of ca. 300 ns. This time scale is of the order a few
tens of the largest time deldy+ 67", which is corresponding
I1l. EFFECT OFNOISE ON THEENTROPY RATE IN THE to a few tens round trips of the chaotic signal in the nonlinea
BINARY SEQUENCE delayed feedback loop. This is fully consistent with thei¢gp
order of magnitude of the inverse largest Lyapunov expgnent

I this section, the time evolution of the entropy in the fingly it is of the order of the largest time delay in the dynasnic
binary sequence is evaluated under different choices fer th

method used to build the final random bit stream from the

chaotic signal. The aim is to get insight in the origin of the o )

entropy creation mechanism involved in the constructiothef B Entropy estimation for each bit cell

final random bit stream. More precisely, we aim at discrimi- Many different noisy chaotic time seriesV(= 103) are
nating under which conditions the deterministic featur¢hef simulated to generate as many random bit sequences. Each
chaotic signal (the determinism coming from the dynamicgalization is calculated from the same initial conditidtise
described by Eq.(1)) is indeed involved in the entropy of theoise free chaotic waveform over one largest delay tima-inte
extracted bit stream. To achieve this goal we reproduce thal), but with different added small noise perturbationsrf
method proposed in [36], which is intended to measure tlkach obtained time series, one can explore various bitrstrea
sensitivity to initial condition (SIC) of the deterministthaotic extraction methods, e.g. with or without DSD, or even with
motion in the presence of additional small noise. This measiseveral successive DSD processing, with the LSB retaining
consists in calculating the temporal entropy evolutiontfe® or with the MSB, ...For a fixed bit extraction method, the
generated binary random sequence, with respect to sevéyabbtained bit sequences can be used to calculate, at each
different noise realizations. time t;, of a new extracted bit, the probabilitig3)(¢;) and



most reflecting the deterministic features of the signakmehs
this determinism is earlier lost as smaller LSBs are corezrn
The SIC amplification of the small initial differences (nis
realizations in that case) occurs naturally earlier for ESB
than MSBs. Differently speaking, this illustrates the fawht
deterministic properties are more prononced with MSBs, or
equivalently, LSBs are containing less deterministic esd
than MSBs.
Columns 2 and 3 in Fig.7 are showing similarly this deter-
minism loss from MSBs to LSBs, when one and two DSD
steps are processed respectively. One clearly sees that the
smooth entropy transition, which is a signature of the chaos
. ‘ . . determinism, even completely disappears for LSBs (a zaom-i
0 200 400 600 Tirgg?ns] 1000 1200 1400 1600 over the first ns, would _show that the entropy already stdrts a
values very close to unity).

Fig. 6: Two simulated waveforms of chaotic laser intensity The conclusion on Fig.7 is that fastest entropy rate (down to
starting from the same initial conditions with differentise the actual sampling) can be achieved when LSBs are used and
sequences added at tifie The noise amplitude is set so thatvhen several DSD processing are performed. This is however

SNR is 40 dB (the signal energy being calculated on the noigichieved at the cost a full lost of determinism (zero memory
free chaotic trajectory) time, without any smooth entropy growth). This corresponds

to the plots on the upper right positions, for which unit eptr
is already achieved very close to the time origin. This suppo
Py(t;) for obtaining a bit 0 or 1 respectively. This timethe fact that deterministic chaos does not exist anymorbken t
varying probability distribution is then used to calculfiew obtained final bit stream randomness.
the statistical bit entropy evolves in time, On the contrary, the MSBs are showing a non-zero memory
. time, and thus a signature of a maintained determinism. The
most pronounced determinism is revealed in the lower left
H(t) = - Z Pi(t) - logy Py(1). ©6) plots, F1?or MSB and without any DSD. One could notice that
=0 this actually corresponds to the 1-bit ADC used in [9], where
As described in [36] if SIC of a chaotic dynamics is indeedeterministic chaotic origin does contribute to the randess
involved in the final bit sequence, thé/ extracted bit of the final bit stream. In this case, the good randmoness
sequences are initially strongly correlated. This is beedhe quality is obtained only by carefully combining two uncerre
bits are originating from the same initial chaotic waveformated chaotic signals (two chaotic lasers, with incommestsu
Consequently, the influence of the small added noise dharacteristic time scales).
negligible at the initial times of the deterministic chaoti Figure 8 shows the plots of every bit cell entropy averaged
dynamics: the entropy at smallis expected to be close toover 10° trajectories. Each plot of entropy is obtained as a
zero if indeed the dominating phenomena is deterministitinction of time for an ensemble of time series starting with
However, as time is evolving, SIC is amplifying the influencexactly the same initial condition at time= 0. Eight plots
of the small noise amplitude on the large amplitude chaotite shown in Fig. 8 corresponding to eight different positio
motion, and theN bit streams realizations are more andit cell of the value. These curves are the smoothed versions
more decorrelated, leading progressively to a maximudue to averaging, of the curves represented in the first anlum
binary entropy of 1. This unity entropy means an equaff Fig.7. Again, it can be seen that more time is required to
probability for obtaining bit zero and one, independentty aonverge to a unity entropy when using MSB compared to the
any deterministic motion. The influence of the small addagke of LSB. Differently speaking, the memory time depends
noise term is then dominating the output random bit streawn bit cell selecting, MSB and LSB appearing as the slowest
One should notice here that the bit extraction method usedd fastest entropy increasing rate, respectively.
in Ref. [36] concerns MSB only. In our case, we apply the
complex bit extraction method with multiple steps (aliasin IV. STATISTICAL TESTS
DSD, LSBs retaining) proposed in [22], and we are interestedAdditionally to the previous signal theory analysis of the
in the resulting entropy growth rate under these particulprocessing steps used in the bit extraction method, thitosec
conditions, with actually expected significant differesice is intended to qualify the final bit stream in terms of their
benchmarking from several standard randomness test .suites
Figure 7 represents the obtained binary entropy calculaté# thus verify in this section that the analyzed and used
with different bit extraction methods. In the first columhet method proposed in [22] and [23] have led also in our exper-
binary entropies obtained from a direct 8-bits ADC for diffe iment to quasi-equivalent random bit stream quality, whaeth
ent bits from LSB to MSB, are plotted as a function of timefrom the deterministic EO phase chaos generator or with the
According to the description of [36], memory time is define@ptoelectronic noise source.
as the time required for the entropy to reach a value close to
one. One clearly sees that as the bits chosen for the randofy The tested streams
bit stream moves from LSB to MSB, the memory time of First of all, we give here a brief description of the tested
the related bit cell is increasing. This illustrates thatB4%re methods that have been formerly proposed in [22] and [23].
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Fig. 7: LSBs entropy evolution as a funtion of time, for an @mble of simulated chaotic time series with the same initial
conditions, but with different small noise added to it. Thase strength is-40 dB, with sampling rate.5 GHz 8-bit ADC.
(a) For sampling value; (b) For the 1st DSD of the samplingi®alc) For the 2nd DSD of sampling value.

is processed times and8 LSBs of each value are joined to
ter produce the pseudorandom bit stream.
These two schemes are both adapted to optoelectronic noisy
- signal. The generated streams sourced from chaotic lasker an
noise are compared by standard statistical tests in the next
subsections.

2
£ o ,gps;;i: B. Satistical tests
~ _ _athbit Considering the properties of binary random sequences,
- 2:: E:I various statistical tests can be designed to evaluate Heetam
7th bit that the sequence is generated by a perfectly random source.
-~ — —MsB We have performed some statistical tests for the optoeleictr

noise and electro-optic chaos generators proposed heeseTh
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ tests include NIST suite [37], DieHARD battery of tests [38]
Oy 0 1200 1400 1000 ENT program [39], and and some comparative test parameters.
A brief description of each of the aforementioned testsvsyi
Fig. 8: Simulated averadge growth of bit entropy and it® the following paragraphs.
dependence on bit cell selecting (from MSB to LSB), without 1) NIST statistical test suite
any DSD Among the numerous standard tests for pseudorandomness,
a convincing way to show the randomness of the produced
sequences is to confront them to the NIST (National Ingtitut
On the one hand, in [22], authors have used a DSD methofdStandards and Technology) Statistical Test, becauseait i
to generate a random bits stream. The chaotic laser signaujsto-date test suite proposed by the Information Techglo
sampled by using 2.5 GHz ADC, and ther LSBs of every Laboratory (ITL). A new version of the Statistical Test Suit
first DSD value are joined together to generate the final randdas been released in August 11, 2010.
sequence. On the other hand, in [23], the chaotic laser IsignaThe NIST test suite SP 800-22 is a statistical package con-
is sampled thanks to 20 GHz ADC. Then the DSD operation sisting of 15 tests. They were developed to test the randssnne
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of binary sequences produced by hardware or software based to be very sensitive to deficiencies in random number
cryptographic pseudorandom number generators. These test generators (when it is located between 5% to 95%, data
focus on a variety of different types of non-randomness that are treated as random).

could exist in a sequence. 3) Sample test: Sample test means can be tested for bias in
For each statistical test, a set Bf— values (corresponding random number generation. In binary mode, the expected
to the set of sequenceBy) is produced. The interpretation mean is 0.5 while for bytes, the expected mean is 127.5.
of empirical results can be conducted in various ways. Ia thi 4) Monte Carlo test: a Monte Carlo approximation of
paper, the examination of the distribution Bf- to check for which is simply the evaluation the area of the unit circle
uniformity is used. The distribution of P-values is exandine using theN generated random numbets(X,;_1), i =
to ensure uniformity. I1fP > 0.0001, then the sequences can 2,...,N.
be considered to be uniformly distributed. 5) Serial Correlation test: Serial correlation coefficiewdl-
In our experiments, 100 sequencas=( 100), each with vated from< X3, X; 1 > / < X;, X; >, fori=2,..N.
1,000,000-bit long, are generated and tested. |fftheof any The intended value for perfect random sequences is 0.
test is smaller than 0.0001, the sequences are considebed tgn Table I, it is shown that the results for each pair of

not good enough and the generating algorithm is not suitalplhdom streams, considering these five tests detailed above
for usage. In Table I, the random streams generated by #ie very closed one to each other. They all achieved to pass
chaotic laser and by the noisy signal have both obtainedt® threshold of the Chi-squared test, and the results aye ve
100% passing rate when considering the NIST battery of testsimilar for the other tests. To sum up, all these streamsfgati
thus it is impossible to found a difference between the twihe same random-like behavior according to the ENT battery.

streams using the NIST suite. 4) Comparative test parameters
2) DieHARD battery of tests Five well-known statistical tests [40] are used too as sampl
The DieHARD battery of tests has been the most sophismparison tools. They encompass frequency and autocorre-
ticated standard for over a decade. Because of the stringlatibn tests. In what followss = s°, 5,52, ..., s"~! denotes

requirements in the DieHARD test suite, a generator passiadginary sequence of length The question is to determine

DieHARD battery of tests can be considered good as a rulewlfiether this sequence possesses some specific charagerist

thumb. that a truly random sequence would be likely to exhibit.
The DieHARD battery of tests consists of 18 differenbtandard tests intended to answer this questioriFaaguency

independent statistical tests. This collection of testbased test (monobit test), Serial test (2-bit test), Poker test, Runs test

on assessing the randomness of bits comprising 32-biténéegand Autocorrelation test (we refer the reader to [40] or [41]

obtained from a random number generator. Each test requifesdetailed definitions).

223 32-bit integers in order to run the full set of tests. Most We show in Table Il a comparison between two random bits

of the tests in DieHARD return & — value, which should be streams sourced respectively by the chaotic laser injeasi

uniform on [0, 1) if the input file contains truly independentby the noisy optoelectronic signal. The results confirm that

random bits. Occasion#&t—values near 0 or 1, such as 0.0012proposed random streams present very closed statistie#it qu

or 0.9983 can occur. However, an individual test is considerties. This finding implies that to have a chaos-like deterstit

to be failed if its P — value approaches 1 closely, for instancegrigin is not a required condition for high randomness duali

P —value > 0.9999. in the proposed method.

Results derived from applying the DieHARD battery of tests Finally a comparison of the overall stability fromx 103

to the two random streams computed from experimental titi@ 2 x 10° for these generators is given in Fig. 9. It can be

series, reveals that both sequences can pass sucesdftilly alseen that the trends for the amplitude movements of valees ar

tests. This confirms that the quantitative randomness olbithe more or less in the same scale, which again indicates that all

stream taken from the chaotic laser intensity indicateslaim these random sequences share closed random properties.

features compared to the one obtained by the optoelectronic

noise source (thus without any chaotic origine). V. DISCUSSION CONCLUSION, AND PERSPECTIVES

3) ENT test program Random number generation via photonic broadband signal

ENT test program applies various tests to sequences fyaration does provide nowadays a novel and interesting
bytes stored in files and repor.ts the results of those tebis. pproach allowing for unprecedented high bit rate of random
program is useful for evaluating random number generatqj syreams. These photonics to digital world conversica ar
for encryption and statistical sampling applications, pees- yegigned so that randomness can be certified according t mos
sion algorithms, and other applications where the inforomat o yhe sual randomness tests such as NIST and DieHARD
density of a file is of interest [39]. suites. Among the recently proposed physical systems and re

There are 5 tests contained in the program: lated processing intended to extract bit streams from phioto

1) Entropy test: Entropy in bits per character (or bytepnalogue waveforms, two rather different approaches can be

which corresponds to the incompressibility of the sadentified: when the source of randomness explicitly stems
guence (as a perfectly random sequence cannot be cdrom photonic noise [4]-[6], and when deterministic chaos
pressed, since no part of it can be expressed in termsi®fclaimed to be at the origin of the random bit stream [9],
other parts). Hence entropy of 8 bits/byte means perfd2?]. Whereas the first approach provides obviously, and by
randomness in the sense of incompressibility. definition, a non deterministic random bit stream, the sdcon
2) x? test: y2 testing is very common for goodness-of-fibne has an implicit potential source of determinism, sirtyila
of sample distributions of random numbers. It is knowto the algorithmic and fully digital pseudorandom bit seoge
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TABLE I: NIST SP 800-22 test result®{)

Method 2.5GHz, 1st DSD, 5LSB 20GHz, 4th DSD, 8LSB

Source Chaotic Iaser| Noise Chaotic Iaser| Noise

Frequency: 0.935716 0.798139 0.171867 0.834308
BlockFrequency: 0.040108 0.350485 0.289667 0.867692
CumulativeSums: 0.334152 0.575225 0.228927 0.688782
Runs: 0.595549 0.834308 0.851383 0.637119
LongestRun: 0.191687 0.964295 0.162606 0.304126
Rank: 0.534146 0.037566 0.637119 0.719747
FFT: 0.236810 0.514124 0.202268 0.249284
NonOverlappingTemplate: 0.502510 0.491449 0.521769 0.501830
OverlappingTemplate: 0.851383 0.964295 0.090936 0.574903
Universal: 0.798139 0.739918 0.102526 0.319084
ApproximateEntropy: 0.224821 0.236810 0.435436 0.419021
RandomExcursions: 0.347389 0.229729 0.471174 0.104312
RandomExcursionsVariant;  0.217344 0.209317 0.461569 0.350467
Serial: 0.300289 0.366918 0.237996 0.606177
LinearComplexity: 0.350485 0.262249 0.224821 0.935716

TABLE II: ENT battery using10® bits for each stream

Method Using source| Entro Chi-square| Sample | = error | Correlation
9 py q P

2.5GHz, 1st Chaotic laser| 7.999984 67.18% 127.4988 | 0.03% -0.000771
DSD, 5 LSBs | Noisy signal | 7.999986 7.13% 127.5034 | 0.03% | -0.000392
20GHz, 4th Chaotic laser| 7.999986 73.48% 127.4973 | 0.03% 0.000481
DSD, 8 LSBs | Noisy signal | 7.999985 12.37% 127.5011| 0.02% | -0.000411

TABLE Il1I: Comparison between the presented sources faral(” bits sequence

Subjects Monobit | Serial | Poker | Runs | Autocorrelation
Method 2.5GHz, 1st DSD, 5LSBs
Chaotic laser| 0.2509 | 1.9200 | 16.6650 | 16.6215 1.5739
Noise 0.6019 | 0.7144 | 8.5606 | 17.5156 1.5247
Method 20GHz, 4st DSD,8LSBs
Chaotic laser| 1.4580 | 0.5199 | 13.1430| 28.9460 1.1583
Noise 0.2554 | 0.7835 | 14.0035| 22.9136 1.6739
(PRBS) generators. RNGs. On the contrary to the photonic noise based RNGs, this

A major interest of the digital PRBS resides in their caggbil indeed can be expected from the chaos-based photonic RNGs,
of generating a distant and synchronized random bit streasince they also originates, at least partially, from deteistic
which allows one to apply them in symmetric cryptographglynamics, similarly to the algorithmic PRNGs.

A major advantage of PRNG is precisely their perfect dén that particular context, we have proposed to addresgeckla
terminism, and perfect control, due to their digital pragra issues, through the analysis of a particular post-proegssi
based generation process. This feature is also at the arigirmethod [22] applied in many chaos-based photonic RNGs.
their main drawback: the same absolute digital determinisiine actual role of deterministic chaos in this photonic RNG
can be used in principle for cryptanalysis, trying to gudss tapproach was known to be controversial [4], [42] (but not
seed which can then deterministically and totally allowtfog analyzed), since purely non-deterministic (noisy) phaon
random bit sequence reproduction, even by an eavesdropp@gmals were found to lead to similar randomness qualityrwhe
Also from a more technical viewpoint, the processor baseding the same method.

architecture of PRNGs defines some speed limitations cklate this article, we have checked on additional experimdmds t

to the processor clock, and the number of elementary opetiae proposed method can succesfully lead to high speed and
tions needed to implement the PRNG algorithm. Noise basédiigh randomness quality, whether when used on strongly-dete
and chaos based, photonic RNGs provide at least a techniwatistic chaos provided by an electro-optical phase dynami
answer to the limited bit rate generation provided by purelyr when used on a photonic noise having comparable spectral
algorithmic solutions. It was also reported in many attesnpand statistical features. It is thus confirmed that chao®isan

on photonics based RNGs, that high quality randomnessniscessary condition for the method to be successful.
possible, since they can pass successfully all the stadtl&H We have also analyzed and interpreted this digital post-
and DieHARD test suites. A strong open problem however stiffocessing method. Standard signal theory argumentsleevea
remains concerning the capability to control, and repredudhat the method is actually acting as an entropy enhancement
the random bit stream provided by photonic chaos-basgdough aliasing phenomena, both with the time discretnat
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(undersampling) and with the amplitude discretizationBES
retaining). [20]
Finally, we have also investigated how a typical signatuggy)
of deterministic chaos, sensitivity to initial conditiocan or
cannot survive in the final bit stream. It is found that thi&z]
determinism signature is actually lost precisely due to the
random bit stream extraction method.

We also conclude that the analyzed bit stream extractié!
method does not appear as suitable, when further use of
deterministic feature is expected. For example, this happd24]
when one wants to achieve synchronization between distant
random bit stream (e.g. when cryptographic applicatiors ar
concerned, such as one time pad cypher). [25]
Synchronizable random bit stream generated from detesmini
tic chaos, is thus still an open problem, which would require
other bit stream extraction methods able to provide both[zs]
strong enough determinism together with a high randomness
quality.
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